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Abstract: The development of environmentally friendly technology is vital to effectively address
the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ)
to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film
for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was
identified by altering the ratio, and its influence on PVDF was assessed using diverse structural,
morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocat-
alytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%,
whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron–hole recombi-
nation and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric
PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation,
ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to de-
crease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive
oxygen species. This suggests that the active species •O2

− and •OH are primarily responsible for
the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without
substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and
effective integration of MZ into the PVDF polymer film results in improved degrading performance.

Keywords: hybrid film; PVDF; sonocatalyst; sonoluminescence; rhodamine B; dye degradation;
organic pollutant removal; wastewater treatment; MoS2

1. Introduction

Water pollution caused by organic pollutants has become a significant global concern
because of the rapid increase in industry, particularly the release of polluted waste from
the various processes of dyeing industries [1–5]. Various modernized methods have been
developed to properly remediate polluted water [6–9]. Sonocatalysis has been a prominent
method in recent times for efficiently breaking down many types of dyes among the several
modern oxidation procedures [10,11]. Sonocatalysis-based approaches are very attractive
for environmentally friendly dye degradation due to the broad and omnipresent nature
of ultrasonic vibrations in all aquatic conditions [12,13]. Sonocatalytic degradation is able
to break down organic contaminants because of the very reactive oxidizing agents, which
are produced when microbubbles are rapidly formed, grown, and then collapsed [13]. A
rapid buildup of high localized pressure (~1000 atm) and temperatures (~5000 K) probably
occurs during the ultra-sonication process, which can generate oxidizing active radicals
(like •H, •OH, •HO2) via sonoluminescence behavior by the emission of light [14–18].

Selecting reactive and high-performing catalyst materials is essential for efficient
sonocatalytic dye degradation. Generally, the ultrasonic process energizes the catalyst
and facilitates the generation of electrons (e−) from the valence band to the conduction
band. This process results in the creation of energy and leaves behind holes (h+) [13]. In
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this connection, molybdenum disulfide (MoS2) has been verified as an efficient catalyst
because of its intrinsic properties, mainly its ability to produce free radicals by generating
electron–hole (e–h) pairs during the ultrasonic process [19,20]. The recombination of
electron–hole pairs on the bulk MoS2 surface and the development of multilayers by
restacking are specific limitations that have a substantial impact on the overall performance
of sonocatalysis dye degradation [12,21,22]. Therefore, several attempts have been made
to improve the overall degradation of dyes by the use of MoS2-based nanocomposites
with different nanostructures as composite sonocatalysts and MoS2-containing polymer
films [13,14,23]. The critical approaches primarily relate to (i) enhancing the performance
by generating the synergy via altering the surface properties and (ii) preventing undesirable
aggregation. Related to this, we examined the aforementioned notions in the present study.

The integration of zinc oxide (ZnO) nanoparticles onto the surface and between
the layers of MoS2 can probably influence the overall performances of MoS2 in different
scenarios for various applications [24–27]. ZnO has previously been shown to be an effective
photocatalyst and sonocatalyst material for the degradation of different dyes, including
rhodamine B (RhB) [28–31]. By incorporating ZnO with other semiconductor materials, it is
possible to create heterogeneous catalysts that promote the synergistic effect of enhancing
the separation of electron–hole pairs [32]. This phenomenon contributes to the production
of a more significant number of reactive radicals together with hot spot theory and the
sonoluminescence process [33,34]. In another way, incorporating catalyst material into the
polymer matrix effectively prevents the aggregation of catalyst materials and improves
pollutant degradation performance during extended periods of operation. Interest in
polyvinylidene fluoride (PVDF)-based films for organic pollution removal has increased
due to their piezoelectricity, adsorption capacity, stability, and inexpensive cost [23,35–39].

In this work, we developed a novel ZnO-decorated MoS2 in the PVDF (PMZ) film as a
hybridized composite to achieve effective RhB degradation via sonocatalytic dye degra-
dation. Different concentrations of MoS2 and ZnO (MZ) nanocomposite were developed
to achieve efficient pollutant degradation performance. The efficient degradation of RhB
was obtained from the homogeneous incorporation of MZ in the PVDF film compared
to the PVDF-only film. The superior embellishment of ZnO on MoS2 and the successful
integration of MZ in the PVDF polymer film led to enhanced degradation performance. As
a result of the establishment of synergy, the PMZ composite structure effectively alters the
individual activities of MoS2, ZnO, and PVDF towards degrading the RhB.

2. Materials and Methods
2.1. Materials

Polyvinylidene fluoride (PVDF, Mw ~534,000 by GPC) was procured from Sigma
Aldrich, USA. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O), sodium hydroxide (NaOH),
thiourea and N,N-Dimethyl acetamide (DMAc) were obtained from DUKSAN reagent,
Republic of Korea. Ammonium heptamolybate tetrahydrate ((NH4)6Mo7O24·4H2O, 99.0%)
from Fischer chemical, UK. Rhodamine B (RhB), ethanol (C2H5OH, 94.5%), isopropanol
(IPA, 99.5%) and p-benzoquinone (BQ) (C6H4O2) were acquired from Daejung chemicals &
metals, Republic of Korea. Ethylenediamine tetraacetic acid (EDTA) (C10H16N2O8, 99%)
was purchased from Acros Organics, Belgium. DI-water used in the present investigations.

2.2. Preparation of MoS2

MoS2 was synthesized by facile hydrothermal method [40]. At first, a desired amount
of (NH4)6Mo7O24·4H2O was thermally treated in atmospheric air at 450 ◦C for 2 h to obtain
molybdenum trioxide (MoO3). Subsequently, the desired amount of 0.23 g of as-prepared
MoO3 and 0.5328 g of thiourea were added in 70 mL of DI water and stirred for 30 min.
Afterwards, the reaction mixture was kept in a Teflon-lined autoclave and placed in a
furnace at 200 ◦C for 24 h. After the reactor was cooled to room temperature, the black
precipitate was carefully washed several times using ethanol and DI water. Finally, the
product undergoes a drying process at a temperature of 60 ◦C.
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2.3. Preparation of MoS2-ZnO Nanocomposite

Different weight ratios of MoS2 and Zn(CH3COO)2·2H2O (9.5:0.5, 9:1, 8:2) were used
to develop the MoS2-ZnO nanocomposite to estimate the most efficient catalyst material
among the various combinations, and the preparation process of MoS2-ZnO is schematically
illustrated in Figure 1b. Following the dispersion of 0.475 g MoS2 in 52.5 mL of DI water,
the 0.025 g Zn(CH3COO)2·2H2O was added to the solution under continuous stirring.
After adding Zn(CH3COO)2·2H2O, the solution was stirred for 10 min. Following that,
the pH of the solution was adjusted to pH 12 through the addition of 2 M NaOH. The
reaction mixture was then transferred to an autoclave lined with Teflon and heated to
200 ◦C for 20 h. To attain the synthesis of the nanocomposite, the previously mentioned
centrifugation–redispersion process was employed several times. Then, the final products
(MoS2-ZnO) of the different concentrations of MoS2 and ZnO (9.5:0.5, 9:1, and 8:2) were
denoted as MZ1, MZ2, and MZ3 and utilized after being dried in a vacuum oven.
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Figure 1. Schematic illustrations of (a) MoS2, (b) MoS2-ZnO nanocomposite, and (c) PVDF–MZ
hybrid composite film preparation steps.

2.4. Fabrication of Hybrid PVDF–MZ Composite Film

As represented in Figure 1c, the PVDF film with and without MoS2 and MZ was
prepared. For preparing the hybrid composite film, the 2 wt% of as-prepared MZ nanocom-
posite powder (MZ1, MZ2, and MZ3) was distributed in DMAc solution using ultrasonic
vibration for attaining complete dispersion. Afterward, 0.5 g of PVDF was added into the
above-mentioned solution and kept for magnetic stirring at 60 ◦C for 12 h. After complet-
ing the reaction, the solution was cast on a petri dish and dried in an oven at 60 ◦C. The
reinforcement of different ratios of MZ1, MZ2, and MZ3 in the PVDF is denoted as PMZ1,
PMZ2, and PMZ3, respectively. The pristine PVDF film was prepared without MoS2 and
MZ nanocomposite powders following the same procedure. Meanwhile, PVDF–MoS2 films
(PM) are prepared using the same procedure with the addition of as-prepared MoS2 powder.

2.5. Characterization Techniques

XRD diffraction analysis was performed by X-ray diffractometer (PANalytical X’pert,
Malvern, UK). The measurements were performed within 10 and 80 degrees of diffraction
angle (2θ), with a scan step size of 0.02◦ used for the analysis. The functional groups
of the prepared film were analyzed using Fourier transform infrared spectroscopy (FT-
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IR spectroscopy, Perkin Elmer, Spectrum 100, USA). Additionally, X-ray photoelectron
spectroscopy (XPS) (Thermo Fisher Scientific K-α surface analysis) was employed to verify
the composition of the composite material. The surface morphologies and elemental
composition of the as-prepared materials and films were investigated through a field-
emission scanning electron microscope (FE-SEM) (Hitachi S-4800 with EDAX, Japan).
Using transmission electron microscopy (TEM, Hitachi H-7600, Japan), the dimensions and
morphology of the as-prepared catalysts were analyzed. The sonocatalytic degradation
measurements were examined through UV/vis spectrophotometer (Ubi-600, MicroDigital
Co., Ltd., Republic of Korea)) with a wavelength range of 400–700 nm.

2.6. Sonocatalytic Experiment

The sonocatalytic efficiency of the as-prepared composite film was investigated by
degrading the RhB-containing solution in the ultrasonic bath, which maintained a tempera-
ture of 25 ± 3 ◦C. In a typical experiment, the film was immersed in 100 mL of 10 ppm RhB
solution. To achieve an adsorption–desorption equilibrium between the RhB and the cata-
lyst, the RhB solution was subsequently stirred for 30 min in the dark through a magnetic
agitating apparatus. Afterwards, the reaction was carried out in an ultrasonic bath (Power-
sonic 620, Kleentek, Australia) for 75 min to induce ultrasonic vibration with a frequency of
50 kHz with 250 W power dissipation. At regular time intervals (15 min), a desired sample
quantity was collected, and the absorbance was measured using a UV–vis spectrophotome-
ter. All the experiments were performed at room temperature. The degradation efficiency
was calculated using the following equation:

Degradation efficiency (%) = (C0 − C)/C0 × 100 (1)

Here, C0 and C represent the initial dye concentration and concentration of dyes
with different reaction times, respectively. The sonocatalytic degradation mechanism was
elucidated by quantifying the generation of reactive oxygen species (ROS) by incorporating
10 mM of scavengers (EDTA, IPA, and BQ) into the aqueous solution. Additionally, the
stability and reusability of the composite film were assessed using cyclic performances.
After each successive cycle, the used film was removed and washed with DI water to
eliminate the dyes on the film. Subsequently, the film was subjected to a drying process at
a temperature of 60 ◦C in preparation for further studies.

3. Results and Discussion

Initially, the structural properties of the developed MoS2-ZnO composites were in-
vestigated through XRD measurements. Figure 2a illustrates the XRD pattern of different
concentrations of MZ1, MZ2, and MZ3 nanocomposites. According to the MoS2 spectra, the
as-prepared materials show mostly an amorphous property. In the composite, the distinct
diffraction peaks noticed at 14.1◦, 28.7◦, 32.3◦, and 57.8◦ may be ascribed to the (002), (004),
(100), and (110) reflection planes of MoS2, respectively [41,42]. Thus, the XRD spectra
successfully indicate the formation of MoS2 and it is dominantly present in the composite.
In addition, further additional diffraction peaks were observed together with the MoS2
materials peak. The minor peaks appeared at 36.2◦ and 47.7◦, confirming the presence of
ZnO nanomaterials [43,44] in the composite. In light of this, the XRD analysis suggests
the efficient formation of ZnO in MZ nanocomposites. Moreover, the peak intensity of
MoS2 and ZnO is varied in the MZ composites by varying the ratio between MoS2 and
ZnO as MZ1, MZ2, and MZ3 in composites. Consequently, the XRD findings indicate the
homogeneous formation of ZnO on the MoS2 in the MZ nanocomposites.
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The XPS characterization technique was used to confirm further the formation of MoS2
and ZnO in MZ nanocomposites. XPS analysis delivers information about the chemical
nature, electronic state of the elements within the material, and elemental composition of
the as-prepared MZ nanocomposite. Figure 2a represents the XPS full-scan spectrum of
the MZ2 nanocomposite. As shown in the survey spectrum, Mo, S, Zn, and O elements
have been identified for the MZ2 nanocomposite. The deconvolution peaks for the MZ2
nanocomposite are illustrated in Figure 2c–f. In the Mo 3d spectra (Figure 2c), there
are two characteristic peaks around 229.65 eV and 232.75 eV for Mo3d5/2 and Mo 3d3/2,
respectively [45]. Notably, the existence of S2− is confirmed by the appearance of S2s
peak at 226.7 eV. In addition, the S 2p spectra (Figure 2d) show two prominent peaks at
162.45 eV and 163.67 eV, which may be attributed to the S 2p3/2 and S 2p1/2. Therefore,
the XPS results effectively identify the presence of MoS2 as a predominant component in
the MZ composite. In addition, two peaks appear for Zn 2p3/2 and Zn 2p1/2 with binding
energies of 1022.29 and 1045.52 eV, respectively, demonstrating the distinctive peaks of
Zn2+ oxidation state in the MoS2-ZnO composite [46,47]. Figure 2f depicts the O 1s spectra
with peaks at 532 eV and 531.84 eV. The ZnO lattice oxygen is represented by the peak at
531.6 eV. On the other hand, the peak at 532 eV serves as an illustration of the hydroxyl
group produced during surface modification [48]. According to the XRD and XPS analyses
results, the successful formation of the MZ composite is evident.

FE-SEM analysis examined the surface morphology of the as-prepared pristine MoS2
and MoS2/ZnO nanocomposites. Figure 3a depicts an SEM micrograph image of pristine
MoS2 synthesized using a hydrothermal technique. The pristine MoS2 exhibits a surface
morphology composed of a large number of nanosheets that are linked via the center.
This results in the production of three-dimensional flower-like structures. Furthermore,
these nanosheets have a distinct similarity to the petals of flowers. Compared to the as-
developed pristine MoS2, different surface properties have been observed in the MZ2 and
MZ3, as shown in Figure 3b and Figure S1, respectively. It can be observed that the ZnO
nanoparticles are anchored on the MoS2 petals in the nanocomposite. Moreover, the ZnO is
eventually observed throughout MoS2. However, with the increase in the concentration of
ZnO in the composite (MZ3), an uneven formation and aggregation of ZnO on MoS2 petals
has been observed, as represented in Figure S1. Thus, the effectual combination of ZnO
on MoS2 in MZ2 can serve as a more capable candidate for the dye degradation process
together with polymers.
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TEM analysis was carried out for the MZ2 nanocomposite to identify further the
homogeneity of the nanocomposite (Figure 3c). At this point, the dispersion of ZnO
nanoparticles on the MoS2 sheet-like structure is clearly observed, which confirms the
homogeneity. Furthermore, SEM–EDAX elemental analysis (Figures 3d and S2) of the MZ2
composite was performed to investigate the formation of the composite. As shown in EDAX
mapping and spectra results, the presence of Mo, S, Zn, and O elements is found uniformly
on the composite, which confirms the excellent formation of ZnO on MoS2 and its uniform
combination in the MZ composite. The determined weight percentage of the Mo, S, Zn,
and O elements in MZ2 is 50.42, 35.22, 5.21, and 12.15%, respectively. According to the
microstructural characterization, it can be concluded that the ZnO particles are effectively
distributed together with MoS2 for forming the homogeneous MZ nanocomposite.

The as-prepared films were subjected to FT-IR analysis in order to determine the
functional groups present in the matrix. Figure 4a displays the FTIR analysis of PVDF,
PVDF–MoS2, and PMZ composite films. As shown in the PVDF spectra, the asymmetric,
symmetric, and wagging stretching of the –CH2 group is exhibited by peaks at 3027, 2979,
and 1398 cm−1, respectively. The peaks at 1226, 1162, and 1070 cm−1 are attributed to
the stretching vibration of the –CF2 group. The peaks at 832 and 870 cm−1 represent C-F
bending and C-H wagging [49–53]. The observed peaks are effectively matched with PVDF
material. The FTIR analysis was performed on the binary (PM) and ternary (PMZ) hybrid
films to further confirm the excellent integration of nanomaterials into the polymer matrix.
The spectra of PM and different ratios of PMZ films show that the most dominant peaks
are related to the PVDF material. This phenomenon occurs because of the most significant
amount of PVDF in the film compared to other compounds. It was noted that the usual
MoS2 and ZnO peaks had been masked by other pre-existing peaks of PVDF. However,
a slight existence of –OH, Mo=S, S-S bond, and Zn-O groups has been observed in their
corresponding regions [54–56]. The FT-IR analysis confirms the presence of functional
properties in the polymer and the successful fabrication of the composite films.

Figure 4b illustrates the XRD patterns of pristine PVDF, PM, and PMZ (PMZ1, PMZ2,
and PMZ3) composite films. For the PVDF film, the distinct diffraction peaks at 19.43◦,
20.9◦, 26.88◦, 36.97◦, and 38.85◦ can be attributed to the lattice planes of α (110), β (110), α
(021), β (201), and γ (211) planes, respectively [57–61]. In this, the most dominant peaks
correspond to the β phase of the PVDF. In most cases, the β phase of the PVDF formation
has been influenced by the solvents during the film preparation steps. Compared to the
PVDF-only film, a different peak observation and changes in peak intensity of PVDF have
been observed after the inclusion of inorganic materials into the polymer matrix. The XRD
patterns of the PM composite film exhibit a widening and decreasing reduction in the
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intensities of the diffraction peaks, which indicates that certain α and γ phases probably
transitioned into the β phase [62]. Furthermore, similar phase shifts have been seen in
the PMZ composite films, which may be caused by the addition of inorganic materials
effectually included in PVDF. In the case of the binary PM film, additional peaks are
exhibited together with PVDF peaks. The observed distinct diffraction peaks at nearly 14.5◦

and 34.1◦ correspond to the MoS2 [38,63]. Moreover, a very minimal diffraction peak was
observed in the ternary PMZ film for ZnO [44] along with PVDF and MoS2. XRD results of
the films indicate the efficient inclusion of MZ in the hybrid film.

Polymers 2024, 16, 2213 7 of 15 
 

 

 
Figure 4. (a) FTIR and (b) XRD spectra of PVDF, PM, and PMZ composite films. 

Figure 4b illustrates the XRD patterns of pristine PVDF, PM, and PMZ (PMZ1, PMZ2, 
and PMZ3) composite films. For the PVDF film, the distinct diffraction peaks at 19.43°, 
20.9°, 26.88°, 36.97°, and 38.85° can be attributed to the lattice planes of α (110), β (110), α 
(021), β (201), and γ (211) planes, respectively [57–61]. In this, the most dominant peaks 
correspond to the β phase of the PVDF. In most cases, the β phase of the PVDF formation 
has been influenced by the solvents during the film preparation steps. Compared to the 
PVDF-only film, a different peak observation and changes in peak intensity of PVDF have 
been observed after the inclusion of inorganic materials into the polymer matrix. The XRD 
patterns of the PM composite film exhibit a widening and decreasing reduction in the 
intensities of the diffraction peaks, which indicates that certain α and γ phases probably 
transitioned into the β phase [62]. Furthermore, similar phase shifts have been seen in the 
PMZ composite films, which may be caused by the addition of inorganic materials effec-
tually included in PVDF. In the case of the binary PM film, additional peaks are exhibited 
together with PVDF peaks. The observed distinct diffraction peaks at nearly 14.5° and 
34.1° correspond to the MoS2 [38,63]. Moreover, a very minimal diffraction peak was ob-
served in the ternary PMZ film for ZnO [44] along with PVDF and MoS2. XRD results of 
the films indicate the efficient inclusion of MZ in the hybrid film.  

The surface morphology of the as-prepared PVDF and PMZ films were characterized 
through SEM analysis, and the corresponding micrograph images are represented in Fig-
ure 5a and b, respectively. In the case of the PVDF film (Figure 5a), a nearly smooth and 
dense surface morphology has been obtained. Different morphological characteristics 
have been observed after the inclusion of MZ2 into the polymer matrix as a hybrid film 
(Figure 5b). In the PMZ film, an irregular and non-smooth surface has been observed due 
to the excellently included ZnO, containing a flower-like structure of MoS2 microspheres 
in the overall film. Thus, the presence of inorganic composite microspheres in the polymer 
prohibits the dense film formation and leads to an uneven and slight porosity-like nature 
on the surface of the composite film. Compared to the dense film, the uneven wrinkle-like 
surface morphology with porosity can provide certain benefits, such as an increase in the 
active surface region and excellent movement of water molecules with certain chemical 
compounds. The possible penetration of water molecules together with contaminates in-
side of the PVDF-based film can led to higher degradation of contaminates during the 
sonocatalytic organic pollutant degradation from water.  
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The surface morphology of the as-prepared PVDF and PMZ films were characterized
through SEM analysis, and the corresponding micrograph images are represented in
Figure 5a,b, respectively. In the case of the PVDF film (Figure 5a), a nearly smooth and
dense surface morphology has been obtained. Different morphological characteristics
have been observed after the inclusion of MZ2 into the polymer matrix as a hybrid film
(Figure 5b). In the PMZ film, an irregular and non-smooth surface has been observed due
to the excellently included ZnO, containing a flower-like structure of MoS2 microspheres in
the overall film. Thus, the presence of inorganic composite microspheres in the polymer
prohibits the dense film formation and leads to an uneven and slight porosity-like nature
on the surface of the composite film. Compared to the dense film, the uneven wrinkle-like
surface morphology with porosity can provide certain benefits, such as an increase in the
active surface region and excellent movement of water molecules with certain chemical
compounds. The possible penetration of water molecules together with contaminates
inside of the PVDF-based film can led to higher degradation of contaminates during the
sonocatalytic organic pollutant degradation from water.

To further demonstrate the uniformity of films, EDAX findings were performed on
the PVDF and PMZ films. The EDAX mapping and spectra results are illustrated in
Figures 5c and S3 for PVDF and PMZ films, respectively. For the PVDF film, carbon (C)
and fluorine (F) elements were observed, which were obviously from the PVDF. In the
case of the PMZ film (Figure 5c), together with C and F elements, additional elements of
molybdenum (Mo), sulfur (S), zinc (Zn), and oxygen (O) have been detected. The observed
weight percentages of F, C, Mo, S, Zn, and O elements in PMZ are 38.87, 55.86, 2.29, 1.31,
0.03, and 1.64%, respectively. These hybrid film EDAX results successfully confirm the
efficient and uniform distribution of inorganic nanomaterials in the PVDF polymer film.
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The sonocatalytic efficacy of PVDF, PM, PMZ1, PMZ2, and PMZ3 nanocomposite
films has been assessed by examining the degradation of RhB dye. At first, the adsorption–
desorption equilibrium for sonocatalytic dye degradation was performed by placing the
film in the RhB-containing solution in the dark with stirring for 30 min. No significant
changes have been seen in the aqueous solution, and further measurements of UV–visible
absorbance have been recorded. Afterward, the sonocatalytic degradation experiment was
performed by keeping the aqueous dye solution with film in a sonication bath for 75 min.
At regular time intervals (15 min), 4 mL of aliquots was collected, and the absorbance
was measured through UV–vis spectroscopy. Figure 6a,b illustrate the UV–vis absorbance
spectra of RhB aqueous solution with the PVDF and PMZ2 films. It is discovered that
the strength of the absorption band in the PMZ2 film declines with increasing ultrasonic
irradiation duration and diminishes after 75 min. In the case of the PVDF film, small
changes in the absorption band have been observed after the reaction. According to this
observation, the PMZ2 film has a greater capacity for degrading RhB compared to the
PVDF and other composite films. The RhB degrades sonocatalytically according to the
pseudo-first-order model, which is derived from the following equation:

ln (C0/C) = kt (2)

where C0 and C indicate the RhB solution concentration at initial and particular time inter-
vals (t), and k indicates the first-order rate constant (min−1). In this case, the rate constant
was calculated based on the gradient of the regression line. Consequently, it was discovered
that the degradation rate constants for PVDF, PMZ1, PMZ2, and PMZ3 were, respectively,
0.0023 min−1, 0.02228 min−1, 0.05772 min−1, and 0.02705 min−1 (Figure 6c,d). Furthermore,
when subjected to ultrasonic irradiation, the degradation efficiency of RhB was found to be
17.7% (R2 = 0.94), 79.83% (R2 = 0.985), 97.23% (R2 = 0.96), and 89.13% (R2 = 0.956) for the
PVDF film, and the PMZ1, PMZ2, and PMZ3 films, respectively (Figure 6e). Based on the
findings, it is notable that the PMZ2 film demonstrates superior sonocatalytic performance
compared to the PVDF and other composite films.
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The probable sonocatalytic degradation mechanism of RhB by the PMZ2 film is
schematically illustrated in Figure 7. The ultrasound irradiation on RhB aqueous solution
generated the acoustic cavitation phenomenon in which the cavitation bubbles develop,
expand, and suddenly collapse, resulting in the generation of sonoluminescence and
hot spots [15,64,65]. Through pyrolysis, these hotspots accelerate the disruption of H2O
molecules to generate hydroxyl (•OH) radicals for degrading the dye pollutants [66]. Con-
sequently, the sonoluminescence effect generated lights that excited the MZ2 in the PMZ2
film and acted as a sonocatalyst for degrading RhB dye [67]. The light generated excites
both MoS2 and ZnO to produce sonogenerated electrons and holes. The excited e− from CB
of MoS2 can be transferred into CB of ZnO. Simultaneously, sonogenerated holes from VB
of ZnO move to VB of MoS2. This movement will reduce the electron–hole recombination
and increase the sonocatalytic degradation performances. These sonogenerated electrons
and holes move toward the surface of the film. These electrons reduce the dissolved O2
molecules in an aqueous solution and produce superoxide radical (•O2

−). Meanwhile,
the generated holes oxide the H2O molecule and generate hydroxyl (•OH) radicals [68].
These free radicals are then involved in dye degradation by oxidizing the dye molecules
and generating CO2, H2O, etc. The sonocatalytic dye degradation mechanism is expressed
as follows:

US (Hot spot) + H2O → •OH + •H (3)

US (Sonoluminescence) + sonocatalyst → e− + h+ (4)
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e− + O2 → •O2
− (5)

h+ + H2O → •H + •OH (6)

•O2
− + Rh B dye → degradation products (7)

•OH + Rh B dye → degradation products (8)
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Furthermore, the nanocomposite materials (MZ) and PVDF exhibit improved piezo-
electric properties due to the mechanical stress induced during ultrasonic irradiation. Con-
sequently, the MZ nanocomposite spontaneously polarizes when subjected to prolonged
ultrasonic irradiation, resulting in the generation of electron–hole pairs [38]. Additionally,
the piezoelectric polarization can generate an internal electric field as a result of the pres-
sure developed during ultrasonic treatment. The presence of the inherent electric field
facilitates the segregation of electron–hole pairs and also hinders the recombination of
produced electron–hole pairs [69]. The electron–hole pairs migrate towards the surface of
the film and subsequently produce reactive oxygen species such as •O2

−, •OH, etc., by
their interacting with dissolved O2 and H2O molecules in an aqueous solution. Thus, these
ROS are also implicated in the breakdown of RhB dye. Additionally, the homogeneous
distribution of MZ nanocomposites in the PVDF polymer matrix enhances the surface area,
hence improving sonocatalytic activity. Meanwhile, PVDF acts as a structural framework
that provides mechanical resilience and rigidity, protecting against breaking or distortion
under mechanical stress during ultrasound vibration [70].

The trapping experiment was performed to identify the active species involved in the
sonocatalytic degradation of RhB dye by the PMZ2 film, as represented in Figure 6f. Scav-
engers such as isopropanol (IPA), p-benzoquinone (BQ), and ethylenediamine tetraacetic
acid (EDTA) was used to capture •OH, •O2

−, and h+, respectively. Sonocatalytic degra-
dation efficiencies of 47.12%, 60.12%, and 41.14% has been observed for scavengers such
as IPA, EDTA, and BQ, respectively. As a result, the degradation efficiency was found to
decrease using BQ and IPA, indicating •O2

− and •OH active species are most responsible
for RhB degradation using PMZ2 film. The stability and reusability performance of the
PMZ2 film was demonstrated through cyclic degradation of RhB dye under ultrasonic
irradiation. After finishing each cycle, the film was removed, washed, oven-dried, and
reused for the next cycle, while the other reaction conditions were maintained. As observed
in Figure 8a, the PMZ2 film exhibited reasonable sonocatalytic activity after five rounds of
RhB degradation. It has been observed that after 75 min of each cycle, the sonocatalytic
degradation percentage for RhB was comparable. The modest variation in dye degradation
was attributed to the loss of the material polarizing capacity during the process of reusing
under continuous ultrasonic stress. After cyclic performance, the film surface was character-
ized through SEM analysis. Figure 8b,c illustrate the surface morphology of the PMZ2 film
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before and after the RhB dye degradation process. It shows that the film surface does not
exhibit any significant changes before and after the cyclic performance, which indicates that
the PMZ2 film has efficient stability during ultrasonic processes for dye degradation. The
PMZ film has been determined to provide several advantages in terms of environmental
pollutant degradation.
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4. Conclusions

In this work, a PVDF polymer was combined with different ratios of hydrothermally
generated MoS2-ZnO (MZ) nanocomposites to effectively create a PVDF–MoS2-ZnO (PMZ)
hybrid nanocomposite film. The developed PMZ2 hybrid film showed impressive sonocat-
alytic degrading effectiveness on RhB dye when exposed to ultrasonic mechanical vibration,
as compared to pristine PVDF and other PMZ films. The determined degradation effi-
ciency of RhB using PVDF, PMZ1, PMZ2, and PMZ3 film was found to be 17.7%, 79.83%,
97.23%, and 89.13%, respectively. The enhanced efficacy was achieved by the presence
of MZ nanocomposites in the PVDF, which increase the piezocatalytic characteristics of
PVDF while also reducing electron–hole pair recombination and increasing catalytic sites
for dye degradation in the PMZ film. The generation of •O2

− and •OH reactive oxygen
species, which has been identified through scavenging studies, is responsible for the degra-
dation of RhB by the PMZ2 film under sonocatalytic conditions. Furthermore, the hybrid
PMZ nanocomposite films exhibited excellent stability and reusability, evident from their
steady cyclic degradation performances after five cycles of ultrasonic vibration without
any noticeable changes in their structure and degrading efficiency. This study proposes
a promising approach to create and produce a durable hybrid catalytic nanocomposite
film that may efficiently break down contaminants in wastewater, thereby mitigating
environmental issues.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16152213/s1, Figure S1. SEM micrograph images of MZ3
nanocomposite. Figure S2. EDAX spectra of MZ2 nanocomposite. Figure S3. EDAX mapping and
spectra of PVDF film. Table S1. Comparative performance results of PVDF based membranes/films.
References [37,70–76] are cited in the Supplementary Materials.
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