Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,534)

Search Parameters:
Keywords = noise estimate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1247 KiB  
Article
State of Health Estimation of Li-Ion Battery via Incremental Capacity Analysis and Internal Resistance Identification Based on Kolmogorov–Arnold Networks
by Jun Peng, Xuan Zhao, Jian Ma, Dean Meng, Shuhai Jia, Kai Zhang, Chenyan Gu and Wenhao Ding
Batteries 2024, 10(9), 315; https://doi.org/10.3390/batteries10090315 - 4 Sep 2024
Abstract
An accurate estimation of the state of health (SOH) of Li-ion batteries is critical for the efficient and safe operation of battery-powered systems. Traditional methods for SOH estimation, such as Coulomb counting, often struggle with sensitivity to measurement noise and time-consuming tests. This [...] Read more.
An accurate estimation of the state of health (SOH) of Li-ion batteries is critical for the efficient and safe operation of battery-powered systems. Traditional methods for SOH estimation, such as Coulomb counting, often struggle with sensitivity to measurement noise and time-consuming tests. This study addresses this issue by combining incremental capacity (IC) analysis and a novel neural network, Kolmogorov–Arnold Networks (KANs). Fifteen features were extracted from IC curves and a 2RC equivalent circuit model was used to identify the internal resistance of batteries. Recursive least squares were used to identify the parameters of the equivalent circuit model. IC features and internal resistance were considered as input variables to establish the SOH estimation model. Three commonly used machine learning methods (BP, LSTM, TCN) and two hybrid algorithms (LSTM-KAN and TCN-KAN) were used to establish the SOH estimation model. The performance of the five models was compared and analyzed. The results demonstrated that the hybrid models integrated with the KAN performed better than the conventional models, and the LSTM-KAN model had higher estimation accuracy than that of the other models. The model achieved a mean absolute error of less than 0.412% in SOH prediction in the test and validation dataset. The proposed model does not require complete charge and discharge data, which provides a promising tool for the accurate monitoring and fast detection of battery SOH. Full article
29 pages, 6699 KiB  
Article
Optimal Signal Wavelengths for Underwater Optical Wireless Communication under Sunlight in Stratified Waters
by Tharuka Govinda Waduge, Boon-Chong Seet and Kay Vopel
J. Sens. Actuator Netw. 2024, 13(5), 54; https://doi.org/10.3390/jsan13050054 - 4 Sep 2024
Abstract
Underwater optical wireless communication (UOWC) is a field of research that has gained popularity with the development of unmanned underwater vehicle (UUV) technologies. Its utilization is crucial in offshore industries engaging in sustainable alternatives for food production and energy security. Although UOWC can [...] Read more.
Underwater optical wireless communication (UOWC) is a field of research that has gained popularity with the development of unmanned underwater vehicle (UUV) technologies. Its utilization is crucial in offshore industries engaging in sustainable alternatives for food production and energy security. Although UOWC can meet the high data rate and low latency requirements of underwater video transmission for UUV operations, the links that enable such communication are affected by the inhomogeneous light attenuation and the presence of sunlight. Here, we present how the underwater spectral distribution of the light field can be modeled along the depths of eight stratified oceanic water types. We considered other established models, such as SPCTRL2, Haltrin’s single parameter model for inherent optical properties, and a model for the estimation of the depth distribution of chlorophyll-a, and present insights based on transmission wavelength for the maximum signal-to-noise ratio (SNR) under different optical link parameter combinations such as beam divergence and transmit power under “daytime” and “nighttime” conditions. The results seem to challenge the common notion that the blue-green spectrum is the most suitable for underwater optical communication. We highlight a unique relationship between the transmission wavelength for the optimal SNR and the link parameters and distance, which varies with depth depending on the type of oceanic water stratification. Our analyses further highlighted potential implications for solar discriminatory approaches and strategies for routing in cooperative optical wireless networks in the photic region. Full article
(This article belongs to the Section Communications and Networking)
16 pages, 628 KiB  
Article
Cooperative Jamming-Based Physical-Layer Group Secret and Private Key Generation
by Shiming Fu, Tong Ling, Jun Yang and Yong Li
Entropy 2024, 26(9), 758; https://doi.org/10.3390/e26090758 - 4 Sep 2024
Abstract
This paper explores physical layer group key generation in wireless relay networks with a star topology. In this setup, the relay node plays the role of either a trusted or untrusted central node, while one legitimate node (Alice) acts as the reference node. [...] Read more.
This paper explores physical layer group key generation in wireless relay networks with a star topology. In this setup, the relay node plays the role of either a trusted or untrusted central node, while one legitimate node (Alice) acts as the reference node. The channel between the relay and Alice serves as the reference channel. To enhance security during the channel measurement stage, a cooperative jamming-based scheme is proposed in this paper. This scheme allows the relay to obtain superimposed channel observations from both the reference channel and other relay channels. Then, a public discussion is utilized to enable all nodes to obtain estimates of the reference channel. Subsequently, the legitimate nodes can agree on a secret key (SK) that remains secret from the eavesdropper (Eve), or a private key (PK) that needs to be secret from both the relay and Eve. This paper also derives the lower and upper bounds of the SK/PK capacity. Notably, it demonstrates that there exists only a small constant difference between the SK/PK upper and lower bounds in the high signal-to-noise ratio (SNR) regime. Simulation results confirm the effectiveness of the proposed scheme for ensuring security and efficiency of group key generation. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

21 pages, 9926 KiB  
Article
Damage Identification in Steel Girder Based on Vibration Responses of Different Sinusoidal Excitations and Wavelet Packet Permutation Entropy
by Yutao Zhou, Yizhou Zhuang and Jyoti K. Sinha
Appl. Sci. 2024, 14(17), 7871; https://doi.org/10.3390/app14177871 - 4 Sep 2024
Abstract
Damage identification, both in terms of size and location, in bridges is important for timely maintenance and to avoid any catastrophic failure. An earlier experimental study showed that damage in a steel box girder orthotropic plate can be successfully detected using the measured [...] Read more.
Damage identification, both in terms of size and location, in bridges is important for timely maintenance and to avoid any catastrophic failure. An earlier experimental study showed that damage in a steel box girder orthotropic plate can be successfully detected using the measured vibration acceleration data. In this study, the wavelet packet decomposition (WPD) method is used to analyze the measured vibration acceleration responses and then the estimation of the permutation entropy (PE) on the re-constructed signals. A damage index is then defined based on the permutation entropy difference (PED) between the damaged and the healthy conditions to detect the location and size of the damage. The method is further validated through the finite element (FE) model of a steel box girder and the computed vibration acceleration responses when subjected to the sinusoidal excitations at different frequencies. In addition, the robustness of the methodology under different white noise interference conditions is also verified. The results show that the proposed methodology can effectively identify the location of human-made damage and accurately estimate the degree of damage under different frequencies of sinusoidal excitation. The method has shown a strong anti-noise property. Full article
Show Figures

Figure 1

25 pages, 4712 KiB  
Article
Improving Angle-Only Orbit Determination Accuracy for Earth–Moon Libration Orbits Using a Neural-Network-Based Approach
by Zhe Zhang, Yishuai Shi and Zuoxiu Zheng
Remote Sens. 2024, 16(17), 3287; https://doi.org/10.3390/rs16173287 - 4 Sep 2024
Abstract
In the realm of precision space applications, improving the accuracy of orbit determination (OD) is a crucial and demanding task, primarily because of the presence of measurement noise. To address this issue, a novel machine learning method based on bidirectional long short-term memory [...] Read more.
In the realm of precision space applications, improving the accuracy of orbit determination (OD) is a crucial and demanding task, primarily because of the presence of measurement noise. To address this issue, a novel machine learning method based on bidirectional long short-term memory (BiLSTM) is proposed in this research. In particular, the proposed method aims to improve the OD accuracy of Earth–Moon Libration orbits with angle-only measurements. The proposed BiLSTM network is designed to detect inaccurate measurements during an OD process, which is achieved by incorporating the least square method (LSM) as a basic estimation approach. The structure, inputs, and outputs of the modified BiLSTM network are meticulously crafted for the detection of inaccurate measurements. Following the detection of inaccurate measurements, a compensating strategy is devised to modify these detection results and thereby reduce their negative impact on OD accuracy. The modified measurements are then used to obtain a more accurate OD solution. The proposed method is applied to solve the OD problem of a 4:1 synodic resonant near-rectilinear halo orbit around the Earth–Moon L2 point. The training results reveal that the bidirectional network structure outperforms the regular unidirectional structures in terms of detection accuracy. Numerical simulations show that the proposed method can reduce the estimated error by approximately 10%. The proposed method holds significant potential for future missions in cislunar space. Full article
(This article belongs to the Special Issue Autonomous Space Navigation (Second Edition))
Show Figures

Figure 1

21 pages, 4541 KiB  
Article
Channel State Information (CSI) Amplitude Coloring Scheme for Enhancing Accuracy of an Indoor Occupancy Detection System Using Wi-Fi Sensing
by Jaeseong Son and Jaesung Park
Appl. Sci. 2024, 14(17), 7850; https://doi.org/10.3390/app14177850 - 4 Sep 2024
Abstract
Indoor occupancy detection (IOD) via Wi-Fi sensing capitalizes on the varying patterns in CSI (Channel State Information) to estimate the number of people in a given area. However, the precision of such systems heavily depends on the quality of the CSI data, which [...] Read more.
Indoor occupancy detection (IOD) via Wi-Fi sensing capitalizes on the varying patterns in CSI (Channel State Information) to estimate the number of people in a given area. However, the precision of such systems heavily depends on the quality of the CSI data, which can be degraded by noise and environmental factors. To address this issue, In this paper, we present a CSI preprocessing method to improve the accuracy of IOD systems using Wi-Fi sensing. Unlike existing preprocessing methods that use computationally complex signal processing or statistical techniques, we expand the dimension of CSI amplitude data into a three-channel vector through nonlinear transformation to amplify subtle differences between CSI data belonging to a different number of people. By drawing clearer boundaries between CSI data distributions belonging to a different number of people in a monitored area, our method improves the people-counting accuracy of a Wi-Fi sensing system. To ensure temporal consistency and improve data quality, we discretize the CSI measurements based on their transmission periods and aggregate consecutive measurements over a given time interval. These samples are then fed into a Convolutional Neural Network (CNN) specifically trained for the IOD task. Experimental results in diverse real-world scenarios verify that compared to the traditional methods, the enhanced feature representation capability of our approach leads to more accurate and robust sensing outcomes even in the most resource-constrained environment, where a commercial off-the-shelf CSI capture machine with only one antenna is used when a Wi-Fi sender with one transmit antenna sends packets periodically to the channel with the smallest Wi-Fi channel bandwidth. Full article
Show Figures

Figure 1

11 pages, 632 KiB  
Article
Patterns in the Chaos: The Moving Hurst Indicator and Its Role in Indian Market Volatility
by Param Shah, Ankush Raje and Jigarkumar Shah
J. Risk Financial Manag. 2024, 17(9), 390; https://doi.org/10.3390/jrfm17090390 - 3 Sep 2024
Viewed by 252
Abstract
Estimating the impact of volatility in financial markets is challenging due to complex dynamics, including random fluctuations involving white noise and trend components involving brown noise. In this study, we explore the potential of leveraging the chaotic properties of time series data for [...] Read more.
Estimating the impact of volatility in financial markets is challenging due to complex dynamics, including random fluctuations involving white noise and trend components involving brown noise. In this study, we explore the potential of leveraging the chaotic properties of time series data for improved accuracy. Specifically, we introduce a novel trading strategy based on a technical indicator, Moving Hurst (MH). MH utilizes the Hurst exponent which characterizes the chaotic properties of time series. We hypothesize and then prove empirically that MH outperforms traditional indicators like Moving Averages (MA) in analyzing Indian equity indices and capturing profitable trading opportunities while mitigating the impact of volatility. Full article
Show Figures

Figure 1

16 pages, 7723 KiB  
Article
Vehicle State Estimation by Integrating the Recursive Least Squares Method with a Variable Forgetting Factor with an Adaptive Iterative Extended Kalman Filter
by Yong Chen, Yanmin Huang and Zeyu Song
World Electr. Veh. J. 2024, 15(9), 399; https://doi.org/10.3390/wevj15090399 - 2 Sep 2024
Viewed by 295
Abstract
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares [...] Read more.
The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares with a variable forgetting factor and adaptive iterative extended Kalman filtering is proposed for estimation. Based on the established three-degrees-of-freedom nonlinear model of the vehicle, the variable forgetting factor recursive least squares method is used to identify the tire cornering stiffness and serves as an input for vehicle state estimation. An innovative algorithm is used to optimise the uncertain noise covariance in the iterative extended Kalman filter (IEKF) process. Finally, with the help of the joint simulation of CarSim2019 and Matlab/Simulink R2022a, a distributed drive electric vehicle state parameter estimation model is established, and a simulation analysis of typical working conditions is carried out. Furthermore, an experiment is conducted with the pix moving vehicle and the integrated navigation system. The simulation and experimental results show that, compared to the traditional extended Kalman filter algorithm, the proposed algorithm improves the estimation accuracy of the yaw rate, sideslip angle, and longitudinal speed by 58.17%, 57.2%, and 76.47%, respectively, which shows that the algorithm has a higher estimation accuracy and a stronger applicability to provide accurate state information for vehicle handling and stability control. Full article
Show Figures

Figure 1

13 pages, 2580 KiB  
Review
Use of the Perturbing Sphere Method for the Estimation of Radiofrequency Coils’ Efficiency in Magnetic Resonance Applications: Experience from an Electromagnetic Laboratory
by Giulio Giovannetti and Francesca Frijia
Sensors 2024, 24(17), 5705; https://doi.org/10.3390/s24175705 - 2 Sep 2024
Viewed by 185
Abstract
Radiofrequency (RF) transmitter and receiver coils are employed in in magnetic resonance (MR) applications to, respectively, excite the nuclei in the object to be imaged and to pick up the signals emitted by the nuclei with a high signal-to-noise ratio (SNR). The ability [...] Read more.
Radiofrequency (RF) transmitter and receiver coils are employed in in magnetic resonance (MR) applications to, respectively, excite the nuclei in the object to be imaged and to pick up the signals emitted by the nuclei with a high signal-to-noise ratio (SNR). The ability to obtain high-quality images and spectra in MR strongly depends on the RF coil’s efficiency. Local coil efficiency can be estimated with magnetic field mapping methods evaluated at a fixed point in space. Different methods have been described in the literature, divided into electromagnetic bench tests and MR techniques. In this paper, we review our experience in designing and testing RF coils for MR in our electromagnetic laboratory with the use of the perturbing sphere method, which permits coil efficiency and magnetic field mapping to be estimated with great accuracy and in a short space of time, which is useful for periodic coil quality control checks. The method’s accuracy has been verified with simulations and workbench tests performed on RF coils with different surfaces and of different volumes. Furthermore, all the precautions taken to improve the measurement sensitivity are also included in this review, in addition to the various applications of the method that have been described over the last twenty years of research in our electromagnetic laboratory. Full article
(This article belongs to the Collection Electromagnetic Sensors)
Show Figures

Figure 1

21 pages, 7239 KiB  
Article
UVIO: Adaptive Kalman Filtering UWB-Aided Visual-Inertial SLAM System for Complex Indoor Environments
by Junxi Li, Shouwen Wang, Jiahui Hao, Biao Ma and Henry K. Chu
Remote Sens. 2024, 16(17), 3245; https://doi.org/10.3390/rs16173245 - 1 Sep 2024
Viewed by 508
Abstract
Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption [...] Read more.
Precise positioning in an indoor environment is a challenging task because it is difficult to receive a strong and reliable global positioning system (GPS) signal. For existing wireless indoor positioning methods, ultra-wideband (UWB) has become more popular because of its low energy consumption and high interference immunity. Nevertheless, factors such as indoor non-line-of-sight (NLOS) obstructions can still lead to large errors or fluctuations in the measurement data. In this paper, we propose a fusion method based on ultra-wideband (UWB), inertial measurement unit (IMU), and visual simultaneous localization and mapping (V-SLAM) to achieve high accuracy and robustness in tracking a mobile robot in a complex indoor environment. Specifically, we first focus on the identification and correction between line-of-sight (LOS) and non-line-of-sight (NLOS) UWB signals. The distance evaluated from UWB is first processed by an adaptive Kalman filter with IMU signals for pose estimation, where a new noise covariance matrix using the received signal strength indicator (RSSI) and estimation of precision (EOP) is proposed to reduce the effect due to NLOS. After that, the corrected UWB estimation is tightly integrated with IMU and visual SLAM through factor graph optimization (FGO) to further refine the pose estimation. The experimental results show that, compared with single or dual positioning systems, the proposed fusion method provides significant improvements in positioning accuracy in a complex indoor environment. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

25 pages, 17785 KiB  
Article
Compressing and Recovering Short-Range MEMS-Based LiDAR Point Clouds Based on Adaptive Clustered Compressive Sensing and Application to 3D Rock Fragment Surface Point Clouds
by Lin Li, Huajun Wang and Sen Wang
Sensors 2024, 24(17), 5695; https://doi.org/10.3390/s24175695 - 1 Sep 2024
Viewed by 563
Abstract
Short-range MEMS-based (Micro Electronical Mechanical System) LiDAR provides precise point cloud datasets for rock fragment surfaces. However, there is more vibrational noise in MEMS-based LiDAR signals, which cannot guarantee that the reconstructed point cloud data are not distorted with a high compression ratio. [...] Read more.
Short-range MEMS-based (Micro Electronical Mechanical System) LiDAR provides precise point cloud datasets for rock fragment surfaces. However, there is more vibrational noise in MEMS-based LiDAR signals, which cannot guarantee that the reconstructed point cloud data are not distorted with a high compression ratio. Many studies have illustrated that wavelet-based clustered compressive sensing can improve reconstruction precision. The k-means clustering algorithm can be conveniently employed to obtain clusters; however, estimating a meaningful k value (i.e., the number of clusters) is challenging. An excessive quantity of clusters is not necessary for dense point clouds, as this leads to elevated consumption of memory and CPU resources. For sparser point clouds, fewer clusters lead to more distortions, while excessive clusters lead to more voids in reconstructed point clouds. This study proposes a local clustering method to determine a number of clusters closer to the actual number based on GMM (Gaussian Mixture Model) observation distances and density peaks. Experimental results illustrate that the estimated number of clusters is closer to the actual number in four datasets from the KEEL public repository. In point cloud compression and recovery experiments, our proposed approach compresses and recovers the Bunny and Armadillo datasets in the Stanford 3D repository; the experimental results illustrate that our proposed approach improves reconstructed point clouds’ geometry and curvature similarity. Furthermore, the geometric similarity increases to 0.9 above in our complete rock fragment surface datasets after selecting a better wavelet basis for each dimension of MEMS-based LiDAR signals. In both experiments, the sparsity of signals was 0.8 and the sampling ratio was 0.4. Finally, a rock outcrop point cloud data experiment is utilized to verify that the proposed approach is applicable for large-scale research objects. All of our experiments illustrate that the proposed adaptive clustered compressive sensing approach can better reconstruct MEMS-based LiDAR point clouds with a lower sampling ratio. Full article
(This article belongs to the Special Issue Short-Range Optical 3D Scanning and 3D Data Processing)
Show Figures

Figure 1

22 pages, 4175 KiB  
Article
Carbon Price Forecasting Using Optimized Sliding Window Empirical Wavelet Transform and Gated Recurrent Unit Network to Mitigate Data Leakage
by Zeyu Zhang, Xiaoqian Liu, Xiling Zhang, Zhishan Yang and Jian Yao
Energies 2024, 17(17), 4358; https://doi.org/10.3390/en17174358 - 31 Aug 2024
Viewed by 424
Abstract
Precise forecasts of carbon prices are crucial for reducing greenhouse gas emissions and promoting sustainable, low-carbon development. To mitigate noise interference in carbon price data, hybrid models integrating data decomposition techniques are commonly utilized. However, it has been observed that the improper utilization [...] Read more.
Precise forecasts of carbon prices are crucial for reducing greenhouse gas emissions and promoting sustainable, low-carbon development. To mitigate noise interference in carbon price data, hybrid models integrating data decomposition techniques are commonly utilized. However, it has been observed that the improper utilization of data decomposition techniques can lead to data leakage, thereby invalidating the model’s practical applicability. This study introduces a leakage-free hybrid model for carbon price forecasting based on the sliding window empirical wavelet transform (SWEWT) algorithm and the gated recurrent unit (GRU) network. First, the carbon price data are sampled using a sliding window approach and then decomposed into more stable and regular subcomponents through the EWT algorithm. By exclusively employing the data from the end of the window as input, the proposed method can effectively mitigate the risk of data leakage. Subsequently, the input data are passed into a multi-layer GRU model to extract patterns and features from the carbon price data. Finally, the optimized hybrid model is obtained by iteratively optimizing the hyperparameters of the model using the tree-structured Parzen estimator (TPE) algorithm, and the final prediction results are generated by the model. When used to forecast the closing price of the Guangdong Carbon Emission Allowance (GDEA) for the last nine years, the proposed hybrid model achieves outstanding performance with an R2 value of 0.969, significantly outperforming other structural variants. Furthermore, comparative experiments from various perspectives have validated the model’s structural rationality, practical applicability, and generalization capability, confirming that the proposed framework is a reliable choice for carbon price forecasting. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

20 pages, 1102 KiB  
Article
Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations
by Edgar Rafael Ponce de Leon-Sanchez, Jorge Domingo Mendiola-Santibañez, Omar Arturo Dominguez-Ramirez, Ana Marcela Herrera-Navarro, Alberto Vazquez-Cervantes, Hugo Jimenez-Hernandez, Diana Margarita Cordova-Esparza, María de los Angeles Cuán Hernández and Horacio Senties-Madrid
Technologies 2024, 12(9), 145; https://doi.org/10.3390/technologies12090145 - 31 Aug 2024
Viewed by 421
Abstract
The symptoms of multiple sclerosis (MS) are determined by the location of demyelinating lesions in the white matter of the brain and spinal cord. Currently, magnetic resonance imaging (MRI) is the most common tool used for diagnosing MS, understanding the course of the [...] Read more.
The symptoms of multiple sclerosis (MS) are determined by the location of demyelinating lesions in the white matter of the brain and spinal cord. Currently, magnetic resonance imaging (MRI) is the most common tool used for diagnosing MS, understanding the course of the disease, and analyzing the effects of treatments. However, undesirable components may appear during the generation of MRI scans, such as noise or intensity variations. Mathematical morphology (MM) is a powerful image analysis technique that helps to filter the image and extract relevant structures. Granulometry is an image measurement tool for measuring MM that determines the size distribution of objects in an image without explicitly segmenting each object. While several methods have been proposed for the automatic segmentation of MS lesions in MRI scans, in some cases, only simple data preprocessing, such as image resizing to standardize the input dimensions, has been performed before the algorithm training. Therefore, this paper proposes an MRI preprocessing algorithm capable of performing elementary morphological transformations in brain images of MS patients and healthy individuals in order to delete undesirable components and extract the relevant structures such as MS lesions. Also, the algorithm computes the granulometry in MRI scans to describe the size qualities of lesions. Using this algorithm, we trained two artificial neural networks (ANNs) to predict MS diagnoses. By computing the differences in granulometry measurements between an image with MS lesions and a reference image (without lesions), we determined the size characterization of the lesions. Then, the ANNs were evaluated with the validation set, and the performance results (test accuracy = 0.9753; cross-entropy loss = 0.0247) show that the proposed algorithm can support specialists in making decisions to diagnose MS and estimating the disease progress based on granulometry values. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

16 pages, 15653 KiB  
Article
A Low-Power Continuous-Time Delta-Sigma Analogue-to-Digital Converter for the Neural Network Architecture of Battery State Estimation
by Muh-Tian Shiue, Yang-Chieh Ou and Guan-Shum Li
Electronics 2024, 13(17), 3459; https://doi.org/10.3390/electronics13173459 - 30 Aug 2024
Viewed by 261
Abstract
Electric vehicle systems and smart grid systems are setting stringent development targets to respond to global trends in energy saving, carbon reduction, and sustainable environmental development. In the field of batteries, there has been extensive discussion on the estimation of battery charge. In [...] Read more.
Electric vehicle systems and smart grid systems are setting stringent development targets to respond to global trends in energy saving, carbon reduction, and sustainable environmental development. In the field of batteries, there has been extensive discussion on the estimation of battery charge. In battery management systems (BMSs) and charging/discharging systems, the accuracy of the measurement of battery physical parameters is critical, as it directly affects the system, alongside the algorithm’s estimation and error correction. Therefore, this paper proposes incorporating a low-power continuous-time delta-sigma analogue-to-digital converter into a battery measurement system to support deep learning algorithms for battery state estimation. This approach aims to maintain the accuracy of battery state estimation while reducing latency and overall system power consumption. Implemented using the UMC 0.18 μm CMOS 1P6M process, the proposed design achieves a measured signal-to-noise distortion ratio (SNDR) of 78.42 dB, an effective number of bits (ENOB) of 12.73 bits, and a power consumption of approximately 15.97 μW. The chip layout area is 0.67 mm × 0.56 mm. By applying delta-sigma modulators to energy management systems, this solution aims to increase the total number of battery monitoring units while reducing overall power consumption and construction costs. Full article
(This article belongs to the Special Issue Analog and Mixed-Signal Circuit Designs and Their Applications)
Show Figures

Figure 1

16 pages, 8801 KiB  
Article
Noise-Robust 3D Pose Estimation Using Appearance Similarity Based on the Distributed Multiple Views
by Taemin Hwang and Minjoon Kim
Sensors 2024, 24(17), 5645; https://doi.org/10.3390/s24175645 - 30 Aug 2024
Viewed by 311
Abstract
In this paper, we present a noise-robust approach for the 3D pose estimation of multiple people using appearance similarity. The common methods identify the cross-view correspondences between the detected keypoints and determine their association with a specific person by measuring the distances between [...] Read more.
In this paper, we present a noise-robust approach for the 3D pose estimation of multiple people using appearance similarity. The common methods identify the cross-view correspondences between the detected keypoints and determine their association with a specific person by measuring the distances between the epipolar lines and the joint locations of the 2D keypoints across all the views. Although existing methods achieve remarkable accuracy, they are still sensitive to camera calibration, making them unsuitable for noisy environments where any of the cameras slightly change angle or position. To address these limitations and fix camera calibration error in real-time, we propose a framework for 3D pose estimation which uses appearance similarity. In the proposed framework, we detect the 2D keypoints and extract the appearance feature and transfer it to the central server. The central server uses geometrical affinity and appearance similarity to match the detected 2D human poses to each person. Then, it compares these two groups to identify calibration errors. If a camera with the wrong calibration is identified, the central server fixes the calibration error, ensuring accuracy in the 3D reconstruction of skeletons. In the experimental environment, we verified that the proposed algorithm is robust against false geometrical errors. It achieves around 11.5% and 8% improvement in the accuracy of 3D pose estimation on the Campus and Shelf datasets, respectively. Full article
(This article belongs to the Special Issue Sensors for Object Detection, Pose Estimation, and 3D Reconstruction)
Show Figures

Figure 1

Back to TopTop