Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (212)

Search Parameters:
Keywords = nasal epithelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 1680 KiB  
Review
The Role of the Gut and Airway Microbiota in Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review
by Manuel Gómez-García, Emma Moreno-Jimenez, Natalia Morgado, Asunción García-Sánchez, María Gil-Melcón, Jacqueline Pérez-Pazos, Miguel Estravís, María Isidoro-García, Ignacio Dávila and Catalina Sanz
Int. J. Mol. Sci. 2024, 25(15), 8223; https://doi.org/10.3390/ijms25158223 - 27 Jul 2024
Viewed by 638
Abstract
In recent years, there has been growing interest in understanding the potential role of microbiota dysbiosis or alterations in the composition and function of human microbiota in the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). This systematic review evaluated the literature on [...] Read more.
In recent years, there has been growing interest in understanding the potential role of microbiota dysbiosis or alterations in the composition and function of human microbiota in the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). This systematic review evaluated the literature on CRSwNP and host microbiota for the last ten years, including mainly nasal bacteria, viruses, and fungi, following the PRISMA guidelines and using the major scientific publication databases. Seventy original papers, mainly from Asia and Europe, met the inclusion criteria, providing a comprehensive overview of the microbiota composition in CRSwNP patients and its implications for inflammatory processes in nasal polyps. This review also explores the potential impact of microbiota-modulating therapies for the CRSwNP treatment. Despite variability in study populations and methodologies, findings suggest that fluctuations in specific taxa abundance and reduced bacterial diversity can be accepted as critical factors influencing the onset or severity of CRSwNP. These microbiota alterations appear to be implicated in triggering cell-mediated immune responses, cytokine cascade changes, and defects in the epithelial barrier. Although further human studies are required, microbiota-modulating strategies could become integral to future combined CRSwNP treatments, complementing current therapies that mainly target inflammatory mediators and potentially improving patient outcomes. Full article
Show Figures

Figure 1

14 pages, 4059 KiB  
Article
Investigating Splice Defects in USH2A Using Targeted Long-Read Sequencing
by Shwetha Chandrasekhar, Siying Lin, Neringa Jurkute, Kathryn Oprych, Leire Estramiana Elorrieta, Elena Schiff, Samantha Malka, Genevieve Wright, Michel Michaelides, Omar A. Mahroo, Andrew R. Webster and Gavin Arno
Cells 2024, 13(15), 1261; https://doi.org/10.3390/cells13151261 - 26 Jul 2024
Viewed by 448
Abstract
Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in [...] Read more.
Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription–polymerase chain reaction (RT-PCR)–Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

16 pages, 623 KiB  
Review
The Role of Oncogenic Viruses in Head and Neck Cancers: Epidemiology, Pathogenesis, and Advancements in Detection Methods
by Pinelopi Samara, Michail Athanasopoulos, Stylianos Mastronikolis, Efthymios Kyrodimos, Ioannis Athanasopoulos and Nicholas S. Mastronikolis
Microorganisms 2024, 12(7), 1482; https://doi.org/10.3390/microorganisms12071482 - 19 Jul 2024
Viewed by 521
Abstract
Head and neck cancers (HNCs) constitute a wide range of malignancies originating from the epithelial lining of the upper aerodigestive tract, including the oral cavity, pharynx, larynx, nasal cavity, paranasal sinuses, and salivary glands. Although lymphomas affecting this region are not conventionally classified [...] Read more.
Head and neck cancers (HNCs) constitute a wide range of malignancies originating from the epithelial lining of the upper aerodigestive tract, including the oral cavity, pharynx, larynx, nasal cavity, paranasal sinuses, and salivary glands. Although lymphomas affecting this region are not conventionally classified as HNCs, they may occur in lymph nodes or mucosa-associated lymphoid tissues within the head and neck. Oncogenic viruses play a crucial role in HNC onset. Human papillomavirus (HPV) is extensively studied for its association with oropharyngeal cancers; nevertheless, other oncogenic viruses also contribute to HNC development. This review provides an overview of the epidemiology, pathogenesis, and advancements in detection methods of oncogenic viruses associated with HNCs, recognizing HPV’s well-established role while exploring additional viral connections. Notably, Epstein–Barr virus is linked to nasopharyngeal carcinoma and lymphomas. Human herpesvirus 8 is implicated in Kaposi’s sarcoma, and Merkel cell polyomavirus is associated with subsets of HNCs. Additionally, hepatitis viruses are examined for their potential association with HNCs. Understanding the viral contributions in the head and neck area is critical for refining therapeutic approaches. This review underlines the interaction between viruses and malignancies in this region, highlighting the necessity for ongoing research to elucidate additional mechanisms and enhance clinical outcomes. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 1509 KiB  
Article
Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern
by Galina V. Kochneva, Gleb A. Kudrov, Sergei S. Zainutdinov, Irina S. Shulgina, Andrei V. Shipovalov, Anna V. Zaykovskaya, Mariya B. Borgoyakova, Ekaterina V. Starostina, Sergei A. Bodnev, Galina F. Sivolobova, Antonina A. Grazhdantseva, Daria I. Ivkina, Alexey M. Zadorozhny, Larisa I. Karpenko and Oleg V. P’yankov
Vaccines 2024, 12(7), 783; https://doi.org/10.3390/vaccines12070783 - 16 Jul 2024
Viewed by 637
Abstract
The mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed [...] Read more.
The mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed a vaccine construct, Sen-Sdelta(M), which expresses the full-length spike (S) protein of the SARS-CoV-2 delta variant. A single intranasal delivery of Sen-Sdelta(M) to Syrian hamsters and BALB/c mice induced high titers of virus-neutralizing antibodies specific to the SARS-CoV-2 delta variant. A significant T-cell response, as determined by IFN-γ ELISpot and ICS methods, was also demonstrated in the mouse model. Mice and hamsters vaccinated with Sen-Sdelta(M) were well protected against SARS-CoV-2 challenge. The viral load in the lungs and nasal turbinates, measured by RT-qPCR and TCID50 assay, decreased dramatically in vaccinated groups. The most prominent effect was revealed in a highly sensitive hamster model, where no tissue samples contained detectable levels of infectious SARS-CoV-2. These results indicate that Sen-Sdelta(M) is a promising candidate as a single-dose intranasal vaccine against SARS-CoV-2, including variants of concern. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

11 pages, 2450 KiB  
Article
Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities
by Hazel Marriott, Marc Duchesne, Subhabrata Moitra, Isobel Okoye, Luke Gerla, Irvin Mayers, Jalal Moolji, Adil Adatia and Paige Lacy
J. Clin. Med. 2024, 13(13), 3721; https://doi.org/10.3390/jcm13133721 - 26 Jun 2024
Viewed by 1260
Abstract
Background: The secretion of alarmin cytokines by epithelial cells, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, initiates inflammatory cascades in asthma. However, alarmin cytokine expression in the upper airways in asthma remains largely unknown. Methods: We recruited 40 participants with asthma [...] Read more.
Background: The secretion of alarmin cytokines by epithelial cells, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, initiates inflammatory cascades in asthma. However, alarmin cytokine expression in the upper airways in asthma remains largely unknown. Methods: We recruited 40 participants with asthma into four groups as per the Global Initiative for Asthma (GINA) steps (10 in each group of GINA 1/2, 3, 4, and 5). Cells were derived from nasal, buccal, and throat brushings. Intracellular cytokine expression (TSLP, IL-25, and IL-33) was assessed by flow cytometry in cytokeratin 8+ (Ck8+) epithelial cells immediately following collection. Results: TSLP was significantly increased (p < 0.001) in GINA 5 patients across nasal, buccal, and throat Ck8+ epithelial cells, while IL-25 was elevated in nasal and throat samples (p < 0.003), and IL-33 levels were variable, compared with GINA 1–4 patients. Individual GINA subgroup comparison showed that TSLP levels in nasal samples from GINA 5 patients were significantly (p = 0.03) elevated but did not differ between patients with and without nasal comorbidities. IL-25 and IL-33 (obtained from nasal, buccal, and throat samples) were not significantly different in individual groups. Conclusions: Our study demonstrates for the first time that Ck8+ nasal epithelial cells from GINA 5 asthma patients express elevated levels of TSLP. Full article
Show Figures

Figure 1

19 pages, 4251 KiB  
Article
Subclinical Ovine Gammaherpesvirus 2-Related Infections in Free-Ranging Wild Boars (Sus scrofa) from Southern Brazil
by Selwyn Arlington Headley, Juliana Torres Tomazi Fritzen, Flavia Helena Pereira Silva, Silvio Luis Marsiglio Minarelli, Leandro Meneguelli Biondo, Louise Bach Kmetiuk, Alexander Welker Biondo and Amauri Alcindo Alfieri
Pathogens 2024, 13(6), 515; https://doi.org/10.3390/pathogens13060515 - 18 Jun 2024
Viewed by 612
Abstract
Ovine gammaherpesvirus 2 (OvGHV2), is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF), in which sheep are the asymptomatic reservoir hosts. Susceptible mammalian populations infected by OvGHV2 may develop clinical SA-MCF or subclinical infections. All members of the Macavirus genus [...] Read more.
Ovine gammaherpesvirus 2 (OvGHV2), is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF), in which sheep are the asymptomatic reservoir hosts. Susceptible mammalian populations infected by OvGHV2 may develop clinical SA-MCF or subclinical infections. All members of the Macavirus genus known to be associated with MCF are collectively referred to as the MCF virus (MCFV) complex. This report describes the occurrence of subclinical OvGHV2-related infections in free-ranging wild boars (Sus scrofa) from southern Brazil. Specific body organs (n = 14) and biological samples (nasal and oral swabs; n = 17) were collected from 24 asymptomatic wild boars from a conservation unit located within the Central-eastern mesoregion of Paraná State. Organs were processed to observe histopathological patterns suggestive of diseases of domestic animals; only pulmonary samples were used in an immunohistochemical assay designed to detect MCFV tissue antigens. Furthermore, all samples were submitted to molecular assays designed to detect the OvGHV2 tegument protein gene. Viral-induced pneumonia was diagnosed in two wild boars; one of these contained OvGHV2 DNA, with MCFV antigens identified in the other. Additionally, MCFV tissue antigens were detected within pulmonary epithelial cells of the lungs with and without pulmonary disease. Collectively, OvGHV2 was detected in 37.5% (9/24) of all wild boars, with detection occurring in the organs of 57.1% (8/14) wild boars and the oral cavity of one animal. These results demonstrated that these wild boars were subclinically infected by OvGHV2, and that infection produced typical pulmonary alterations. In addition, the detection of OvGHV2 within the oral cavity of one wild boar may suggest that this animal may be a potential disseminator of this pathogen to susceptible animal populations, including livestock and wildlife, acting as a possible bridge host for OvGHV2. Furthermore, infection by OvGHV2 probably occurred due to incidental contact with asymptomatic sheep maintained within the surrounding rural areas and not within the conservation units. Full article
(This article belongs to the Special Issue Wildlife Hosts Pathogen Interaction)
Show Figures

Figure 1

12 pages, 2629 KiB  
Article
The Mucus-Binding Factor Mediates Lacticaseibacillus rhamnosus CRL1505 Adhesion but Not Immunomodulation in the Respiratory Tract
by Binghui Zhou, Mariano Elean, Lorena Arce, Kohtaro Fukuyama, Kae Tomotsune, Stefania Dentice Maidana, Sudeb Saha, Fu Namai, Keita Nishiyama, María Guadalupe Vizoso-Pinto, Julio Villena and Haruki Kitazawa
Microorganisms 2024, 12(6), 1209; https://doi.org/10.3390/microorganisms12061209 - 16 Jun 2024
Viewed by 632
Abstract
Lacticaseibacillus rhamnosus CRL1505 possesses immunomodulatory activities in the gastrointestinal and respiratory tracts when administered orally. Its adhesion to the intestinal mucosa does not condition its beneficial effects. The intranasal administration of L. rhamnosus CRL1505 is more effective than the oral route at modulating [...] Read more.
Lacticaseibacillus rhamnosus CRL1505 possesses immunomodulatory activities in the gastrointestinal and respiratory tracts when administered orally. Its adhesion to the intestinal mucosa does not condition its beneficial effects. The intranasal administration of L. rhamnosus CRL1505 is more effective than the oral route at modulating immunity in the respiratory tract. Nonetheless, it has not yet been established whether the adherence of the CRL1505 strain to the respiratory mucosa is needed to provide the immune benefits to the host. In this study, we evaluated the role of adhesion to the respiratory mucosa of the mucus-binding factor (mbf) knock-out L. rhamnosus CRL1505 mutant (Δmbf CRL1505) in the context of a Toll-like receptor 3 (TLR3)-triggered innate immunity response. In vitro adhesion studies in porcine bronchial epitheliocytes (PBE cells) indicated that L. rhamnosus Δmbf CRL1505 adhered weakly compared to the wild-type strain. However, in vivo studies in mice demonstrated that the Δmbf CRL1505 also reduced lung damage and modulated cytokine production in the respiratory tract after the activation of TLR3 to a similar extent as the wild-type strain. In addition, the mutant and the wild-type strains modulated the production of cytokines and antiviral factors by alveolar macrophages in the same way. These results suggest that the Mbf protein is partially involved in the ability of L. rhamnosus CRL1505 to adhere to the respiratory epithelium, but the protein is not necessary for the CRL1505 strain to exert its immunomodulatory beneficial effects. These findings are a step forward in the understanding of molecular interactions that mediate the beneficial effects of nasally administered probiotics. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

14 pages, 3155 KiB  
Article
TBHQ Alleviates Particulate Matter-Induced Pyroptosis in Human Nasal Epithelial Cells
by Ji-Sun Kim, Hyunsu Choi, Jeong-Min Oh, Sung Won Kim, Soo Whan Kim, Byung Guk Kim, Jin Hee Cho, Joohyung Lee and Dong Chang Lee
Toxics 2024, 12(6), 407; https://doi.org/10.3390/toxics12060407 - 3 Jun 2024
Viewed by 374
Abstract
Pyroptosis represents a type of cell death mechanism notable for its cell membrane disruption and the subsequent release of proinflammatory cytokines. The Nod-like receptor family pyrin domain containing inflammasome 3 (NLRP3) plays a critical role in the pyroptosis mechanism associated with various diseases [...] Read more.
Pyroptosis represents a type of cell death mechanism notable for its cell membrane disruption and the subsequent release of proinflammatory cytokines. The Nod-like receptor family pyrin domain containing inflammasome 3 (NLRP3) plays a critical role in the pyroptosis mechanism associated with various diseases resulting from particulate matter (PM) exposure. Tert-butylhydroquinone (tBHQ) is a synthetic antioxidant commonly used in a variety of foods and products. The aim of this study is to examine the potential of tBHQ as a therapeutic agent for managing sinonasal diseases induced by PM exposure. The occurrence of NLRP3 inflammasome-dependent pyroptosis in RPMI 2650 cells treated with PM < 4 µm in size was confirmed using Western blot analysis and enzyme-linked immunosorbent assay results for the pyroptosis metabolites IL-1β and IL-18. In addition, the inhibitory effect of tBHQ on PM-induced pyroptosis was confirmed using Western blot and immunofluorescence techniques. The inhibition of tBHQ-mediated pyroptosis was abolished upon nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown, indicating its involvement in the antioxidant mechanism. tBHQ showed potential as a therapeutic agent for sinonasal diseases induced by PM because NLRP3 inflammasome activation was effectively suppressed via the Nrf2 pathway. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Diseases)
Show Figures

Graphical abstract

12 pages, 2573 KiB  
Article
Stimulator of Interferon Gene Agonists Induce an Innate Antiviral Response against Influenza Viruses
by Hyun Jung Lee, Joo-Hoo Park, Il-Ho Park and Ok Sarah Shin
Viruses 2024, 16(6), 855; https://doi.org/10.3390/v16060855 - 27 May 2024
Viewed by 873
Abstract
The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling [...] Read more.
The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air–liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

12 pages, 3982 KiB  
Article
Development of a Flexible Sensor-Integrated Tissue Patch to Monitor Early Organ Rejection Processes Using Impedance Spectroscopy
by Peter Ertl, Tibor Wladimir, Drago Sticker, Patrick Schuller, Mario Rothbauer, Georg Wieselthaler and Martin Frauenlob
Biosensors 2024, 14(5), 253; https://doi.org/10.3390/bios14050253 - 17 May 2024
Viewed by 1316
Abstract
Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial [...] Read more.
Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial biopsies (EMB). This study introduces a rapid prototyping approach to organ rejection monitoring via a sensor-integrated flexible patch, employing electrical impedance spectroscopy (EIS) for the non-invasive, continuous assessment of resistive and capacitive changes indicative of tissue rejection processes. Utilizing titanium-dioxide-coated electrodes for contactless impedance sensing, this method aims to mitigate the limitations associated with EMB, including procedural risks and the psychological burden on patients. The biosensor’s design features, including electrode passivation and three-dimensional microelectrode protrusions, facilitate effective monitoring of cardiac rejection by aligning with the heart’s curvature and responding to muscle contractions. Evaluation of sensor performance utilized SPICE simulations, scanning electron microscopy, and cyclic voltammetry, alongside experimental validation using chicken heart tissue to simulate healthy and rejected states. The study highlights the potential of EIS in reducing the need for invasive biopsy procedures and offering a promising avenue for early detection and monitoring of organ rejection, with implications for patient care and healthcare resource utilization. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Graphical abstract

23 pages, 7853 KiB  
Article
Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery
by Aida Maaz, Ian S. Blagbrough and Paul A. De Bank
Pharmaceutics 2024, 16(5), 669; https://doi.org/10.3390/pharmaceutics16050669 - 16 May 2024
Viewed by 787
Abstract
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of [...] Read more.
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications. Full article
Show Figures

Graphical abstract

15 pages, 949 KiB  
Article
SARS-CoV-2-Induced Type I Interferon Signaling Dysregulation in Olfactory Networks Implications for Alzheimer’s Disease
by George D. Vavougios, Theodoros Mavridis, Triantafyllos Doskas, Olga Papaggeli, Pelagia Foka and Georgios Hadjigeorgiou
Curr. Issues Mol. Biol. 2024, 46(5), 4565-4579; https://doi.org/10.3390/cimb46050277 - 10 May 2024
Viewed by 1870
Abstract
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer’s. Previous works from our group have proposed a model where peripheral induction [...] Read more.
Type I interferon signaling (IFN-I) perturbations are major drivers of COVID-19. Dysregulated IFN-I in the brain, however, has been linked to both reduced cognitive resilience and neurodegenerative diseases such as Alzheimer’s. Previous works from our group have proposed a model where peripheral induction of IFN-I may be relayed to the CNS, even in the absence of fulminant infection. The aim of our study was to identify significantly enriched IFN-I signatures and genes along the transolfactory route, utilizing published datasets of the nasal mucosa and olfactory bulb amygdala transcriptomes of COVID-19 patients. We furthermore sought to identify these IFN-I signature gene networks associated with Alzheimer’s disease pathology and risk. Gene expression data involving the nasal epithelium, olfactory bulb, and amygdala of COVID-19 patients and transcriptomic data from Alzheimer’s disease patients were scrutinized for enriched Type I interferon pathways. Gene set enrichment analyses and gene–Venn approaches were used to determine genes in IFN-I enriched signatures. The Agora web resource was used to identify genes in IFN-I signatures associated with Alzheimer’s disease risk based on its aggregated multi-omic data. For all analyses, false discovery rates (FDR) <0.05 were considered statistically significant. Pathways associated with type I interferon signaling were found in all samples tested. Each type I interferon signature was enriched by IFITM and OAS family genes. A 14-gene signature was associated with COVID-19 CNS and the response to Alzheimer’s disease pathology, whereas nine genes were associated with increased risk for Alzheimer’s disease based on Agora. Our study provides further support to a type I interferon signaling dysregulation along the extended olfactory network as reconstructed herein, ranging from the nasal epithelium and extending to the amygdala. We furthermore identify the 14 genes implicated in this dysregulated pathway with Alzheimer’s disease pathology, among which HLA-C, HLA-B, HLA-A, PSMB8, IFITM3, HLA-E, IFITM1, OAS2, and MX1 as genes with associated conferring increased risk for the latter. Further research into its druggability by IFNb therapeutics may be warranted. Full article
(This article belongs to the Special Issue Advanced Research in Neuroinflammation)
Show Figures

Graphical abstract

15 pages, 769 KiB  
Review
The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma
by Kazuyuki Nakagome and Makoto Nagata
Biomolecules 2024, 14(5), 546; https://doi.org/10.3390/biom14050546 - 2 May 2024
Cited by 1 | Viewed by 1766
Abstract
Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play [...] Read more.
Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play roles in the development of bronchial asthma. Among these cytokines, IL-4 is involved in T-cell differentiation, B-cell activation, B-cell differentiation into plasma cells, and the production of immunoglobulin E. Although IL-13 has similar effects to IL-4, IL-13 mainly affects structural cells, such as epithelial cells, smooth muscle cells, and fibroblasts. IL-13 induces the differentiation of goblet cells that produce mucus and induces the airway remodeling, including smooth muscle hypertrophy. IL-4 and IL-13 do not directly activate the effector functions of eosinophils; however, they can induce eosinophilic airway inflammation by upregulating the expression of vascular cell adhesion molecule-1 (for adhesion) and CC chemokine receptor 3 ligands (for migration). Dupilumab, a human anti-IL-4 receptor α monoclonal antibody that inhibits IL-4 and IL-13 signaling, decreases asthma exacerbations and mucus plugs and increases lung function in moderate to severe asthma. In addition, dupilumab is effective for chronic rhinosinusitis with nasal polyps and for atopic dermatitis, and IL-4/IL-13 blocking is expected to suppress allergen sensitization, including transcutaneous sensitization and atopic march. Full article
Show Figures

Figure 1

12 pages, 792 KiB  
Article
Polymeric Caffeic Acid Acts as an Antigen Delivery Carrier for Mucosal Vaccine Formulation by Forming a Complex with an Antigenic Protein
by Rui Tada, Yuzuho Nagai, Miki Ogasawara, Momoko Saito, Akihiro Ohshima, Daisuke Yamanaka, Jun Kunisawa, Yoshiyuki Adachi and Yoichi Negishi
Vaccines 2024, 12(5), 449; https://doi.org/10.3390/vaccines12050449 - 23 Apr 2024
Viewed by 938
Abstract
The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine [...] Read more.
The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses. In this study, we hypothesized that pCA might activate mucosal immunity at the site of administration based on our previous findings that pCA possesses immune-activating properties. However, contrary to our initial hypothesis, the intranasal administration of pCA did not enhance the expression of various genes involved in mucosal immune responses, including the enhancement of IgA responses. Therefore, we investigated whether pCA forms a complex with antigenic proteins and enhances antigen delivery to mucosal dendritic cells located in the lamina propria beneath the mucosal epithelial layer. Data from gel filtration chromatography indicated that pCA forms a complex with the antigenic protein ovalbumin (OVA). Furthermore, we examined the promotion of OVA delivery to nasal mucosal dendritic cells (mDCs) after the intranasal administration of pCA in combination with OVA and found that OVA uptake by mDCs was increased. Therefore, the data from gel filtration chromatography and flow cytometry imply that pCA enhances antigen-specific antibody production in both mucosal and systemic compartments by serving as an antigen-delivery vehicle. Full article
(This article belongs to the Special Issue Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

25 pages, 5509 KiB  
Article
Design and Characterization of a New Formulation for the Delivery of COVID-19-mRNA Vaccine to the Nasal Mucosa
by Ayça Altay Benetti, Eugene Yang Zhi Tan, Zi Wei Chang, Ki Hyun Bae, Ma Thinzar Thwin, Ram Pravin Kumar Muthuramalingam, Kuo-Chieh Liao, Yue Wan, Lisa F. P. Ng, Laurent Renia, Jianping Liu, Xiaoyuan Chen, Yi Yan Yang, Kevin P. White and Giorgia Pastorin
Vaccines 2024, 12(4), 409; https://doi.org/10.3390/vaccines12040409 - 12 Apr 2024
Cited by 1 | Viewed by 2102
Abstract
Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic [...] Read more.
Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages). In this project, we aimed at developing novel lipid-based nanoformulations for mRNA delivery to counteract the pandemic caused by SARS-CoV-2 virus. The formulations achieved a mRNA encapsulation efficiency of ~80.2% with chitosan-lipid nanoparticles, as measured by the RiboGreen assay. Furthermore, the evaluation of SARS-CoV-2 Spike (S) receptor-binding domain (RBD) expression via ELISA for our vaccine formulations showed transfection levels in human embryonic kidney cells (HEK 293), lung carcinoma cells (A549), and dendritic cells (DC 2.4) equal to 9.9 ± 0.1 ng/mL (174.7 ± 1.1 fold change from untreated cells (UT)), 7.0 ± 0.2 ng/mL (128.1 ± 4.9 fold change from UT), and 0.9 ± 0.0 ng/mL (18.0 ± 0.1 fold change from UT), respectively. Our most promising vaccine formulation was also demonstrated to be amenable to lyophilization with minimal degradation of loaded mRNA, paving the way towards a more accessible and stable vaccine. Preliminary in vivo studies in mice were performed to assess the systemic and local immune responses. Nasal bronchoalveolar lavage fluid (BALF) wash showed that utilizing the optimized formulation resulted in local antibody concentrations and did not trigger any systemic antibody response. However, if further improved and developed, it could potentially contribute to the management of COVID-19 through nasopharyngeal immunization strategies. Full article
(This article belongs to the Section DNA and mRNA Vaccines)
Show Figures

Figure 1

Back to TopTop