Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Chicken Embryos and Red Blood Cells of Animals
2.3. Viruses
2.4. Western Blot Analysis
2.5. Laboratory Animals and Immunization Procedures
2.6. ELISA and Neutralization Assay for SARS-CoV-2
2.7. IFN-γ ELISpot and ICS
2.8. Virus Challenge
2.9. Viral RNA Quantification
2.10. Determination of Infectious Virus Titer in Tissue Homogenates
2.11. Statistics
3. Results
3.1. Design and Characterization of the Recombinant Variant of Sen-Sdelta(M)
3.2. Evaluation of the Immunogenicity and Protective Efficacy of Sen-Sdelta(M) in BALB/c Mice
3.3. Assessment of Immunogenicity and Protectivity of Sen-Sdelta(M) in a Golden Syrian Hamster Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral Vectored Vaccines: Design, Development, Preventive and Therapeutic Applications in Human Diseases. Sig. Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Lund, F.E.; Randall, T.D. Scent of a Vaccine. Science 2021, 373, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Chen, S.; He, Q.; Bai, Y.; Liu, J.; Wang, Z.; Liang, Z.; Chen, L.; Mao, Q.; et al. Progress and Challenges in the Clinical Evaluation of Immune Responses to Respiratory Mucosal Vaccines. Expert Rev. Vaccines 2024, 23, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Villenave, R.; Touzelet, O.; Thavagnanam, S.; Sarlang, S.; Parker, J.; Skibinski, G.; Heaney, L.G.; McKaigue, J.P.; Coyle, P.V.; Shields, M.D.; et al. Cytopathogenesis of Sendai Virus in Well-Differentiated Primary Pediatric Bronchial Epithelial Cells. J. Virol. 2010, 84, 11718–11728. [Google Scholar] [CrossRef] [PubMed]
- Luber, C.A.; Cox, J.; Lauterbach, H.; Fancke, B.; Selbach, M.; Tschopp, J.; Akira, S.; Wiegand, M.; Hochrein, H.; O’Keeffe, M.; et al. Quantitative Proteomics Reveals Subset-Specific Viral Recognition in Dendritic Cells. Immunity 2010, 32, 279–289. [Google Scholar] [CrossRef]
- Hurtwitz, J.M.; Takimoto, T.; Russel, C.J.; Portner, A.; Slobod, K.S. Modified Sendai Virus Vaccine and Imaging Vector. Patent WO2012148708 A1, 2012. [Google Scholar]
- Cantell, K.; Hirvonen, S.; Kauppinen, H.-L.; Myllylä, G. [4] Production of Interferon in Human Leukocytes from Normal Donors with the Use of Sendai Virus. In Methods in Enzymology; Interferons Part A; Academic Press: Cambridge, MA, USA, 1981; Volume 78, pp. 29–38. [Google Scholar]
- Nyman, A.T.; Tolo, H.; Parkkinen, J.; Kalkkinen, N. Identification of Nine Interferon-α Subtypes Produced by Sendai Virus-Induced Human Peripheral Blood Leucocytes. Biochem. J. 1998, 329, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Ohta, K.; Kolakofsky, D.; Nishio, M. The Control of Paramyxovirus Genome Hexamer Length and mRNA Editing. RNA 2018, 24, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.; Saeki, K.; Takeshita, M.; Hirano, K.; Shirakawa, M.; Yamada, Y.; Nakamura, S.; Ozawa, F.; Okano, H. Intranasal Sendai Virus-Based SARS-CoV-2 Vaccine Using a Mouse Model. Genes Cells 2023, 28, 29–41. [Google Scholar] [CrossRef]
- Simon, A.Y.; Moritoh, K.; Torigoe, D.; Asano, A.; Sasaki, N.; Agui, T. Multigenic Control of Resistance to Sendai Virus Infection in Mice. Infect. Genet. Evol. 2009, 9, 1253–1259. [Google Scholar] [CrossRef]
- Faisca, P.; Anh, D.B.T.; Desmecht, D.J.-M. Sendai Virus-Induced Alterations in Lung Structure/Function Correlate with Viral Loads and Reveal a Wide Resistance/Susceptibility Spectrum among Mouse Strains. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2005, 289, L777–L787. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.W.; Mason, J.N.; Surman, S.L.; Jones, B.G.; Dalloneau, E.; Hurwitz, J.L.; Russell, C.J. Illumination of Parainfluenza Virus Infection and Transmission in Living Animals Reveals a Tissue-Specific Dichotomy. PLoS Pathog. 2011, 7, e1002134. [Google Scholar] [CrossRef] [PubMed]
- Scaggs Huang, F.; Bernstein, D.I.; Slobod, K.S.; Portner, A.; Takimoto, T.; Russell, C.J.; Meagher, M.; Jones, B.G.; Sealy, R.E.; Coleclough, C.; et al. Safety and Immunogenicity of an Intranasal Sendai Virus-Based Vaccine for Human Parainfluenza Virus Type I and Respiratory Syncytial Virus (SeVRSV) in Adults. Hum. Vaccin. Immunother 2021, 17, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.J.; Hurwitz, J.L. Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Viruses 2021, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Ilinykh, P.A.; Periasamy, S.; Huang, K.; Kuzmina, N.A.; Ramanathan, P.; Meyer, M.N.; Mire, C.E.; Kuzmin, I.V.; Bharaj, P.; Endsley, J.R.; et al. A Single Intranasal Dose of Human Parainfluenza Virus Type 3-Vectored Vaccine Induces Effective Antibody and Memory T Cell Response in the Lungs and Protects Hamsters against SARS-CoV-2. NPJ Vaccines 2022, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, C.C.; Basnet, N.; Bodakuntla, S.; Alvarez-Brecht, P.; Nichols, S.; Martinez-Sanchez, A.; Agostini, L.; Soh, Y.-M.; Takagi, J.; Biertümpfel, C.; et al. Direct Cryo-ET Observation of Platelet Deformation Induced by SARS-CoV-2 Spike Protein. Nat. Commun. 2023, 14, 620. [Google Scholar] [CrossRef] [PubMed]
- Kusudo, E.; Murata, Y.; Kawamoto, S.; Egi, M. Variant-Derived SARS-CoV-2 Spike Protein Does Not Directly Cause Platelet Activation or Hypercoagulability. Clin. Exp. Med. 2023, 23, 3701–3708. [Google Scholar] [CrossRef] [PubMed]
- Uaprasert, N.; Panrong, K.; Rojnuckarin, P.; Chiasakul, T. Thromboembolic and Hemorrhagic Risks after Vaccination against SARS-CoV-2: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Thromb. J. 2021, 19, 86. [Google Scholar] [CrossRef]
- Elalamy, I.; Gerotziafas, G.; Alamowitch, S.; Laroche, J.-P.; Dreden, P.V.; Ageno, W.; Beyer-Westendorf, J.; Cohen, A.T.; Jimenez, D.; Brenner, B.; et al. SARS-CoV-2 Vaccine and Thrombosis: An Expert Consensus on Vaccine-Induced Immune Thrombotic Thrombocytopenia. Thromb. Haemost 2021, 121, 982–991. [Google Scholar] [CrossRef]
- Moiseeva, A.G.; Serova, N.Y.; Shaikhutdinova, R.A.; Zharova, A.S.; Korotkikh, A.V.; Lider, R.Y.; Kazantsev, A.N. Thrombosis in unvaccinated and Gam-COVID-Vac-vaccinated patients with COVID-19. Russ. J. Cardiol. 2022, 27, 5091. [Google Scholar] [CrossRef]
- Zainutdinov, S.S.; Tikunov, A.Y.; Matveeva, O.V.; Netesov, S.V.; Kochneva, G.V. Complete Genome Sequence of the Oncolytic Sendai Virus Strain Moscow. Genome Announc. 2016, 4, e00818-16. [Google Scholar] [CrossRef]
- Zainutdinov, S.S.; Kochneva, G.V.; Sivolobova, G.F.; Grazhdantseva, A.A. A Set of Recombinant Plasmid DNA for Obtaining Recombinant Sendai Viruses Strain Moscow (Variants). RF Patent No. 2787724, 2023. [Google Scholar]
- Tatsumoto, N.; Miyauchi, T.; Arditi, M.; Yamashita, M. Quantification of Infectious Sendai Virus Using Plaque Assay. Bio-Protocol 2018, 8, e3068. [Google Scholar] [CrossRef] [PubMed]
- Merkuleva, I.A.; Shcherbakov, D.N.; Borgoyakova, M.B.; Shanshin, D.V.; Rudometov, A.P.; Karpenko, L.I.; Belenkaya, S.V.; Isaeva, A.A.; Nesmeyanova, V.S.; Kazachinskaia, E.I.; et al. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines 2022, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Dolskiy, A.A.; Bodnev, S.A.; Nazarenko, A.A.; Smirnova, A.M.; Pyankova, O.G.; Matveeva, A.K.; Grishchenko, I.V.; Tregubchak, T.V.; Pyankov, O.V.; Ryzhikov, A.B.; et al. Deletion of BST2 Cytoplasmic and Transmembrane N-Terminal Domains Results in SARS-CoV, SARS-CoV-2, and Influenza Virus Production Suppression in a Vero Cell Line. Front. Mol. Biosci. 2020, 7, 616798. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty Percent Endpoinds. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Tscherne, A.; Schwarz, J.H.; Rohde, C.; Kupke, A.; Kalodimou, G.; Limpinsel, L.; Okba, N.M.A.; Bošnjak, B.; Sandrock, I.; Odak, I.; et al. Immunogenicity and Efficacy of the COVID-19 Candidate Vector Vaccine MVA-SARS-2-S in Preclinical Vaccination. Proc. Natl. Acad. Sci. USA 2021, 118, e2026207118. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Leist, S.R.; McCroskery, S.; Liu, Y.; Slamanig, S.; Oliva, J.; Amanat, F.; Schäfer, A.; Dinnon, K.H.; García-Sastre, A.; et al. Newcastle Disease Virus (NDV) Expressing the Spike Protein of SARS-CoV-2 as a Live Virus Vaccine Candidate. eBioMedicine 2020, 62, 103132. [Google Scholar] [CrossRef] [PubMed]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature 2021, 592, 116–121. [Google Scholar] [CrossRef]
- Interim Statement on COVID-19 Vaccines in the Context of the Circulation of the Omicron SARS-CoV-2 Variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC), 8 March 2022. Available online: https://www.who.int/news/item/08-03-2022-interim-statement-on-covid-19-vaccines-in-the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technical-advisory-group-on-covid-19-vaccine-composition-(tag-co-vac)-08-march-2022 (accessed on 18 May 2024).
- Ghildiyal, T.; Rai, N.; Mishra Rawat, J.; Singh, M.; Anand, J.; Pant, G.; Kumar, G.; Shidiki, A. Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. J. Immunol. Res. 2024, 2024, e9125398. [Google Scholar] [CrossRef]
- Da Silva, M.; Labas, V.; Nys, Y.; Réhault-Godbert, S. Investigating Proteins and Proteases Composing Amniotic and Allantoic Fluids during Chicken Embryonic Development. Poult. Sci. 2017, 96, 2931–2941. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Jaimes, J.A.; Bidon, M.K.; Straus, M.R.; Daniel, S.; Whittaker, G.R. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. ACS Infect. Dis. 2021, 7, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Tarrés-Freixas, F.; Trinité, B.; Pons-Grífols, A.; Romero-Durana, M.; Riveira-Muñoz, E.; Ávila-Nieto, C.; Pérez, M.; Garcia-Vidal, E.; Perez-Zsolt, D.; Muñoz-Basagoiti, J.; et al. Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Front. Microbiol. 2022, 13, 840757. [Google Scholar] [CrossRef]
- Shipovalov, A.V.; Kudrov, G.A.; Tomilov, A.A.; Bodnev, S.A.; Boldyrev, N.D.; Ovchinnikova, A.S.; Zaykovskaya, A.V.; Taranov, O.S.; Pyankov, O.V.; Maksyutov, R.A. Susceptibility to SARS-CoV-2 Virus Variants of Concern in Mouse Models. Probl. Part. Danger. Infect. 2022, 1, 148–155. [Google Scholar] [CrossRef]
- Imai, M.; Iwatsuki-Horimoto, K.; Hatta, M.; Loeber, S.; Halfmann, P.J.; Nakajima, N.; Watanabe, T.; Ujie, M.; Takahashi, K.; Ito, M.; et al. Syrian Hamsters as a Small Animal Model for SARS-CoV-2 Infection and Countermeasure Development. Proc. Natl. Acad. Sci. USA 2020, 117, 16587–16595. [Google Scholar] [CrossRef]
Gene | Sequences of Primers (5’…3’) | Restriction Sites |
---|---|---|
Sdelta | cggaattcgtacgccaccatgtttgtttttcttgttttattgccacta (forward) | BsiWI |
tttatgcatgcgcgctatgtgtaatgtaatttgactcctttgagc (reverse) | BssHII |
Sequence | MHC Class | Allele |
---|---|---|
SGTNGTKRF | I | H-2-Dd |
YYHKNNKSW | I | H-2-Kd |
KYNENGTIT | I | H-2-Kd |
VYAWNRKRI | I | H-2-Kd |
FERDISTEI | I | H-2-Ld |
CGPKKSTNL | I | H-2-Dd |
SKPSKRSFI | I | H-2-Dd |
KYFKNHTSP | I | H-2-Kd |
YPDKVFRSSVLHSTQ | II | H2-IEd |
KNIDGYFKIYSKHTP | II | H2-IEd |
RFASVYAWNRKRISN | II | H2-IEd, H2-IAd |
SNGTHWFVTQRNFYE | II | H2-IEd |
YNYKLPDDFTGCVIA | II | H2-IEd |
KNKCVNFNFNGLTGT | II | H2-IEd |
QPTESIVRF | I | H-2-Kd |
VSPTKLNDL | I | H-2-Kd |
LLHAPATVCGPKKST | II | H2-IEd |
ASVYAWNRKRISN | II | H2-IEd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochneva, G.V.; Kudrov, G.A.; Zainutdinov, S.S.; Shulgina, I.S.; Shipovalov, A.V.; Zaykovskaya, A.V.; Borgoyakova, M.B.; Starostina, E.V.; Bodnev, S.A.; Sivolobova, G.F.; et al. Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern. Vaccines 2024, 12, 783. https://doi.org/10.3390/vaccines12070783
Kochneva GV, Kudrov GA, Zainutdinov SS, Shulgina IS, Shipovalov AV, Zaykovskaya AV, Borgoyakova MB, Starostina EV, Bodnev SA, Sivolobova GF, et al. Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern. Vaccines. 2024; 12(7):783. https://doi.org/10.3390/vaccines12070783
Chicago/Turabian StyleKochneva, Galina V., Gleb A. Kudrov, Sergei S. Zainutdinov, Irina S. Shulgina, Andrei V. Shipovalov, Anna V. Zaykovskaya, Mariya B. Borgoyakova, Ekaterina V. Starostina, Sergei A. Bodnev, Galina F. Sivolobova, and et al. 2024. "Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern" Vaccines 12, no. 7: 783. https://doi.org/10.3390/vaccines12070783