Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232,278)

Search Parameters:
Keywords = mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5901 KiB  
Article
Experimental and Numerical Simulation of Ejecta Size and Velocity of Hypervelocity Impact Rubble-Pile Asteroid
by Wenjin Liu, Qingming Zhang, Renrong Long, Jiankang Ren, Juncheng Li, Zizheng Gong, Qiang Wu and Siyuan Ren
Aerospace 2024, 11(8), 621; https://doi.org/10.3390/aerospace11080621 (registering DOI) - 29 Jul 2024
Abstract
Rubble-pile asteroids may be the type of near-Earth object most likely to threaten Earth in a future collision event. Small-scale impact experiments and numerical simulations for large-scale impacts were conducted to clarify the size ratio of the boulder/projectile diameter effects on ejecta size–velocity [...] Read more.
Rubble-pile asteroids may be the type of near-Earth object most likely to threaten Earth in a future collision event. Small-scale impact experiments and numerical simulations for large-scale impacts were conducted to clarify the size ratio of the boulder/projectile diameter effects on ejecta size–velocity distribution. A series of small-scale impact cratering experiments were performed on porous gypsum–basalt targets at velocities of 2.3 to 5.5 km·s−1. Three successive ejection processes were observed by high-speed and ultra-high-speed cameras. The momentum transfer coefficient and cratering size were measured. A three-dimensional numerical model reflecting the random distribution of the interior boulders of the rubble-pile structure asteroid is established. The size ratio (length to diameter) of the boulder size inside the asteroid to the projectile diameter changed from 0.25 to 1.7. We conducted a smoothed particle hydrodynamics numerical simulation in the AUTODYN software to study the boulder size effect on the ejecta size–velocity distribution. Simulation results suggest that the microscopic porosity on regolith affects the propagation of shock waves and reduces the velocity of ejecta. Experiments and numerical simulation results suggest that both excavation flow and spalling ejection mechanism can eject boulders (0.12–0.72 m) out of the rubble-pile asteroid. These experiments and simulation results help us select the potential impact site in a planetary defense scenario and reduce deflection risk. are comprised primarily of boulders of a range of sizes. Full article
24 pages, 1487 KiB  
Article
Influence of Montmorillonite Organoclay Fillers on Hygrothermal Response of Pultruded E-Glass/Vinylester Composites
by Vistasp M. Karbhari
Polymers 2024, 16(15), 2157; https://doi.org/10.3390/polym16152157 (registering DOI) - 29 Jul 2024
Abstract
Pultruded fiber reinforced polymer composites used in civil, power, and offshore/marine applications use fillers as resin extenders and for process efficiency. Although the primary use of fillers is in the form of an extender and processing aid, the appropriate selection of filler can [...] Read more.
Pultruded fiber reinforced polymer composites used in civil, power, and offshore/marine applications use fillers as resin extenders and for process efficiency. Although the primary use of fillers is in the form of an extender and processing aid, the appropriate selection of filler can result in enhancing mechanical performance characteristics, durability, and multifunctionality. This is of special interest in structural and high voltage applications where the previous use of specific fillers has been at levels that are too low to provide these enhancements. This study investigates the use of montmorillonite organoclay fillers of three different particle sizes as substitutes for conventional CaCO3 fillers with the intent of enhancing mechanical performance and hygrothermal durability. The study investigates moisture uptake and kinetics and reveals that uptake is well described by a two-stage process that incorporates both a diffusion dominated initial phase and a second slower phase representing relaxation and deterioration. The incorporation of the organoclay particles substantially decreases uptake levels in comparison to the use of CaCO3 fillers while also enhancing stage I, diffusion, dominated stability, with the use of the 1.5 mm organoclay fillers showing as much as a 41.5% reduction in peak uptake as compared to the CaCO3 fillers at the same 20% loading level (by weight of resin). The mechanical performance was characterized using tension, flexure, and short beam shear tests. The organoclay fillers showed a significant improvement in each, albeit with differences due to particle size. Overall, the best performance after exposure to four different temperatures of immersion in deionized water was shown by the 4.8 mm organoclay filler-based E-glass/vinylester composite system, which was the only one to have less than a 50% deterioration over all characteristics after immersion for a year in deionized water at the highest temperature investigated (70 °C). The fillers not only enhance resistance to uptake but also increase tortuosity in the path, thereby decreasing the overall effect of uptake. The observations demonstrate that the use of the exfoliated organoclay particles with intercalation, which have been previously used in very low amounts, and which are known to be beneficial in relation to enhanced thermal stability, flame retardancy, and decreased flammability, provide enhanced mechanical characteristics, decreased moisture uptake, and increased hygrothermal durability when used at particle loading levels comparable to those of conventional fillers, suggesting that these novel systems could be considered for critical structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

28 pages, 1644 KiB  
Review
Regulation of Microalgal Photosynthetic Electron Transfer
by Yuval Milrad, Laura Mosebach and Felix Buchert
Plants 2024, 13(15), 2103; https://doi.org/10.3390/plants13152103 (registering DOI) - 29 Jul 2024
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on [...] Read more.
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
14 pages, 1583 KiB  
Article
Metabolomic and Transcriptomic Analysis of Unique Floral Coloration in Osmanthus fragrans Cultivars
by Shenni Wei, Jiang Wu, Ping Yu, Yunfei Tan, Qiang He, Jie Yang, Xuan Cai, Jingjing Zou, Hongguo Chen and Xiangling Zeng
Horticulturae 2024, 10(8), 801; https://doi.org/10.3390/horticulturae10080801 (registering DOI) - 29 Jul 2024
Abstract
The floral color phenotypes of Osmanthus fragrans cultivars range from light yellow to orange yellow, with ‘Yanzhi Hong’ being the only reported cultivar with a red color. However, the underlying reason for this unique floral coloration remains unclear. The study conducted targeted metabolomics [...] Read more.
The floral color phenotypes of Osmanthus fragrans cultivars range from light yellow to orange yellow, with ‘Yanzhi Hong’ being the only reported cultivar with a red color. However, the underlying reason for this unique floral coloration remains unclear. The study conducted targeted metabolomics and transcriptomics analyses on the petals of ‘Yanzhi Hong’ at both initial and peak flowering stages. Candidate gene expression was validated, and expression levels of the petals of three cultivars were compared using RT-qPCR. The results revealed the presence of 27 components in the petals of ‘Yanzhi Hong’, including 5 carotenoids, 8 xanthophylls, and 14 xanthophyll esters. Notably, lycopene was detected in abundance for the first time in O. fragrans cultivars. Carotenes accounted for 78.82 ± 3.17% and 91.19 ± 1.69% of the total carotenoid content in petals during the initial and peak flowering stages, respectively, with all carotene contents increasing during the peak flowering period. β-carotene, lycopene, and γ-carotene were identified as the top three carotene components in petals during both initial and full flowering stages. The unique blush red color of ‘Yanzhi Hong’ petals could be attributed to the low content of α-carotene and the rich accumulation of lycopene. Furthermore, a total of 1550 differentially expressed genes (DEGs) were identified in petals at the peak flowering stage relative to the initial flowering stage, with 1003 genes being downregulated and 547 genes being upregulated during the full flowering stage. There are 926 differentially expressed genes (DEGs) annotated in the Gene Ontology (GO) database. Among these DEGs, those that were downregulated and upregulated during the peak flowering period showed significant enrichment in carbohydrate metabolism and oxidation–reduction processes, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 14 structural genes associated with phenylpropanoid biosynthesis and 7 structural genes linked to carotenoid biosynthesis. Expression levels of candidate genes involved in carotenoid biosynthesis were examined in the petals of three cultivars (‘Yanzhi Hong’, ‘Liuye Jingui’, and ‘Gecheng Dangui’) at both the initial and peak flowering stages. The results indicated that the decreased expression of LYG009054 (LYCE) and LYG018651 (LYCB) in ‘Yanzhi Hong’ resulted in higher lycopene accumulation and lower α-carotene content in the petals. This study offers valuable insights into the mechanisms underlying the unique flower color phenotype of O. fragrans, proving a basis for further research on carotenoid metabolism pathways and the breeding of new cultivars with a variety of flower colors in O. fragrans. Full article
26 pages, 1702 KiB  
Article
Optimization Model and Solution Algorithm for Space Station Cargo Supply Planning under Complex Constraints
by Zhijuan Kang, Ming Gao, Wei Dang and Jiajie Wang
Sustainability 2024, 16(15), 6488; https://doi.org/10.3390/su16156488 (registering DOI) - 29 Jul 2024
Abstract
To enhance the efficient utilization of space resources, it is critical to integrate information from various systems of the space station and formulate scientific and effective methods for planning cargo supplies. Considering the large-scale, multi-objective, complex nonlinear, non-convex, non-differentiable, and mixed-integer characteristics, this [...] Read more.
To enhance the efficient utilization of space resources, it is critical to integrate information from various systems of the space station and formulate scientific and effective methods for planning cargo supplies. Considering the large-scale, multi-objective, complex nonlinear, non-convex, non-differentiable, and mixed-integer characteristics, this study decomposes the space station cargo supply planning problem into a bi-level optimization problem involving cargo manifest and loading layout iterations. A new CILPSO algorithm is proposed to solve this by integrating particle coding, reliability priority, and random generation mechanisms of population initialization, global and local versions of particle updating, and a local search strategy. The experimental results show that the CILPSO algorithm outperforms other algorithms regarding search performance and convergence efficiency. The proposed approach can effectively reduce the cargo supply cost of the space station and improve the output of space science and application achievements. It provides a decision-making basis for the responsible department to develop cargo supply schemes, for the cargo supply systems to submit cargo demands, and for the cargo spaceship system to design loading schemes. This study advances the logistics sustainability of the space station. Full article
(This article belongs to the Special Issue Logistics Optimization and Sustainable Operations Management)
16 pages, 9853 KiB  
Article
The Role of Deformation and Microstructure Evolution on Texture Formation of a TA15 Alloy Subjected to Plane Strain Compression
by Xianxian Wang, Xin Jia, Wenhao Wu, Jun Cheng, Xueni Zhao and Mingjie Shen
Materials 2024, 17(15), 3752; https://doi.org/10.3390/ma17153752 (registering DOI) - 29 Jul 2024
Abstract
In this study, the texture formation mechanism of a TA15 titanium alloy under different plane strain compression conditions was investigated by analyzing the slipping, dynamic recrystallization (DRX) and phase transformation behaviors. The results indicated that the basal texture component basically appears under all [...] Read more.
In this study, the texture formation mechanism of a TA15 titanium alloy under different plane strain compression conditions was investigated by analyzing the slipping, dynamic recrystallization (DRX) and phase transformation behaviors. The results indicated that the basal texture component basically appears under all conditions, since the dominant basal slip makes the C-axis of the α grain rotate to the normal direction (ND, i.e., compression direction), but it has a different degree of deflection. With an increase in deformation amount, temperature or strain rate, {0001} poles first approach the ND and then deviate from it. Such deviation is mainly caused by a change in slip behaviors and phase transformation. At a smaller deformation amount and higher strain rate, inhomogeneous deformation easily causes a basal slip preferentially arising from the grain with a soft orientation, resulting in a weak basal texture component. A greater deformation amount can increase the principal strain ratio, thereby promoting other slip systems to be activated, and a lower temperature can increase the critical shear stress of the basal slip, further causing a dispersive orientation under these conditions. At a higher temperature and a lower strain rate, apparent phase transformation will induce the occurrence of lamellar α whose orientation obeys the Burgers orientation of the β phase, thereby disturbing and weakening the deformation texture. As for DRX, continuous-type (CDRX) is most common under most conditions, whereas CDRX grains have a similar orientation to deformed grains, so DRX has little effect on overall texture. Moreover, the microhardness of samples is basically inversely proportional to the grain size, and it can be significantly improved as lamellar α occurs. In addition, deformed samples with a weaker texture present a higher microhardness due to the smaller Schmidt factors of the activated prism slip at ambient loading. Full article
13 pages, 753 KiB  
Review
Role of Interleukin 6 in Acute Pancreatitis: A Possible Marker for Disease Prognosis
by Alexandra Mititelu, Alina Grama, Marius-Cosmin Colceriu, Gabriel Benţa, Mihaela-Simona Popoviciu and Tudor Lucian Pop
Int. J. Mol. Sci. 2024, 25(15), 8283; https://doi.org/10.3390/ijms25158283 (registering DOI) - 29 Jul 2024
Abstract
Acute pancreatitis (AP) is a significant cause of morbidity, even in children, and is frequently associated with systemic manifestations. There are many cytokines involved in the inflammatory response characteristic of this disease. Interleukin 6 (IL-6) is one of the most important cytokines involved [...] Read more.
Acute pancreatitis (AP) is a significant cause of morbidity, even in children, and is frequently associated with systemic manifestations. There are many cytokines involved in the inflammatory response characteristic of this disease. Interleukin 6 (IL-6) is one of the most important cytokines involved in AP, beginning from cellular injury and continuing to the systemic inflammatory response and distant organ involvement. IL-6 is a multifunctional cytokine that regulates acute-phase response and inflammation. It is produced by various cells and exerts its biological role on many cells through its high-affinity complex receptor. IL-6 has been investigated as a predicting maker for severe forms of AP. Many studies have validated the use of IL-6 serum levels in the first 48 h as a reliable marker for severe evolution and multisystemic involvement. Still, it has not been used in daily practice until now. This review discusses the main binding mechanisms by which IL-6 triggers cellular response and the AP pathogenetic mechanisms in which IL-6 is involved. We then emphasize the promising role of IL-6 as a prognostic marker, which could be added as a routine marker at admission in children with AP. Full article
Show Figures

Figure 1

12 pages, 3490 KiB  
Article
Investigation of Failure Mechanisms in Oil-Lubricated Rolling Bearings under Small Oscillating Movements: Experimental Results, Analysis and Comparison with Theoretical Models
by Fabian Halmos, Sandro Wartzack and Marcel Bartz
Lubricants 2024, 12(8), 271; https://doi.org/10.3390/lubricants12080271 (registering DOI) - 29 Jul 2024
Abstract
Bearing life calculation is a well-researched and standardized topic for rotating operation conditions. However, there is still no validated and standardized calculation for oscillating operation, only different calculation approaches. Due to the increasing number of oscillating rolling bearings, for example, in wind turbines, [...] Read more.
Bearing life calculation is a well-researched and standardized topic for rotating operation conditions. However, there is still no validated and standardized calculation for oscillating operation, only different calculation approaches. Due to the increasing number of oscillating rolling bearings, for example, in wind turbines, industrial robots, or 3D printers, it is becoming more and more important to validate one of these approaches or to formulate a new one. In order to achieve this goal, the damage mechanisms for oscillating operating conditions must first be analyzed in more detail by means of experimental investigations. The open question is whether fatigue is the relevant damage mechanism or whether wear damage, such as fretting corrosion or false brinelling, dominates. The present work therefore shows under which oscillation angle and frequency fatigue occur in oil-lubricated cylindrical roller bearings. Full article
(This article belongs to the Special Issue Tribology in Germany: Latest Research and Development)
10 pages, 5330 KiB  
Article
Direct Observation of Short Large-Amplitude Magnetic Field Structures from Formation to Destruction
by Shi-Chen Bai, Quanqi Shi, Ruilong Guo, Alexander W. Degeling, Hui Zhang, Anmin Tian and Yude Bu
Magnetochemistry 2024, 10(8), 54; https://doi.org/10.3390/magnetochemistry10080054 (registering DOI) - 29 Jul 2024
Abstract
Short large-amplitude magnetic field structures (SLAMSs) are often seen upstream of quasi-parallel shocks. They play vital roles near the quasi-parallel shock, such as decelerating solar wind ions and contributing to the dissipation and reformation of the shock. The formation process of these structures [...] Read more.
Short large-amplitude magnetic field structures (SLAMSs) are often seen upstream of quasi-parallel shocks. They play vital roles near the quasi-parallel shock, such as decelerating solar wind ions and contributing to the dissipation and reformation of the shock. The formation process of these structures has attracted great attention and has long been realized in simulation. However, their formation mechanism is still full of mysteries. Here, using magnetospheric multiscale mission (MMS) observation, we provide direct observations of the SLAMS formation and destruction processes. SLAMS growth is powered by solar wind ions and shock-reflected ions through the ion-ion non-resonant mode. Reconnection occurs between and inside SLAMSs during their growth; however, these cumulative changes in magnetic field topology and the dissipation of the magnetic field energy contribute to the destruction of the SLAMS. These observations shed new light on the dissipation and reformation of the shock both in space physics and astrophysics. Full article
(This article belongs to the Special Issue New Insight into the Magnetosheath)
Show Figures

Figure 1

17 pages, 4204 KiB  
Article
Effects of Patch Properties of Submerged Vegetation on Sediment Scouring and Deposition
by Yantun Song, Ruixiang Liu, Qiong Yang, Jiayi Li, Chongfa Cai, Yifan Feng, Guiyun Huang, Rong Hao, Hao Li, Changhua Zhan and Xiwang Wen
Water 2024, 16(15), 2144; https://doi.org/10.3390/w16152144 (registering DOI) - 29 Jul 2024
Abstract
Vegetation plays a key role in trapping sediments and further controlling pollutants. However, few studies were conducted to clarify the erosion and deposition laws of sediments and the influence factors caused by vegetation patch properties, which is not conducive to the revelation of [...] Read more.
Vegetation plays a key role in trapping sediments and further controlling pollutants. However, few studies were conducted to clarify the erosion and deposition laws of sediments and the influence factors caused by vegetation patch properties, which is not conducive to the revelation of riverbank protection and erosion prevention. Therefore, this study investigated the change in scouring and deposition characteristics around submerged vegetation patches of nine kinds of typical configurations and their influencing factors. Vegetation patches were assembled from three vegetation densities (G/d = 0.83, 1.3, and 1.77, representing dense, medium, and sparse, respectively), and three vegetation patch thicknesses (dn = 170, 400, and 630, representing narrow, usual, and wide, respectively), to measure vegetation patch property influences. Flow velocity, scouring, and deposition characteristics under nine patches were determined by a hydraulic flume experiment, three-dimensional acoustic Doppler velocimetry (ADV), and three-dimensional laser scanner, and then ten geometry and morphology indices were measured and calculated based on the results of laser scanning. Results showed that both vegetation patch density and thickness were positively related to the turbulence kinetic energy (TKE) above the vegetation canopy, and only vegetation patch density was negatively related to the flow velocity above the vegetation canopy. The relation between the product of density and vegetation patch thickness and erosion area in planform (EA) showed a power function (R2 = 0.644). Both density and vegetation patch thickness determined the scouring degree, but deposition location and amount did not rely on each one simply. On average, medium density showed the smallest maximum erosion length (MEL), EA, deposition area in planform (DA), and average deposition length (ADL) and a minimum of the above parameters also occurred at narrow vegetation patch thickness. The shape factor of the erosion volume (SFEV), the shape factor of the deposition volume (SFDV), ADL, and MEL of medium density and narrow thickness vegetation patch (G/d = 1.3, dn = 170) were significantly smaller than that of other types of patches. DA and equivalent prismatic erosion depth on the erosion area (EPED) were significantly linearly related (R2 = 0.766). Consequently, most sediment was deposited close to the vegetation patch edge. It is suggested that vegetation patch thickness and density should be given to control sediment transport. In particular, natural vegetation growth changes vegetation patch density and then alters vegetation patch thickness. Management and repair need to be first considered. The results of this study shed light on riparian zone recovery and vegetation filter strip mechanism. Full article
(This article belongs to the Special Issue Monitoring and Control of Soil and Water Erosion)
17 pages, 7117 KiB  
Article
Computational Fluid Dynamics-Based Optimisation of High-Speed and High-Performance Bearingless Cross-Flow Fan Designs
by Ivana Bagaric, Daniel Steinert, Thomas Nussbaumer and Johann Walter Kolar
Machines 2024, 12(8), 513; https://doi.org/10.3390/machines12080513 (registering DOI) - 29 Jul 2024
Abstract
To enhance the fluid dynamic performance of bearingless cross-flow fans (CFFs), this paper presents a CFD-based optimisation of both rotor and static casing wall modifications. High-performance CFFs are essential in industrial applications such as highly specialised laser modules in the semiconductor industry. The [...] Read more.
To enhance the fluid dynamic performance of bearingless cross-flow fans (CFFs), this paper presents a CFD-based optimisation of both rotor and static casing wall modifications. High-performance CFFs are essential in industrial applications such as highly specialised laser modules in the semiconductor industry. The goal for the investigated rotor modifications is to enhance the CFF’s mechanical stiffness by integrating reinforcing shafts, which is expected to increase the limiting bending resonance frequency, thereby permitting higher rotational speeds. Additionally, the effects of these rotor modifications on the fluid dynamic performance are evaluated. For the casing wall modifications, the goal is to optimise design parameters to reduce losses. Optimised bearingless CFFs benefit semiconductor manufacturing by improving the gas circulation system within the laser module. Higher CFF performance is a key enabler for enhancing laser performance, increasing the scanning speed of lithography machines, and ultimately improving chip throughput. Several numerical simulations are conducted and validated using various commissioned prototypes, each measuring 600mm in length and 60mm in outer diameter. The results reveal that integrating a central shaft increases the rotational speed by up to 42%, from 5000rpm to 7100rpm, due to enhanced CFF stiffness. However, the loss in fluid flow amounts to 61% and outweighs the gain in rotational speed. Optimising the casing walls results in a 22% increase in maximum fluid flow reaching 1800m3/h at 5000rpm. It is demonstrated that the performance of bearingless CFFs can be enhanced by modifying the geometry of the casing walls, without requiring changes to the CFF rotor or bearingless motors. Full article
(This article belongs to the Section Turbomachinery)
16 pages, 453 KiB  
Article
The Influence of a Reflective Identity Leadership Intervention on Perceived Identity Leadership, Social Identity, and Psychological Safety in Cricket
by Adam Hoult, Paul Mansell and Matthew J. Slater
Behav. Sci. 2024, 14(8), 655; https://doi.org/10.3390/bs14080655 (registering DOI) - 29 Jul 2024
Abstract
The purpose of this study was to investigate the influence of an identity leadership-framed reflective practice intervention on perceptions of leadership, social identity, and psychological safety in cricket. Building on previous evidence, an eight-week design included three intervention group coaches and their athletes [...] Read more.
The purpose of this study was to investigate the influence of an identity leadership-framed reflective practice intervention on perceptions of leadership, social identity, and psychological safety in cricket. Building on previous evidence, an eight-week design included three intervention group coaches and their athletes (n = 32) and three control group coaches and their athletes (n = 34). Measurements of perceived coach identity leadership, social identity, and psychological safety were completed by cricket athletes at week 0 and week 8 for both groups. Intervention group coaches completed three identity leadership-framed reflective tasks in weeks one, three, and five, while the control group coaches continued their regular practices. Controlling for baseline scores, our analysis indicated that compared to the control group, the intervention group athletes reported significantly greater coach identity leadership behaviours, social identity, and psychological safety following the intervention. Social validation data highlighted shared identity, relationships, and learning as potential mechanisms for the positive results seen. Full article
32 pages, 8554 KiB  
Review
Advancements in Flexible Nanogenerators: Polyvinylidene Fluoride-Based Nanofiber Utilizing Electrospinning
by Jin-Uk Yoo, Dong-Hyun Kim, Tae-Min Choi, Eun-Su Jung, Hwa-Rim Lee, Chae-Yeon Lee and Sung-Gyu Pyo
Molecules 2024, 29(15), 3576; https://doi.org/10.3390/molecules29153576 (registering DOI) - 29 Jul 2024
Abstract
With the gradual miniaturization of electronic devices and the increasing interest in wearable devices, flexible microelectronics is being actively studied. Owing to the limitations of existing battery systems corresponding to miniaturization, there is a need for flexible alternative power sources. Accordingly, energy harvesting [...] Read more.
With the gradual miniaturization of electronic devices and the increasing interest in wearable devices, flexible microelectronics is being actively studied. Owing to the limitations of existing battery systems corresponding to miniaturization, there is a need for flexible alternative power sources. Accordingly, energy harvesting from surrounding environmental systems using fluorinated polymers with piezoelectric properties has received significant attention. Among them, polyvinylidene fluoride (PVDF) and PVDF co-polymers have been researched as representative organo-piezoelectric materials because of their excellent piezoelectric properties, mechanical flexibility, thermal stability, and light weight. Electrospinning is an effective method for fabricating nanofibrous meshes with superior surface-to-volume ratios from polymer solutions. During electrospinning, the polymer solution is subjected to mechanical stretching and in situ poling, corresponding to an external strong electric field. Consequently, the fraction of the piezoelectric β-phase in PVDF can be improved by the electrospinning process, and enhanced harvesting output can be realized. An overview of electrospun piezoelectric fibrous meshes composed of PVDF or PVDF co-polymers to be utilized is presented, and the recent progress in enhancement methods for harvesting output, such as fiber alignment, doping with various nanofillers, and coaxial fibers, is discussed. Additionally, other applications of these meshes as sensors are reviewed. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

23 pages, 526 KiB  
Article
A Study of Spatial Spillovers from Fiscal Decentralization on the Efficiency of Green Economy—And the Moderating Role of Financial Decentralization
by Haonan Chen and Xiaoyang Yang
Sustainability 2024, 16(15), 6487; https://doi.org/10.3390/su16156487 (registering DOI) - 29 Jul 2024
Abstract
A robust fiscal and financial system constitutes a fundamental pillar of national governance. This paper investigates the spatial correlation between fiscal decentralization, financial decentralization, and local green economic efficiency using panel data from 285 cities in China. The findings reveal several key insights. [...] Read more.
A robust fiscal and financial system constitutes a fundamental pillar of national governance. This paper investigates the spatial correlation between fiscal decentralization, financial decentralization, and local green economic efficiency using panel data from 285 cities in China. The findings reveal several key insights. First, fiscal decentralization hampers local green economic efficiency enhancement but exerts a “warning effect” on neighboring regions. In contrast, financial decentralization promotes local green economic efficiency and triggers a “clustering effect” on neighboring areas, indicating an agglomeration impact. Second, synergies from financial decentralization on local green economic efficiency are not immediately apparent, while they mitigate the enhancement of neighboring regions’ green economic efficiency. Third, the maturity of the financial market system and the completeness of infrastructure positively influence the impact of financial decentralization on green economic efficiency. Fourth, fiscal and financial decentralization significantly impacts green economic efficiency in the short term, yet their long-term effects are negligible. Consequently, this paper recommends enhancing infrastructure development and instituting a dynamic mechanism for adjusting fiscal and financial decentralization. Based on the aforementioned findings, this paper provides corresponding countermeasure recommendations. These recommendations not only contribute academically to the study of green efficiency from the perspectives of fiscal and financial decentralization but also offer a Chinese model for other developing countries seeking to balance fiscal, financial, and green sustainable development. Full article
21 pages, 1602 KiB  
Review
Molecular Basis of Cardiomyopathies in Type 2 Diabetes
by Silvia Giardinelli, Giovanni Meliota, Donatella Mentino, Gabriele D’Amato and Maria Felicia Faienza
Int. J. Mol. Sci. 2024, 25(15), 8280; https://doi.org/10.3390/ijms25158280 (registering DOI) - 29 Jul 2024
Abstract
Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical [...] Read more.
Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Diabetic Cardiomyopathy)
Show Figures

Figure 1

Back to TopTop