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Abstract: Short large-amplitude magnetic field structures (SLAMSs) are often seen upstream of
quasi-parallel shocks. They play vital roles near the quasi-parallel shock, such as decelerating solar
wind ions and contributing to the dissipation and reformation of the shock. The formation process of
these structures has attracted great attention and has long been realized in simulation. However, their
formation mechanism is still full of mysteries. Here, using magnetospheric multiscale mission (MMS)
observation, we provide direct observations of the SLAMS formation and destruction processes.
SLAMS growth is powered by solar wind ions and shock-reflected ions through the ion-ion non-
resonant mode. Reconnection occurs between and inside SLAMSs during their growth; however,
these cumulative changes in magnetic field topology and the dissipation of the magnetic field energy
contribute to the destruction of the SLAMS. These observations shed new light on the dissipation
and reformation of the shock both in space physics and astrophysics.

Keywords: bow shock; short large-amplitude magnetic field structures ion-ion two stream instability;
magnetic reconnection

1. Introduction

Collisionless shocks are commonly observed in space physics [1–3]. When the plasma’s
kinetic energy exceeds the shock’s dissipation limit, a portion is reflected upstream, exciting
different ion-ion two-stream instabilities [4]. This interaction generates ultra-low frequency
(ULF) waves and leads to the formation of different kinds of non-linear compressional
magnetic structures [5–8].

SLAMSs stand out among these structures and play crucial roles near the shock [9–11].
They exhibit substantial magnetic field enhancements (δB/B0 > 2 [12], where δB is the
magnetic field enhancement and B0 is the background magnetic field). Similar to the
quasi-perpendicular shocks, SLAMSs decelerate, thermalize, and reflect solar wind ions
in the foreshock region [13–15]. In addition, SLAMSs contribute to electron acceleration
and generation of whistler-mode waves [16,17], shock dissipation and reformation [18,19],
magnetic reconnection [20–27], and energy cascades within the turbulence at the quasi-
parallel shock [28], leading to the downstream generation of a magnetosheath high-speed
jet [29–31].

Based on theoretical and numerical studies of the evolution of SLAMSs [4,32], SLAMSs
can be generated by different modes of ion-ion two-stream instabilities: the ion-ion
right-hand non-resonant mode [33,34] and the ion-ion right-hand and left-hand resonant
mode [35,36]. The distinctions among these modes lie in the wave period, polarization, and
propagation direction in the plasma rest frame. SLAMSs undergo significant steepening
near the bow shock [37,38]. Their convection speed (relative to the bow shock) decreases
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with increasing amplitude and decreasing distance to the bow shock [12,39]. SLAMS forma-
tion has been long realized in simulation [6,40,41]. Research using hybrid simulations has
found that SLAMSs can be created by electromagnetic ion/ion beam instabilities [7,8,34].
Meanwhile, particle-in-cell (PIC) simulations suggest that shocklets and SLAMSs can
arise from a nonlinear interaction between gradients in ion densities and the ULF wave
field [40,41]. However, cluster observation reveals fundamentally different properties
between SLAMSs and ULF-related structures [10,11]. By comparing the analytical approxi-
mations [4,34] with wind observation, Wilson et al. [15] argue that the ion-ion instability,
while reaching saturation, is insufficient to account for the strong magnetic fields observed
in SLAMSs. Recent findings from the magnetospheric multiscale (MMS) mission shed light
on this phenomenon. Chen et al. [42] suggests that the anomalous resonance between solar
wind ions and ULF waves could play a pivotal role in the magnetic amplification from
quasi-sinusoidal waves to SLAMSs.

The formation mechanism of SLAMSs is still full of mysteries. However, direct in-
situ satellite observation following the rise and fall of individual SLAMSs has not been
reported in the literature. In this paper, using unprecedented MMS observation [43–47]
when MMS 1–4 are positioned in a single line, we provide direct observations of the rise
and fall of SLAMSs.

2. Data

The data used in this study is obtained from the MMS1–4 satellite burst-mode observa-
tion. The solar wind data is obtained from the OMNI data set. Since the ion moment data
from MMS in the solar wind might not be so reliable, the drift bi-Maxwellian distribution
is used to fit the observed ion distribution using the equation shown below.
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where Vth and Vdri f t denote the ion thermal speed and ion drift speed, respectively. ∥ and
⊥ denote the velocity parallel and perpendicular to the local magnetic field.

3. Results

Figure 1 shows four satellite MMS burst-mode observations on 30 January 2019, from
14:47:43.5 to 14:47:55 UT. The MMS constellation is positioned near the quasi-parallel
bow shock (Figure 1i, θBN = 20

◦
and MA = 14.8). θBN represents the angle between the

interplanetary magnetic field vector (OMNI data set: [1.81, 1.16, 0.77] nT in GSM) and
the bow shock normal (determined via a model [48]). MA is the solar wind Alfvén Mach
number. The four MMS spacecraft align in a line. After MMS3 encountered SLAMSs first,
MMS4 followed, then MMS1, and finally MMS2. Figure 1 shows their encounters from
top to bottom in this order. To display the SLAMSs evolution clearly, the four satellite
observations are time-shifted with respect to the MMS3 time series. The lag time (∆t = 2.1 s)
between MMS3 and MMS4 is determined based on the correlation coefficient (cc = 0.88
when ∆t = 2.1 s) between the profile of the magnetic field from MMS3 and time shifted
MMS4 observation. For MMS1 and MMS2, the lag time is determined by the distance to
MMS3 and the propagation velocity of the SLAMSs. The propagation velocity of these
SLAMSs in GSM coordinates is obtained [−168.0, 29.8, −48.5] km/s using the lag time and
satellite separation between MMS3 and MMS4.
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Figure 1. Magnetic field and reduced ion distribution as a function of Vx_GSM observed by (a,b) 
MMS3 (green bar on the left), (c,d) MMS4 (cyan bar on the left), (e,f), MMS1 (black bar on the left), 
and (g,h) MMS2 (orange bar on the left). The bulk velocity of the solar wind and reflected ions (black 
lines) are overlaid on the reduced ion distribution in (b,d,f). X/Y/Z component in GSM coordinate 
system is represented by blue/green/red curve. Burst-mode observation of MMS1, MMS2, and 
MMS4 are time-shifted to MMS3. The time interval of the SLAMSs evolution is highlighted by yel-
low shaded region. (i) The position of MMS3 (green dots), the interplanetary magnetic field (blue 
arrow), the normal direction of the bow shock (red line), bow shock (solid curve), and magnetopause 
(dashed line) obtained from the models [48] are shown in the GSM X-Y plane. 

Figure 1b shows that MMS3 detects solar wind ion beams and the ion beams reflected 
by the bow shock or SLAMSs. In each case, their bulk velocity Vx is overlaid on the re-
duced ion distribution in the plot. Later observations by MMS4 and MMS1 (Figure 1d,f), 
show that both populations are thermalized presumably due to the ULF waves generated 
by the ion-ion two-stream instability, eventually merging into one population observed 
by MMS2 (Figure 1h). Simultaneously, SLAMS 1 (14:47:46.5 to 14:47:49 UT) and SLAMS 2 
(14:47:51.5 to 14:47:53 UT) experience intense steepening based on the comparison of 
MMS3 and MMS1 observation, identified by enhanced magnetic fields (SLAMS 1: δB/B0 = 
3.69, B0 = 3.91 nT; SLAMS 2: δB/B0 =2.90, B0 = 5.25 nT) and solar wind ion deceleration 
(Figure 1d, f, at 14:47:47.4 UT for SLAMS 1 and 14:47:51.4 UT for SLAMS 2).  

Between these two SLAMSs, the rise and fall of an additional SLAMS, (labelled 
SLAMS 3, 14:47:49.9 to 14:47:51.4 UT, highlighted in the yellow shaded region) is observed 
by the MMS constellation, starting as the leading edge of SLAMS 2 in MMS3, evolving 
into a steepened ULF wave (δB/B0 = 1.79, B0 = 3.91 nT) observed by MMS4 after approxi-
mately two seconds, becoming a SLAMS (δB/B0 = 2.81, B0 = 3.91 nT) observed by MMS1 
after three seconds, and eventually breaking up rapidly as observed by MMS2.  

Figure 1. Magnetic field and reduced ion distribution as a function of Vx_GSM observed by
(a,b) MMS3 (green bar on the left), (c,d) MMS4 (cyan bar on the left), (e,f), MMS1 (black bar on
the left), and (g,h) MMS2 (orange bar on the left). The bulk velocity of the solar wind and reflected
ions (black lines) are overlaid on the reduced ion distribution in (b,d,f). X/Y/Z component in GSM
coordinate system is represented by blue/green/red curve. Burst-mode observation of MMS1, MMS2,
and MMS4 are time-shifted to MMS3. The time interval of the SLAMSs evolution is highlighted by
yellow shaded region. (i) The position of MMS3 (green dots), the interplanetary magnetic field (blue
arrow), the normal direction of the bow shock (red line), bow shock (solid curve), and magnetopause
(dashed line) obtained from the models [48] are shown in the GSM X-Y plane.

Figure 1b shows that MMS3 detects solar wind ion beams and the ion beams reflected
by the bow shock or SLAMSs. In each case, their bulk velocity Vx is overlaid on the reduced
ion distribution in the plot. Later observations by MMS4 and MMS1 (Figure 1d,f), show
that both populations are thermalized presumably due to the ULF waves generated by the
ion-ion two-stream instability, eventually merging into one population observed by MMS2
(Figure 1h). Simultaneously, SLAMS 1 (14:47:46.5 to 14:47:49 UT) and SLAMS 2 (14:47:51.5
to 14:47:53 UT) experience intense steepening based on the comparison of MMS3 and MMS1
observation, identified by enhanced magnetic fields (SLAMS 1: δB/B0 = 3.69, B0 = 3.91 nT;
SLAMS 2: δB/B0 =2.90, B0 = 5.25 nT) and solar wind ion deceleration (Figure 1d, f, at
14:47:47.4 UT for SLAMS 1 and 14:47:51.4 UT for SLAMS 2).

Between these two SLAMSs, the rise and fall of an additional SLAMS, (labelled SLAMS
3, 14:47:49.9 to 14:47:51.4 UT, highlighted in the yellow shaded region) is observed by the
MMS constellation, starting as the leading edge of SLAMS 2 in MMS3, evolving into a
steepened ULF wave (δB/B0 = 1.79, B0 = 3.91 nT) observed by MMS4 after approximately
two seconds, becoming a SLAMS (δB/B0 = 2.81, B0 = 3.91 nT) observed by MMS1 after
three seconds, and eventually breaking up rapidly as observed by MMS2.
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Figure 2 shows the wavelet analysis of the magnetic field observed by four MMS
satellites during the time periods of SLAMS 3 and SLAMS 2 (identified by the enhanced
magnetic field and density in Figure 2). The wavelet analysis shows that the wave fre-
quency with maximum amplitude fmax ( fmax = 0.65 Hz = 2.83 fci black dashed lines in
Figure 2, ion gyro-frequency fci = 0.23 Hz ) falls within the expected ULF wave range
generated by the non-resonant mode. In the spacecraft reference frame, the ULF wave po-
larization, analyzed through the hodograms of the magnetic field in the L-M plane (shown
in Figure 2j–l), consistently exhibits right-hand circular polarization during the SLAMS
3 evolution. The L-M-N coordinates of the SLAMSs are determined by the minimum
variance analysis of the magnetic field [49,50]. During the steepening, ULF waves with
frequencies several times the fmax are generated ( f ∼ 1.4, 2.1 Hz) and superimposed on
the original ULF wave (Figure 2 e,g within SLAMS 3 and SLAMS 2). These waves, having
similar amplitudes and phase velocities to the original ULF waves, are harmonic sidebands.
They, in turn, generate their own harmonic sidebands during the steepening process [28,51].
Subsequently, SLAMS 3 forms due to the steepening of these ULF waves. During the
MMS2 observation, although strong ULF waves near the fmax persist (Figure 2i), the har-
monic sidebands between fmax and lower-hybrid frequencies (black and white dashed lines
in Figure 2) are weaker (Figure 2f) while the wave below fmax becomes stronger. These
observational features are consistent with the evolution of SLAMSs generated using the
ion-ion non-resonant mode in simulations [34]. The SLAMSs generated through the ion-ion
non-resonant mode are subject to a parameter decay and tend to form a state of condensate
where the turbulence becomes nearly monochromatic [34].
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Figure 2. (a) The magnitude of magnetic field observed by MMS1 (black curve), MMS2 (orange
curve), MMS3 (green curve), and MMS4 (cyan curve); plasma density (red/black/blue curves for
reflected ion/ion/electron, electron data of MMS4 are not available) and wavelet power spectra of
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the magnetic fields observed by (b,c) MMS3, (d,e) MMS4, (f,g), MMS1, and (h,i) MMS2. Burst-mode
observation of MMS1, MMS2, and MMS4 are time-shifted to MMS3. The horizontal black and white
dashed lines in wavelet power spectra indicate the fmax and the lower-hybrid frequency flh. The black
bars on the top of (a) indicate the interval of magnetic reconnection. The hodogram of the magnetic
field in the L-M plane observed by (j) MMS3, (k) MMS4, and (l) MMS1. The start and end points in
(j,k) are marked by blue and red dots, respectively. The MMS3/4/1/2 observation are marked by
green/cyan/black/orange bars in the left and (j,k).

In addition, key parameters determining the modes of the ion-ion two-stream instability
are the density ratio and relative drift between the solar wind and reflected ions. The velocity
and density of the two ion populations (nrf/nsw = 0.31 and ∆V = 339.53 km/s~8.0 VAlfvén from
MMS observation, nrf/nsw = 0.28 and ∆V = 232.59 km/s~5.5 VAlfvén from bi-Maxwellian
fitting, VAlfvén = 42.41 km/s) reveal favorable conditions for the excitation of the ion-ion
right-hand non-resonant mode (modest density ratio and high relative drift ∆V ≫ VA, see
details in Table 2 from [4]). The phase velocity of the ULF wave (Vph_x = ω/kx − 280 km/s)
and the wave vector k (kdi = 0.36, ion inertial length di = 116.84 km) are determined
based on the band-pass filtered magnetic field B and electric field E (0.3~2 Hz) through
linearized Faraday’s law (k × E = ωB). The ω is determined based on the fmax in wavelet
analysis Figure 2e. Therefore, the ULF wave propagates toward Earth in the solar wind
reference frame (Vsw_x = −251 ∼ −240 km/s in the spacecraft reference frame based on
drift bi-Maxwellian fitting and MMS observation). Therefore, the ULF wave is Earthward,
propagating in the solar wind rest frame generated through the ion-ion non-resonant mode.

To confirm the generation mechanism, we also used the linear dispersion solver
BO [52] to solve the dispersion relation. The input plasma parameters are obtained via
drift bi-Maxwellian fitting of the ion distribution (as shown in Figure 3). We only used
the fitting results of MMS3 observations during the SLAMS 3 interval (yellow shaded
area in Figure 1), which is the only satellite that observed ULF waves in the linear state.
The detail parameters can be found in Table 1. Corresponding to input plasma param-
eters, only the ion-ion non-resonant mode has a positive growth rate. The dispersion
relation of the ion-ion non-resonant mode is presented in Figure 4, which is consistent
with the MMS observation. We also compare the enhanced magnetic fields (δB/B0) with
the saturation amplitude of the ion-ion non-resonant mode based on the analytical ap-
proximations [34] from δ B/B0 ∼ (n_r f /n_sw)̂(1/2) (V_dri f t_r f /V_th_SW) using the
parameters in Table 1. The observed enhancement is lower than the saturation amplitude
as shown in Table 1, indicating that the ion-ion non-resonant mode is sufficient to drive the
formation of SLAMS 3 observed by MMS.

Numerical simulations in previous studies have shown that the ion-ion non-resonant
mode can generate current sheets inside SLAMSs and trigger magnetic reconnection [20,21].
Here, reconnection processes are identified by MMS1 (Figure 5) not only inside SLAMS 2
but also between SLAMS 3 and SLAMS 2. The magnetic reconnection may contribute
to the destruction of the SLAMSs. Magnetic reconnection is characterized by high-speed
electron flow (|VL| > 100 km/s, |VM| > 300 km/s, VAlfvén = 36.35 km/s) and an intense
reconnection electric field along the M direction, hall electric field along the N direction,
and energy conversion at the current sheet (Figure 5). There is no significant electron
heating (Figure 5b) and ion jet while crossing the current sheet (Figure 5d), and the current
sheet thickness is below the ion inertia length (green bars in Figure 5c). These observational
features are consistent with the electron-only reconnection process, while ions do not
participate in these magnetic reconnection processes [53,54]. However, as magnetic field
topology changes during reconnection, local conditions are no longer suitable for the
nonlinear evolution of the ion-ion non-resonant mode, resulting in a reduction in the free
energy of harmonic sidebands. In addition, the stored energy in the magnetic field is
dissipated during reconnection, which may also hasten the destruction of SLAMS 2 and
SLAMS 3 observed by the MMS.
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Table 1. Drift bi-Maxwellian fitting parameters and the saturation amplitude of the ion-ion non-
resonate mode.

Satellite Ion Density
(1/cm−3)

Vth∥
(km/s)

Vth⊥
(km/s)

Vdrift∥
(km/s)

Vdrift⊥
(km/s)

δB/B0 from
MMS δB/B0

MMS 3
Solar wind ions (SW) 0.7 30 50 200 190

/ 0.93Reflected ions (rf) 0.2 120 40 100 −20
Background ions 0.02 20 20 20 −20

MMS 4
Solar wind ions 0.7 70 40 −200 180

1.79 1.84Reflected ions 1.2 80 120 80 80
Background ions 0.1 30 30 40 0

MMS 1

Solar wind ions 0.7 60 40 −160 10

2.81 3.21
Reflected ions 1.2 125 100 −25 175

Background ions 0.12 25 25 20 −25
2.5 175 120 −105 10
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Figure 5. MMS1 observation of current sheets in the LMN coordinate system between SLAMS 3 and
SLAMS 2 (left panels)/inside SLAMS 2 (right panels): (a) electron density, (b) electron temperature,
red/blue curves for parallel/perpendicular temperature (c) magnetic field, (d) electron (solid curve)
and ion (dashed curve) velocity, (e) current density obtained from the FPI observation, (f) electric
field, and (g) the energy dissipation of perpendicular (blue curves) and parallel components (red
curves) and the sum of J·E’. L/M/N components are represented by red/blue/black curves. The
detailed information of L-M-N coordinates in GSM coordinates are shown on the top of this figure.
The ion inertial length is indicated by green bars in (c).

4. Conclusions

Based on MMS constellation observations, we observed the entire rise and fall of
SLAMSs for the first time. The wave properties and instability analysis indicate SLAMSs
steepening, driven by the ion-ion right-hand non-resonant mode. Non-linearly generated
harmonic sidebands locally superimpose, while the thermalized solar wind and reflected
ions provide free energy for the enhancement of the magnetic field.

As the steepening progresses, the gradient length of SLAMSs shortens [55], demag-
netizing ions while electrons remain magnetized. This triggers the modified two-stream
instability [56–59], generating waves near the lower-hybrid frequency (Figure 2e,g). Subse-
quently, dissipation and dispersion occur, which limit or balance the nonlinear process and
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prevent the destruction of SLAMSs. However, with an increase in the anti-parallel compo-
nent of the magnetic field and a decrease in the thickness of the current sheet generated
inside the SLAMS, magnetic reconnection occurs during steepening [25]. This alters the
field line topology, introducing dissipation contributing to the destruction of SLAMS 3 and
SLAMS 2, as recorded by MMS1 and MMS2.

In summary, this study investigates the rise and fall of SLAMSs, which reflects the
formation and dissipation processes of shock waves to some extent and sheds new light on
the energy conversion near the shock and shock evolution across the universe. However,
the SLAMS evolution in this case is under a high Alfvén Mach number solar wind condition
(MA = 14.8). Statistical analysis is required to determine whether the evolution process of
SLAMSs varies under various solar wind conditions.
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