Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = laminin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5882 KiB  
Article
Perlecan: An Islet Basement Membrane Protein with Protective Anti-Inflammatory Characteristics
by Daniel Brandhorst, Heide Brandhorst, Samuel Acreman and Paul R. V. Johnson
Bioengineering 2024, 11(8), 828; https://doi.org/10.3390/bioengineering11080828 - 13 Aug 2024
Viewed by 516
Abstract
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices [...] Read more.
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of seven different organ donors were cultured for 4–5 days at 2% oxygen in plain CMRL (sham-treated controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture, islets were characterized regarding survival, in vitro function and production of chemokines and reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet survival prior to and after transplantation. Its anti-inflammatory potency should be considered to optimise encapsulation and scaffolds to protect isolated human islets post-transplant. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

17 pages, 4705 KiB  
Article
TNF Induces Laminin-332-Encoding Genes in Endothelial Cells and Laminin-332 Promotes an Atherogenic Endothelial Phenotype
by Assim Hayderi, Mulugeta Melkie Zegeye, Sare Meydan, Allan Sirsjö, Ashok Kumar Kumawat and Liza U. Ljungberg
Int. J. Mol. Sci. 2024, 25(16), 8699; https://doi.org/10.3390/ijms25168699 - 9 Aug 2024
Viewed by 431
Abstract
Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis [...] Read more.
Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells’ behavior. We also evaluated the expression of LN332-encoding genes in human carotid atherosclerotic plaques. Our findings demonstrate that TNF induces upregulation of LAMB3 and LAMC2, which, along with LAMA3, encode the LN332 isoform. Endothelial cells cultured on recombinant LN332 exhibit decreased claudin-5 expression and display a loosely connected phenotype, with an elevated expression of chemokines and leukocyte adhesion molecules, enhancing their attractiveness and adhesion to leukocytes in vitro. Furthermore, LAMB3 and LAMC2 are upregulated in human carotid plaques and show a positive correlation with TNF expression. In summary, TNF stimulates the expression of LN332-encoding genes in human endothelial cells and LN332 promotes an endothelial phenotype characterized by compromised junctional integrity and increased leukocyte interaction. These findings highlight the importance of basement membrane proteins for endothelial integrity and the potential role of LN332 in atherosclerosis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1551 KiB  
Article
Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice
by Pedro F. Barbosa, Diego S. Gonçalves, Lívia S. Ramos, Thaís P. Mello, Lys A. Braga-Silva, Marcia R. Pinto, Carlos P. Taborda, Marta H. Branquinha and André L. S. Santos
Infect. Dis. Rep. 2024, 16(4), 572-586; https://doi.org/10.3390/idr16040043 - 28 Jun 2024
Viewed by 570
Abstract
The secreted aspartic peptidases (Saps) of Candida albicans play crucial roles in various steps of fungal–host interactions. Using a flow cytometry approach, this study investigated the expression of Saps1–3 antigens after (i) incubation with soluble proteins, (ii) interaction with mammalian cells, and (iii) [...] Read more.
The secreted aspartic peptidases (Saps) of Candida albicans play crucial roles in various steps of fungal–host interactions. Using a flow cytometry approach, this study investigated the expression of Saps1–3 antigens after (i) incubation with soluble proteins, (ii) interaction with mammalian cells, and (iii) infection in immunosuppressed BALB/c mice. Supplementation strategies involving increasing concentrations of bovine serum albumin (BSA) added to yeast carbon base (YCB) medium as the sole nitrogenous source revealed a positive and significant correlation between BSA concentration and both the growth rate and the percentage of fluorescent cells (%FC) labeled with anti-Saps1–3 antibodies. Supplementing the YCB medium with various soluble proteins significantly modulated the expression of Saps1–3 antigens in C. albicans. Specifically, immunoglobulin G, gelatin, and total bovine/human sera significantly reduced the %FC, while laminin, human serum albumin, fibrinogen, hemoglobin, and mucin considerably increased the %FC compared to BSA. Furthermore, co-cultivating C. albicans yeasts with either live epithelial or macrophage cells induced the expression of Saps1–3 antigens in 78% (mean fluorescence intensity [MFI] = 152.1) and 82.7% (MFI = 178.2) of the yeast cells, respectively, compared to BSA, which resulted in 29.3% fluorescent cells (MFI = 50.9). Lastly, the yeasts recovered from the kidneys of infected immunosuppressed mice demonstrated a 4.8-fold increase in the production of Saps1–3 antigens (MFI = 246.6) compared to BSA, with 95.5% of yeasts labeled with anti-Saps1–3 antibodies. Altogether, these results demonstrated the positive modulation of Saps’ expression in C. albicans by various key host proteinaceous components, as well as by in vitro and in vivo host challenges. Full article
(This article belongs to the Special Issue Emerging Infections: Epidemiology, Diagnostics, Clinics and Evolution)
Show Figures

Figure 1

17 pages, 6061 KiB  
Article
Pharmacological Blockade of the Adenosine A2B Receptor Is Protective of Proteinuria in Diabetic Rats, through Affecting Focal Adhesion Kinase Activation and the Adhesion Dynamics of Podocytes
by Pablo Mendoza-Soto, Claudia Jara, Ángelo Torres-Arévalo, Carlos Oyarzún, Gonzalo A. Mardones, Claudia Quezada-Monrás and Rody San Martín
Cells 2024, 13(10), 846; https://doi.org/10.3390/cells13100846 - 16 May 2024
Cited by 1 | Viewed by 751
Abstract
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We [...] Read more.
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

13 pages, 11220 KiB  
Article
Leptin Promotes Vasculogenic Mimicry in Breast Cancer Cells by Regulating Aquaporin-1
by Deok-Soo Han and Eun-Ok Lee
Int. J. Mol. Sci. 2024, 25(10), 5215; https://doi.org/10.3390/ijms25105215 - 10 May 2024
Viewed by 977
Abstract
Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer [...] Read more.
Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM. Full article
(This article belongs to the Special Issue Cancer Biomarkers and Bioinformatics)
Show Figures

Figure 1

27 pages, 8359 KiB  
Review
The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression
by Alexandra Buruiană, Bogdan-Alexandru Gheban, Ioana-Andreea Gheban-Roșca, Carmen Georgiu, Doința Crișan and Maria Crișan
Cancers 2024, 16(9), 1727; https://doi.org/10.3390/cancers16091727 - 29 Apr 2024
Cited by 2 | Viewed by 1661
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its [...] Read more.
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM—specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens—promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME’s potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC. Full article
(This article belongs to the Special Issue Tumor-Associated Microenvironments and Inflammation)
Show Figures

Figure 1

12 pages, 2448 KiB  
Article
Production of Plant-Based, Film-Type Scaffolds Using Alginate and Corn Starch for the Culture of Bovine Myoblasts
by Jun-Yeong Lee, Jihad Kamel, Chandra-Jit Yadav, Usha Yadav, Sadia Afrin, Yu-Mi Son, So-Yeon Won, Sung-Soo Han and Kyung-Mee Park
Foods 2024, 13(9), 1358; https://doi.org/10.3390/foods13091358 - 28 Apr 2024
Viewed by 1777
Abstract
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation [...] Read more.
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production. Full article
(This article belongs to the Special Issue Advances in Cultured Meat Science and Technology)
Show Figures

Figure 1

19 pages, 8165 KiB  
Article
Focal Traumatic Brain Injury Impairs the Integrity of the Basement Membrane of Hindlimb Muscle Fibers Revealed by Extracellular Matrix Immunoreactivity
by Mette Albæk Kristensen, Karen Kalhøj Rich, Tobias Christian Mogensen, Andreas Malmquist Damsgaard Jensen, Åsa Fex Svenningsen and Mengliang Zhang
Life 2024, 14(5), 543; https://doi.org/10.3390/life14050543 - 24 Apr 2024
Viewed by 816
Abstract
Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development [...] Read more.
Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 3248 KiB  
Article
Silencing of Sporothrix schenckii GP70 Reveals Its Contribution to Fungal Adhesion, Virulence, and the Host–Fungus Interaction
by Luz A. López-Ramírez, José A. Martínez-Álvarez, Iván Martínez-Duncker, Nancy E. Lozoya-Pérez and Héctor M. Mora-Montes
J. Fungi 2024, 10(5), 302; https://doi.org/10.3390/jof10050302 - 23 Apr 2024
Viewed by 1448
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall [...] Read more.
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix–host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in β-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1β and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii–host interaction. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

18 pages, 6257 KiB  
Article
Laminin Alpha 2 Enhances the Protective Effect of Exosomes on Human iPSC-Derived Cardiomyocytes in an In Vitro Ischemia-Reoxygenation Model
by Fernanda C. P. Mesquita, Madelyn King, Patricia Luciana da Costa Lopez, Shiyanth Thevasagayampillai, Preethi H. Gunaratne and Camila Hochman-Mendez
Int. J. Mol. Sci. 2024, 25(7), 3773; https://doi.org/10.3390/ijms25073773 - 28 Mar 2024
Cited by 1 | Viewed by 1405
Abstract
Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is [...] Read more.
Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is an important extracellular matrix protein of the heart. Here, we generated MSC-derived exosomes cultivated under LAMA2 coating to enhance human-induced pluripotent stem cell (hiPSC)-cardiomyocyte recognition of LAMA2-EXOs, thus, increasing cell protection during ischemia reoxygenation. We mapped the mRNA content of LAMA2 and gelatin-EXOs and identified 798 genes that were differentially expressed, including genes associated with cardiac muscle development and extracellular matrix organization. Cells were treated with LAMA2-EXOs 2 h before a 4 h ischemia period (1% O2, 5% CO2, glucose-free media). LAMA2-EXOs had a two-fold protective effect compared to non-treatment on plasma membrane integrity and the apoptosis activation pathway; after a 1.5 h recovery period (20% O2, 5% CO2, cardiomyocyte-enriched media), cardiomyocytes treated with LAMA2-EXOs showed faster recovery than did the control group. Although EXOs had a protective effect on endothelial cells, there was no LAMA2-enhanced protection on these cells. This is the first report of LAMA2-EXOs used to treat cardiomyocytes that underwent ischemia-reoxygenation injury. Overall, we showed that membrane-specific EXOs may help improve cardiomyocyte survival in treating ischemic cardiovascular disease. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 1207 KiB  
Communication
The Combination of Oolonghomobisflavan B and Diallyl Disulfide Induces Apoptotic Cell Death via 67-kDa Laminin Receptor/Cyclic Guanosine Monophosphate in Acute Myeloid Leukemia Cells
by Jaehoon Bae and Su-Jin Park
Curr. Issues Mol. Biol. 2024, 46(3), 2444-2455; https://doi.org/10.3390/cimb46030154 - 14 Mar 2024
Viewed by 1008
Abstract
Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain [...] Read more.
Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
Show Figures

Graphical abstract

2 pages, 475 KiB  
Correction
Correction: Gresseau et al. A Signaling Crosstalk Links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and Regulates the Acquisition of a Cancer Stem Cell Molecular Signature in U87 Glioblastoma Neurospheres. Cancers 2022, 14, 5944
by Loraine Gresseau, Marie-Eve Roy, Stéphanie Duhamel and Borhane Annabi
Cancers 2024, 16(5), 1065; https://doi.org/10.3390/cancers16051065 - 6 Mar 2024
Viewed by 792
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Signalling Pathways of Cancer Stem Cells)
Show Figures

Figure 4

14 pages, 3476 KiB  
Article
Leucine-Rich Repeat in Polycystin-1 Suppresses Cystogenesis in a Zebrafish (Danio rerio) Model of Autosomal-Dominant Polycystic Kidney Disease
by Biswajit Padhy, Mohammad Amir, Jian Xie and Chou-Long Huang
Int. J. Mol. Sci. 2024, 25(5), 2886; https://doi.org/10.3390/ijms25052886 - 1 Mar 2024
Viewed by 1035
Abstract
Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. [...] Read more.
Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5β1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR–laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

21 pages, 3255 KiB  
Article
The Role of β-Dystroglycan in Nuclear Dynamics
by Matthew Cook, Ben Stevenson, Laura A. Jacobs, Daniel Leocadio Victoria, Bulmaro Cisneros, Jamie K. Hobbs, Colin L. Stewart and Steve J. Winder
Cells 2024, 13(5), 431; https://doi.org/10.3390/cells13050431 - 29 Feb 2024
Viewed by 1195
Abstract
Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane β-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the [...] Read more.
Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane β-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young’s modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters. Full article
(This article belongs to the Special Issue Cytoskeletal Remodeling in Health and Disease)
Show Figures

Graphical abstract

13 pages, 4831 KiB  
Article
Advanced Glycation End Products Upregulate CD40 in Human Retinal Endothelial and Müller Cells: Relevance to Diabetic Retinopathy
by Jose-Andres C. Portillo, Amelia Pfaff, Sarah Vos, Matthew Weng, Ram H. Nagaraj and Carlos S. Subauste
Cells 2024, 13(5), 429; https://doi.org/10.3390/cells13050429 - 29 Feb 2024
Cited by 1 | Viewed by 1229
Abstract
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation [...] Read more.
CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

Back to TopTop