Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = cytokinesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5846 KiB  
Article
Identification of Crucial Cancer Stem Cell Genes Linked to Immune Cell Infiltration and Survival in Hepatocellular Carcinoma
by Lien-Hung Huang, Shao-Chun Wu, Yueh-Wei Liu, Hang-Tsung Liu, Peng-Chen Chien, Hui-Ping Lin, Chia-Jung Wu, Ting-Min Hsieh and Ching-Hua Hsieh
Int. J. Mol. Sci. 2024, 25(22), 11969; https://doi.org/10.3390/ijms252211969 - 7 Nov 2024
Viewed by 269
Abstract
Hepatocellular carcinoma is characterized by high recurrence rates and poor prognosis. Cancer stem cells contribute to tumor heterogeneity, treatment resistance, and recurrence. This study aims to identify key genes associated with stemness and immune cell infiltration in HCC. We analyzed RNA sequencing data [...] Read more.
Hepatocellular carcinoma is characterized by high recurrence rates and poor prognosis. Cancer stem cells contribute to tumor heterogeneity, treatment resistance, and recurrence. This study aims to identify key genes associated with stemness and immune cell infiltration in HCC. We analyzed RNA sequencing data from The Cancer Genome Atlas to calculate mRNA expression-based stemness index in HCC. A weighted gene co-expression network analysis was performed to identify stemness-related gene modules. A single-sample gene set enrichment analysis was used to evaluate immune cell infiltration. Key genes were validated using RT-qPCR. The mRNAsi was significantly higher in HCC tissues compared to adjacent normal tissues and correlated with poor overall survival. WGCNA and subsequent analyses identified 10 key genes, including minichromosome maintenance complex component 2, cell division cycle 6, forkhead box M1, NIMA-related kinase 2, Holliday junction recognition protein, DNA topoisomerase II alpha, denticleless E3 ubiquitin protein ligase homolog, maternal embryonic leucine zipper kinase, protein regulator of cytokinesis 1, and kinesin family member C1, associated with stemness and low immune cell infiltration. These genes were significantly upregulated in HCC tissues. A functional enrichment analysis revealed their involvement in cell cycle regulation. This study identified 10 key genes related to stemness and immune cell infiltration in HCC. These genes, primarily involved in cell cycle regulation, may serve as potential targets for developing more effective treatments to reduce HCC recurrence and improve patient outcomes. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

24 pages, 8232 KiB  
Article
Cdk1 Deficiency Extends the Postnatal Window of Cardiomyocyte Proliferation and Restores Cardiac Function after Myocardial Infarction
by Donya Mahiny, Ludger Hauck, Benny Premsingh, Daniela Grothe and Filio Billia
Int. J. Mol. Sci. 2024, 25(19), 10824; https://doi.org/10.3390/ijms251910824 - 9 Oct 2024
Viewed by 714
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master regulator of the G2-M transition between DNA replication and cell division. This study investigates the regulation of cardiomyocyte (CM) proliferation during the early neonatal period and following ischemic injury in adult mice. We analyzed [...] Read more.
Cyclin-dependent kinase 1 (Cdk1) is a master regulator of the G2-M transition between DNA replication and cell division. This study investigates the regulation of cardiomyocyte (CM) proliferation during the early neonatal period and following ischemic injury in adult mice. We analyzed cell cycle dynamics with the assessment of DNA synthesis, and cytokinesis in murine hearts during the first 15 days after birth. A distinct proliferative block was observed at 1 day, followed by a second wave of DNA synthesis at 4 days, leading to CM binucleation (CMBN) by day 5. Genome-wide mRNA profiling revealed the differential expression of cell cycle regulatory genes during this period, with a downregulation of factors involved in cell division and mitosis. The loss of Cdk1 impaired CMBN but extended the neonatal CM proliferation window until day 10 post-birth. In adult hearts, the cardiac-specific ablation of Cdk1 triggered CM proliferation post-myocardial-infarction (MI) in specific zones, driven by the activation of EGFR1 signaling and suppression of the anti-proliferative p38 and p53 signaling. This was accompanied by restoration of fractional shortening, mitochondrial function, and decreased reactive oxygen species. Additionally, cardiac hypertrophy was mitigated, and survival rates post-MI were increased in Cdk1-knockout mice. These findings reveal a novel role of Cdk1 in regulating cell cycle exit and re-entry in differentiated CMs and offer insights into potential strategies for cardiac repair. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3959 KiB  
Review
Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast
by Magdalena Foltman and Alberto Sanchez-Diaz
J. Fungi 2024, 10(9), 662; https://doi.org/10.3390/jof10090662 - 21 Sep 2024
Viewed by 730
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and [...] Read more.
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

18 pages, 6375 KiB  
Article
The Myosin-V Myo51 and Alpha-Actinin Ain1p Cooperate during Contractile Ring Assembly and Disassembly in Fission Yeast Cytokinesis
by Zoe L. Tyree, Kimberly Bellingham-Johnstun, Jessica Martinez-Baird and Caroline Laplante
J. Fungi 2024, 10(9), 647; https://doi.org/10.3390/jof10090647 - 12 Sep 2024
Viewed by 725
Abstract
Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 [...] Read more.
Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 in cytokinesis remains unclear. The previous work suggests that Myo51 may crosslink actin filaments. We hypothesized that if Myo51 crosslinks actin filaments, cells carrying double deletions of ain1, which encodes the crosslinker alpha-actinin, and myo51 (∆ain1 ∆myo51 cells) will exhibit more severe cytokinesis phenotypes than cells with the single ∆ain1 mutation. Contrary to our expectations, we found that the loss of Myo51 in ∆ain1 cells partially rescued the severity of the node clumping phenotype measured in ∆ain1 cells. Furthermore, we describe a normal process of contractile ring “shedding”, the appearance of fragments of ring material extending away from the contractile ring along the ingressing septum that occurs in the second half of constriction. We measured that ∆ain1 ∆myo51 cells exhibit premature and exaggerated shedding. Our work suggests that Myo51 is not a simple actin filament crosslinker. Instead, a role in effective node motion better recapitulates its function during ring assembly and disassembly. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

20 pages, 6452 KiB  
Article
Dynamic Mitotic Localization of the Centrosomal Kinases CDK1, Plk, AurK, and Nek2 in Dictyostelium amoebae
by Stefan Krüger, Nathalie Pfaff, Ralph Gräf and Irene Meyer
Cells 2024, 13(18), 1513; https://doi.org/10.3390/cells13181513 - 10 Sep 2024
Viewed by 631
Abstract
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. [...] Read more.
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. Little is known about the role of conserved centrosomal kinases in this process. Therefore, we have generated knock-in strains for Aurora (AurK), CDK1, cyclin B, Nek2, and Plk, replacing the endogenous genes with constructs expressing the respective green fluorescent Neon fusion proteins, driven by the endogenous promoters, and studied their behavior in living cells. Our results show that CDK1 and cyclin B arrive at the centrosome first, already during G2, followed by Plk, Nek2, and AurK. Furthermore, CDK1/cyclin B and AurK were dynamically localized at kinetochores, and AurK in addition at nucleoli. The putative roles of all four kinases in centrosome duplication, mitosis, cytokinesis, and nucleolar dynamics are discussed. Full article
Show Figures

Figure 1

19 pages, 1263 KiB  
Review
Septin Organization and Dynamics for Budding Yeast Cytokinesis
by Maritzaida Varela Salgado and Simonetta Piatti
J. Fungi 2024, 10(9), 642; https://doi.org/10.3390/jof10090642 - 9 Sep 2024
Viewed by 748
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of [...] Read more.
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

45 pages, 3449 KiB  
Review
Non-Muscle Myosin II A: Friend or Foe in Cancer?
by Wasim Feroz, Briley SoYoung Park, Meghna Siripurapu, Nicole Ntim, Mary Kate Kilroy, Arwah Mohammad Ali Sheikh, Rosalin Mishra and Joan T. Garrett
Int. J. Mol. Sci. 2024, 25(17), 9435; https://doi.org/10.3390/ijms25179435 - 30 Aug 2024
Viewed by 957
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, [...] Read more.
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 3043 KiB  
Article
Molecular Alterations Associated with Histologically Overt Stromal Response in Patients with Prostate Cancer
by Mutlay Sayan, Yetkin Tuac, Mahmut Akgul, Samet Kucukcolak, Elza Tjio, Dilara Akbulut, Luke W. Chen, David D. Yang, Shalini Moningi, Jonathan E. Leeman, Peter F. Orio, Paul L. Nguyen, Anthony V. D’Amico and Cagdas Aktan
Int. J. Mol. Sci. 2024, 25(16), 8913; https://doi.org/10.3390/ijms25168913 - 16 Aug 2024
Viewed by 761
Abstract
Prostate cancer has substantial heterogeneity in clinical outcomes and therapeutic responses, posing challenges in predicting disease progression and tailoring treatment strategies. Recent studies have highlighted the potential prognostic value of evaluating the tumor microenvironment, including the presence of a histologically overt stromal response [...] Read more.
Prostate cancer has substantial heterogeneity in clinical outcomes and therapeutic responses, posing challenges in predicting disease progression and tailoring treatment strategies. Recent studies have highlighted the potential prognostic value of evaluating the tumor microenvironment, including the presence of a histologically overt stromal response (HOST-response) characterized by peri-glandular stromal changes and architectural distortions. This retrospective study examined patient records from The Cancer Genome Atlas database to identify genomic alterations associated with the HOST-response in prostate cancer. Among 348 patients who underwent radical prostatectomy, 160 (45.98%) were identified as having a HOST-response. A gene expression analysis revealed 1263 genes with significantly higher expression in patients with a HOST-response. A protein–protein interaction network analysis identified seven hub genes (KIF2C, CENPA, CDC20, UBE2C, ESPL1, KIF23, and PLK1) highly interconnected in the network. A functional enrichment analysis revealed alterations in the cell division, cytoskeletal organization, cytokinesis, and interleukin-16 signaling pathways in patients with a HOST-response, suggesting dysregulated proliferation and inflammation. The distinct molecular signature associated with the HOST-response provides insights into the tumor–stroma interactions driving adverse outcomes and potential targets for tailored therapeutic interventions in this subset of patients with prostate cancer. Full article
(This article belongs to the Special Issue Advances in Prostate Cancer Diagnostics and Therapy)
Show Figures

Figure 1

21 pages, 1926 KiB  
Review
Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery
by Mattia La Torre, Romina Burla and Isabella Saggio
Cells 2024, 13(15), 1307; https://doi.org/10.3390/cells13151307 - 5 Aug 2024
Viewed by 1280
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell [...] Read more.
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

12 pages, 1848 KiB  
Article
Genome-Wide Identification of Height-Related Genes Using Three Maize Dwarfs and RNA-Seq
by Yang Gao, Haojie Ren, Ruiyu Wang, Danyang Cheng, Yinglu Song, Xin Wen, Zheng Zhang and Jianzhong Chang
Agronomy 2024, 14(7), 1598; https://doi.org/10.3390/agronomy14071598 - 22 Jul 2024
Viewed by 879
Abstract
Plant height is an important grain yield-associated trait in maize. To date, few genes related to plant height have been characterized in maize. To better understand the genetic mechanisms of plant height in maize, we revealed the transcriptional changes of three dwarf mutants [...] Read more.
Plant height is an important grain yield-associated trait in maize. To date, few genes related to plant height have been characterized in maize. To better understand the genetic mechanisms of plant height in maize, we revealed the transcriptional changes of three dwarf mutants compared to the wild type. By ethyl methane sulfonate treatment of the wild-type maize cultivar PH6WC, we obtained three dwarfs—PH6WCdwarf1 (pd1), PH6WCdwarf2 (pd2), and PH6WCdwarf3 (pd3)—and their plant heights were reduced by 42%, 38%, and 24%, respectively. RNA-Seq data suggested that 1641 differentially expressed genes (DEGs) overlapped with each other among the three dwarfs at the seedling stage. Further analysis showed that the DEGs were divided into four groups with different expression patterns. Functional analysis revealed that these DEGs were commonly enriched in 47 GO terms mainly involved in cytokinesis, hormone, and energy metabolism pathways. Among them, An1, involved in the GA biosynthesis pathway, and mutations in An1 result in reduced plant height. EREB182 encodes ethylene-responsive element binding protein 2, which is critical for internode elongation. Microtubule-related genes Zmtub2, Zmtub3, Zmtub5, Zmtub6, and TUBG2 were commonly enriched among the three comparisons. Previous studies have shown that mutations in microtubule-associated genes cause the dwarf phenotype. However, nearly half of the common DEGs had no functional information, such as Zm00001d000107, Zm00001d000279, etc., implying their novel and specific functions in maize. Overall, this study identifies several potential plant height-related genes and contributes to linking genetic resources with maize breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 12170 KiB  
Article
Characterization of Subcellular Dynamics of Sterol Methyltransferases Clarifies Defective Cell Division in smt2 smt3, a C-24 Ethyl Sterol-Deficient Mutant of Arabidopsis
by Daisaku Ohta, Ayaka Fuwa, Yuka Yamaroku, Kazuki Isobe, Masatoshi Nakamoto, Atsushi Okazawa, Takumi Ogawa, Kazuo Ebine, Takashi Ueda, Pierre Mercier and Hubert Schaller
Biomolecules 2024, 14(7), 868; https://doi.org/10.3390/biom14070868 - 19 Jul 2024
Viewed by 866
Abstract
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of [...] Read more.
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane. Full article
(This article belongs to the Special Issue Sterol Biosynthesis and Function in Organisms)
Show Figures

Figure 1

18 pages, 4271 KiB  
Review
Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium
by Mathieu Pinot and Roland Le Borgne
Cells 2024, 13(13), 1133; https://doi.org/10.3390/cells13131133 - 30 Jun 2024
Viewed by 966
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at [...] Read more.
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis. Full article
(This article belongs to the Special Issue Molecular Studies of Drosophila Signaling Pathways)
Show Figures

Figure 1

14 pages, 5662 KiB  
Article
The Mechanosensitive Pkd2 Channel Modulates the Recruitment of Myosin II and Actin to the Cytokinetic Contractile Ring
by Pritha Chowdhury, Debatrayee Sinha, Abhishek Poddar, Madhurya Chetluru and Qian Chen
J. Fungi 2024, 10(7), 455; https://doi.org/10.3390/jof10070455 - 28 Jun 2024
Cited by 1 | Viewed by 904
Abstract
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose [...] Read more.
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

24 pages, 6541 KiB  
Article
Roles of the Arabidopsis KEULE Gene in Postembryonic Development
by Alejandro Ruiz-Bayón, Carolina Cara-Rodríguez, Raquel Sarmiento-Mañús, Rafael Muñoz-Viana, Francisca M. Lozano, María Rosa Ponce and José Luis Micol
Int. J. Mol. Sci. 2024, 25(12), 6667; https://doi.org/10.3390/ijms25126667 - 18 Jun 2024
Viewed by 881
Abstract
Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated [...] Read more.
Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 21609 KiB  
Article
Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes
by Guoye Guan, Yixuan Chen, Hongli Wang, Qi Ouyang and Chao Tang
Membranes 2024, 14(6), 137; https://doi.org/10.3390/membranes14060137 - 7 Jun 2024
Viewed by 1244
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. [...] Read more.
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells). Full article
Show Figures

Figure 1

Back to TopTop