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Abstract: The endosomal sorting complex required for transport (ESCRT) machinery is composed of
an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery
is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport,
cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for
anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the
ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the
action site, involve the repair and fusion of membrane edges. In this review, we report on the data
related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody
and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a
significant role for the protection of genome integrity by contributing to the control of the abscission
checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several
studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver
of pathologies, such as laminopathies and cancer.
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1. The ESCRT Machinery
1.1. The ESCRT Subunits

The endosomal sorting complex required for transport (ESCRT) is a machinery com-
posed of protein complexes that contribute to multiple cellular processes, such as cytokine-
sis [1], endosome maturation [2], neuronal pruning [3,4], the nuclear envelope [5,6], and
plasma membrane repair [7–9]. In addition, the ESCRT machinery has been implicated in
viral replication and budding [10–13] (Figure 1A). The complexes or groups of the machin-
ery are the ESCRT 0, ESCRT I, ESCRT II, and ESCRT III (Figure 1B). By parallel mechanisms,
operated at different sites, the ESCRT 0 and ESCRT I subunits initiate the process mediated
by the ESCRT machinery and recruit the ESCRT II complex. The ESCRT II subunits help in
the recruitment and assembly of the ESCRT III complex. Eventually, the ESCRT III subunits
mediate inverse membrane involution finalizing membrane scission or sealing [14–18].

The definition and functional characterization of the different components of the ES-
CRT machinery were first assessed in yeast and successively paralleled in mammals and
other organisms (Table 1). Yeast ESCRT subunits include the ESCRT 0 Vps27, corresponding
to HRS-HGS in mammals [19,20]; the ESCRT I Vps23, Vps28, Vps37, and Mvb12 corre-
sponding to, respectively, VPS23 or TSG101 [21], VPS28 [22], VPS37a, b, c, d [23,24], and
MVB12a, b in mammals [15,25]; the ESCRT II Vps36, Vps22, and Vps25 corresponding to
mammalian EAP45, EAP30, and EAP20, respectively [17,18,26–28]; and the ESCRT III Vps2,
Vps24, Snf7, and Vps20, corresponding to mammalian CHMP2A, B, CHMP3, CHMP4A, B,
C, and CHMP6, respectively [18,29–33]. CHMP7, which works on nuclear envelope sealing
in mammals, has been described as a hybrid ESCRT II/III subunit [32,34–36]. In addition to
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the ESCRT subunits, several accessory proteins contribute to the activity of the machinery.
These include Bro1, in yeast, corresponding to ALIX in mammals [37], and IST1 that works
in concert with the ESCRT III complex and possesses structural similarities to the ESCRT
III CHMP3 [38]. All the ESCRT components, except the ESCRT III subunits, bind cargo
and/or other ESCRT components. The ESCRT III subunits serve to complete the pathway
operated by the machinery and for its disassembly, which happens via the activity of the
AAA + ATPase VPS4 complex [18,33,39].
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Figure 1. Cellular processes involving the ESCRT machinery. (A) Schematic representation of the
functions of the ESCRT machinery. ESCRT I (red); ESCRT II (yellow); ESCRT III (blue), virus symbol
(dark grey). (B) Schematic representation of the cascade of ESCRT complexes recruited at the site of
action. ESCRT I (red); ESCRT II (yellow); ESCRT III (blue).
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Table 1. ESCRT components in yeast, flies, and mammals.

Complex Name Yeast (S. cerevisiae) Flies (D. melanogaster) Mammals

ESCRT 0
Vps27 [40] Hrs [41] HRS-HGS [20]
Hse1 [40] dmel/stam [42] STAM1, 2 [43]

ESCRT 1

Vps23 [44] erupted/tsg101 [45] TSG101 [21]
Vps28 [44] dvps28 [46,47] VPS28 [22]

Vps37 [44] vps37A *, vps37B [48]

VPS37a [23]
VPS37b [23]
VPS37c [24]
VPS37d [23]

Mvb12 [44] mvb12 [49]
MVB12a [15,25]
MVB12b [15,25]

ESCRT II
Vps36 [17] vps36 [50,51] EAP45 (VPS36) [26–28]
Vps25 [17] vps25 [47,52] EAP20 (VPS25) [26]
Vps22 [17] larsen/vps22 [50,53] EAP30 (VPS22) [26]

ESCRT II/III Chm7 [54,55] CG5498 * CHMP7 [34–36]

ESCRT III and associated proteins

Vps2 [29] vps2 [56] CHMP2A [29]
CHMP2B [29]

Vps24 [29] vps24 [47] CHMP3 [29]

Snf7 [29] shrub [47,57]
CHMP4A [30]
CHMP4B [30]
CHMP4C [30]

Vps20 [29] vps20 [58] CHMP6 [31]
Ist1 [59] ist1 [60,61] IST1 [38]

Vps60 [29] chmp5 [60,61] CHMP5 [61]

Did2 [29] chmp1 [61] CHMP1A [62,63]
CHMP1B [62,63]

VPS4-ATPase complex Vps4 [64] vps4 [3,65] VPS4A [32,33]
VPS4B [32,33]

Vta1 [66] vta1 * [67] LIP5 (VTA1) [68]

BRO1 proteins Bro1 [69] ALiX (CG12876) [60,70] ALIX (PDCD6IP) [37]

* predicted ortholog (Flybase).

The comprehension of the full picture of the structure–function organization of the
ESCRT subunits and of their site of action is in continuous evolution and expansion, along
with the identification of new ESCRT-associated factors. AKTIP, for example, is a recently
discovered ESCRT I associated protein. The database annotation of AKTIP points to human
TSG101 as the AKTIP top-hit homologue with high probability. AKTIP, as the ESCRT I
VPS23/TSG101, includes the ubiquitin E2 variant domain and interacts with the ESCRT
I VPS28 [71]. Differently from TSG101, AKTIP does not include a proline-rich domain
required for the interaction with CEP55 [1,71]. AKTIP is detected in the nucleus and in
the cytoplasm and is enriched in distinct foci at the nuclear rim [72–75]. AKTIP has been
associated with HOOKs, a group of proteins impinging on vesicle trafficking, and with
ESCRT components in cytokinesis [71,76]. During cytokinesis, AKTIP is recruited at the
midbody together with the ESCRT subunits.

1.2. Structural Organization of the ESCRT Subunits

In support of its pivotal function in the biology of the cell, the ESCRT machinery has
ancient origins. In fact, many archaeal species possess ESCRT proteins, and the machinery
is conserved during evolution. Metagenome analyses show that Asgard archaea, for
example, possess components of the ESCRT I, ESCRT II, and ESCRT III complexes, and, as
in mammals, ESCRT III subunits execute the final stages of membrane processing [77–79].
Multiple studies of reverse genetics highlight the presence of ESCRT I, ESCRT II, and ESCRT
III genes in Drosophila melanogaster [46,47,80]. Recent evidence describes new functions for
Drosophila ESCRT subunits, such as that of the ESCRT III component Shrub that maintains
the septate junction and guarantees epithelial tissue integrity in larvae [81].

Structural studies have shed light on the ESCRT protein domains that are involved
in the assembly of the different complexes (Figure 2). In the ESCRT I complex, the core is
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made of helical hairpins from the three components: Vps23, Vps28, and Vps37 [16]. This
core tethers the ubiquitin E2-variant domain of Vsp23 to the ESCRT I C-terminal domain of
Vps28 [44,82]. According to the original structural model [19], ESCRT II subunits contain
tandem repeats of winged-helix domains and are recruited by ESCRT I via the so-called
GLUE of the ESCRT II Vps36 [17,83]. ESCRT III subunits do not form stable complexes, and
attempts to perform structural studies were slowed by this aspect. However, the crystal
structure of human VPS24, CHMP3, was revealed showing that it includes five helices with
a core of a hairpin formed by two of the helices [38,84].
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Figure 2. Structure of the ESCRT complexes. Schematic representation of the structural organization
of the ESCRT complexes. The UEV domain of Vps23 is responsible for the interaction with ESCRT 0
components (black line), whereas the C-terminal domain of Vps28 interacts with the GLUE domain
of Vps36. The Y shaped ESCRT II complex is responsible for the recruitment of ESCRT III subunits.
Vps4 is recruited by ESCRT III subunits. ESCRT I (red); ESCRT II (yellow); ESCRT III (blue).

In the following paragraphs, we review the data concerning the role of the different
subunits of the ESCRT machinery in controlling the integrity of the nuclear envelope on
the one side and the process of abscission on the other. In both cases, we analyze how the
machinery impacts the integrity of the genome.

2. The ESCRT Machinery and Genome Integrity at the Nuclear Envelope
2.1. The Organization of the Interphase Nuclear Envelope

In eukaryotic cells, the genome is separated from the nucleoplasm by the nuclear
envelope. This is composed of the outer nuclear membrane in continuation with the
endoplasmic reticulum and by the inner nuclear membrane juxtaposed to the lamina. This
latter element is a meshwork composed mainly of lamin type A and B [85–88]. Lamins
type A are encoded by the LMNA gene and have two isoforms, A and C, produced by
alternative splicing events. B-type lamins are encoded by the LMNB1 and LMNB2 genes,
respectively. Most metazoans express B-type lamins in support of a critical and conserved
role of the lamina in the organization of the nuclear organelle. B-type lamins are essential
and expressed during development; A-type lamins are present only in differentiated cells.
B-type lamins are mostly detected at the nuclear envelope. A-type lamins are detected
also in the nucleoplasm serving in multiple roles, including the control of chromatin
organization and function [89–91]. The nuclear envelope is interrupted by the nuclear pore
complexes to which lamins provide support. Super-resolution microscopy analyses have
shown that the nuclear pore complex component TPR is a determinant in the association of
the nuclear pore complex to lamin C [92–94].

The lamina is also the resident site for a plethora of proteins. Smoyer et al. identified
more than 400 inner nuclear membrane proteins [95]. Among these, there is the LAP2-
Emerin-Man1 (LEM)-domain protein subgroup that includes MAN1 [96], LEM2 [97], the
lamina-associated polypeptide 2 (LAP2) [98], and emerin [99–101]. Other well characterized
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proteins involved in the integrity and function of the nuclear envelope are the SUN-domain
proteins, SUN1 [102] and SUN2 [103,104], and the lamin B receptor [105–107]. In addition,
the inner nuclear membrane is in contact with the cytoplasm via the LINC (Linkers of the
nucleoskeleton to the cytoskeleton) protein complexes [108,109]. LINC factors associate
with the lamina or with lamin associated proteins and traverse the outer nuclear membrane
to reach at the cytoplasmic side [110,111].

The nuclear envelope, the lamina, and the lamin-interacting proteins contribute to
the spatial distribution of chromatin. Chromatin structural compartmentalization was first
described by Carl Rabl and Theodor Boveri and refined by the seminal works of Cremer
et al. [112] and Cremer et al. [113]. More recent studies have given the molecular details of the
spatial architecture of the genome inside the nucleus based mostly on the usage of chromatin
conformation capture, 3C techniques [114,115]. Integrating the seminal studies defining the
compartmentalization of chromosomes in discrete territories with 3C-technique based data
allowed the identification of chromatin topologically associating domains (TADs) [116]. TADs
are genomic stretches stabilized by the presence of transcription factors and cohesins [117,118].
3C techniques have also been useful to define the presence and molecular characteristics of
genomic stretches interacting with lamins, the lamin associating domains (LADs) [119–121].
Immunofluorescence and biochemical analyses have, in addition, shown how the nuclear
envelope associates with the chromatin via the LEM domain proteins [101,122,123]. MAN1
and emerin bridge with the chromatin via another factor named BAF [124–126]. The lamin B
receptor contacts chromatin through HP1 [127–129].

2.2. The Dynamics of the Nuclear Envelope and Role of ESCRTs

The process of cell division exhibits variations across different organisms and cell
types. In metazoans and higher eukaryotes, open mitosis is prevalent. This type of
mitosis is characterized by the fragmentation of the nuclear envelope. In contrast, lower
eukaryotes like S. cerevisiae and S pombe commonly undergo closed mitosis, where the
nuclear envelope remains intact [130,131]. Notably, exceptions exist, as seen in Cryptococcus
neoformans and certain strains of Ustilago, which display a unique form of open mitosis.
Some higher eukaryotes engage in semi-open mitosis, where the rearrangements of the
nuclear envelope are minimal [132–134].

In open mitosis, the breakdown of the nuclear envelope requires a series of intricate
events leading to the temporary disassembly of the nuclear envelope that then has to be
followed by its reformation [135]. This is a carefully regulated process initiated during
prophase [136]. Several molecular mechanisms contribute to this event. Notably, the
phosphorylation-mediated disassembly of the nuclear pore complex marks a critical step.
Kinases such as CDK1, NEK, and PLK1 phosphorylate nucleoporins, leading to nuclear
pore complex disintegration [136]. Concurrently, lamins undergo phosphorylation by
kinases like CDK1/cyclin B, initiating their depolymerization and favoring subsequent
events in nuclear envelope breakdown [135,137,138]. Spindle microtubule-generated forces
contribute to nuclear envelope retraction, creating tension that results in the stretching and
tearing of the nuclear envelope, ultimately leading to its fragmentation [139,140]. Dynein
is needed for attaching spindle microtubules to the nuclear envelope, creating pulling
forces towards the centrosome [141–144]. The endoplasmic reticulum undergoes significant
remodeling during G2/M transition, further contributing to the completion of nuclear
envelope breakdown [145–147]. Finally, the orchestration of nuclear envelope breakdown
involves the phosphorylation of nuclear envelope-associated proteins, which disrupts
protein–protein interactions and triggers the dissociation of these components contributing
to the overall structural rearrangement of the nuclear envelope [148–153]. The retraction of
the nuclear envelope facilitated by mitotic spindle microtubules involves the withdrawal of
the nuclear envelope from chromatin, which is an actively regulated process [133,154,155].
Studies in different organisms, including fission yeast, demonstrate the active regulation of
chromatin detachment through post-translational modifications and the involvement of
the protein complex Lem2-Nur1 [156,157].
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Following nuclear envelope breakdown, when mitosis is not yet completed, the
nucleus starts to reorganize its architecture for the next interphase. Here, a set of proteins
is recruited progressively around the chromatin, constituting the so-called core region
(Figure 3A). BAF is first detected at the chromatin, followed by multiple lamin-associated
proteins, as LEM2 and LAP2alpha, followed by emerin, LAP2beta, and MAN1 along
with lamin A [158–161]. During telophase, the organization of the two daughter rims
around chromatin is visible along with the midbody region between the nascent cells. In
mammalian cells, telomeres have a defined dynamic in the anaphase to telophase stage,
during which they are enriched at the nuclear envelope through interactions between SUN1
and the telomeric protein RAP1. This distribution of telomeres is presumed to contribute to
chromatin domain reorganization including the juxtaposition of heterochromatin at the
nuclear lamina [162,163].
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Figure 3. ESCRT recruitment and function at the nuclear envelope. (A) Schematic representation of
the recruitment of the core proteins at the chromatin at the end of mitosis. ESCRT I (red); ESCRT
II (yellow); ESCRT III (blue); BAF (purple); chromatin (dark grey); microtubule (green); lamin A
(red curved line); lamin-associated proteins (blue triangle); nuclear envelope (black double dotted
line). (B) Schematic representation of the recruitment of the ESCRT subunits during nuclear envelope
sealing. ESCRT I (red); ESCRT II (yellow); ESCRT III (blue).
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To complete the compartmentalization of the genome at the end of the mitotic process,
the nuclear envelope discontinuities, due also to the presence of residual microtubules
traversing the nascent rim, are repaired by the ESCRT machinery (Figure 3B). The subunits
involved in this process are the ESCRT III CHMP4B and CHMP2A and the specialized
nuclear ESCRT II/III hybrid factor CHMP7, along with the ESCRT accessory factors UFD1,
CCD21B, and ALIX [5,6,36,164–167]. VPS4 and spastin complete the process of nuclear
envelope sealing by regulating the disassembly of the complexes, acting, respectively, on
the ESCRT III and on microtubules [5,157,168].

An interesting link has been established between CHMP7 and LEM2, which relates
as well to the spatiotemporal interpretation of the nuclear reassembly process. Namely,
liquid–liquid phase separation has been suggested for the assembly of LEM2 and CHMP7
around residual spindle microtubule bundles, in connection with the chromatin-binding
factor BAF [35,167,169–172]. LEM2 is thus reputed to be a transmembrane ESCRT adaptor
protein, and this vision highlights that the nuclear reassembly dynamic phase involves
chromatin, chromatin-binding factors, lamin-binding factors, the ESCRT machinery, and,
eventually, lamin [35,169].

The activity of the ESCRT III in repairing nuclear envelope discontinuities is required
also during the interphase. Indeed, nuclear rim ruptures occur in the interphase during cell
migration in confined space, upon mechanical stress, in cancer metastases or consequent to
genetic mutations [173–176]. These nuclear ruptures are repaired via the concerted action
of BAF, LEM2, and ESCRT III. Specifically, cytoplasmic BAF localizes onto DNA at nuclear
ruptures, contributing to the recruitment of LEM2 and CHMP7 [177].

2.3. Nuclear ESCRT Genome Integrity

The massive process of nuclear reorganization, happening in the final phases of
mitosis, calls for an interdependence between the correct reorganization of chromatin in
the daughter cells and the activity of the ESCRT machinery. Chromothripsis has been
associated with nuclear envelope composition defects and defective nuclear pore complex
assembly, impacting genome integrity and function [178]. In analogy, in micronuclei, a
defective rim composition has been related with the control of ESCRT III recruitment and
function. Indeed, although the ESCRT III subunit CHMP7 is correctly recruited at the
micronuclear rim, its spatiotemporal distribution is not correctly restricted [179]. This
dysfunctionality is a driver of membrane deformation and DNA damage [180,181]. Vietri
and co-workers suggest that the ESCRT III machinery is a “double-edged sword”, driving
repair and compartmentalization in wildtype conditions but performing as a damaging
agent in dysfunctional conditions [179]. ESCRT III subunits have been also implicated
in the regulation of nuclear envelope channels, which contribute to the reintegration of
chromosome fragments into the nuclei, impacting genome integrity [182,183]. Another
aspect of the role of the ESCRT machinery in nuclear envelope dynamics is also suggested
by a study focusing on nuclear invaginations. Here, using C. elegans as a model system,
the authors demonstrate how, in the early phase of organismal development, the ESCRT
machinery contributes to nuclear membrane remodeling and to the preservation of genome
integrity [184].

Two seminal papers have described the role of the ESCRT machinery in preserving
the intertwined integrity of the nuclear rim in the interphase and that of the genome.
Denais et al. and Raab et al. showed that mechanically stressed nuclei lose their circularity
and display nuclear blebs, where the ESCRT III subunits accumulate [7,8]. These studies
showed that ESCRT III-mediated repair is needed for preserving the genome from DNA
damage and opened the route to an area of research focusing on the direct mechanistic
relationship between the ESCRT machinery and genome fragility in a clinical perspective
as well.
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2.4. Nuclear ESCRTs and Disease

The role of ESCRT subunits as guardians of nuclear envelope integrity inevitably ties
their dysfunction to pathological situations affecting the nucleus and its genomic content.
Failed nuclear envelope repair in the interphase after rupture or in the terminal phase of
mitosis leads, as described, to altered genome organization, DNA migration out of the
nucleus, and DNA exposure to enzymes that alter if not prevent its function, which induces
the pathological state of the cell and of the organism.

From a mechanical perspective, the fragility of the nuclear membrane and/or the
disorganization of chromatin decrease the nuclear and cellular resilience to stress [185,186].
This latter aspect becomes particularly relevant in the context of pathologies characterized
by fragile nuclei. An example is Hutchison Gilford Progeria Syndrome, which is linked
to a mutation in the LMNA gene, which leads to the production of a truncated, aberrant,
and not properly matured form of lamin A that phenotypically generates deformed nuclei
displaying surface blebs, a disorganized genome, and an altered distribution of nuclear
proteins dependent on the lamin meshwork. It is not surprising that, in this context, the
modulation of ESCRT subunits impact the phenotype [187].

Moreover, the role exerted by the ESCRT machinery at the nuclear envelope impacts
tumor aggressiveness in the metastasis process (reviewed in [188,189]). In fact, when
tumor cells undergo migration through tight interstitial spaces within tissues, they ne-
cessitate the significant deformation of both the cell and its nucleus as also shown by
Denais et al. in studies investigating mammalian tumor cell migration within confined
microenvironments [8].

3. The ESCRT Machinery and Genome Integrity at the Midbody
3.1. Cell Abscission and ESCRT Complexes

Cytokinesis is a multistep process that permits the correct physical separation of
daughter cells following nuclear division. It includes the assembly of the actomyosin
contractile actin ring to achieve a primary constriction leading to the formation of the inter-
cellular bridge between the two daughter cells, the physical reorganization of microtubules
during bridge formation, and the secondary constriction of the intercellular bridge, ending
with the final abscission step [190] (Figure 4A). The ESCRT machinery functions at the heart
of cell abscission and orchestrates membrane fission events. It operates in abscission via
the sequential assembly of ESCRT I, II, and III subunits at the midbody, the central region
of the intercellular bridge that links the daughter cells prior to their separation. The process
of ESCRT assembly at this site is initiated by the central spindlin subunit MKLP1 and
by CEP55 [191,192]. CEP55 is responsible for the recruitment of the ESCRT I component
TSG101 and of the accessory ESCRT ALIX [1,10,193]. The ESCRT I component TSG101 is
found at the midbody in association with septins and with AKTIP [71,194]. Recent studies
in CEP55-knockout mice have shown that ESCRT recruitment at the midbody can occur also
via CEP55-independent mechanisms [195]. Along the same line, Drosophila has no CEP55,
and ESCRT recruitment to the midbody is mediated by the human MKLP1 orthologue [70].

The microscopical analysis at a 100 to 200 nanometer resolution scale has permitted
the visualization of the ESCRT super-structures, which form at the midbody and evolve
through the different phases of abscission [196–198]. In the early phase, the ESCRT I
and II subunits form packed circular structures at the center of the midbody [194]. ALIX
and ESCRT II subunits form double rings next to the central midbody [199]. ESCRT III
subunits, including CHMP2A, CHMP4B, and IST1, form double rings at the two sides of
the ESCRT I/II structures [200,201]. The TSG101 homologue AKTIP locates at the midbody,
forming a ring in the central zone of the bridge, in close association with TSG101 and
in proximity to ESCRT III subunits [71]. In the late phase of abscission, the ESCRT III
rings are transformed into spirals leading to the completeness of cell division [196,200,202].
This latter process depends on the ATPase VPS4 [39,203]. In this final phase, CHMP1B-
dependent recruitment of the ATPase spastin occurs to finalize the intercellular bridge
microtubule severing [62–204].
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Figure 4. ESCRT recruitment and function in abscission. (A) Schematic of the midbody during
abscission in which ESCRT I (red) and ALIX (light grey) are recruited at the middle of the tubulin
(green) bridge by central spindlin and CEP55. ESCRT I and ALIX recruit ESCRT III subunits (blue).
In the final stage of abscission, the ESCRT III subunits form spirals (blue spirals) and recruit spastin,
which trims the microtubules, and VPS24. (B) Schematic representation of the abscission checkpoint
activation triggered by the presence of a chromatin bridge (dark grey line). Phosphorylation (curved
arrow); proteins recruited at core region of chromatin (light pink rectangle, light orange circle, light
blue rectangle); actin (white circles in line and organized in patches).
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3.2. Abscission Check Point and Chromosome Integrity

The completion of abscission must be intimately coordinated with the correct chro-
mosome distribution into the daughter cells, which preestablishes an interlink between
chromosome and genome integrity on one side and the activity of the ESCRT machinery at
the intercellular bridge on the other. Actually, chromosome segregation and ESCRT activity
during abscission are commonly controlled by a checkpoint [205,206]. This abscission check-
point is present in budding yeast (NoCut) and involves the kinase IPL1/Aurora [207,208].
In human cells, the kinase Aurora B controls the checkpoint guiding the localization
and function of ATPases at the midbody [209]. Aurora B localizes to the midbody in
the telophase inside the central region (or Flemming body) [209,210], where it targets
CHMP4C and VPS4 [211–213]. Consistently, when the expression of Aurora B is reduced,
the localization of the ESCRT III CHMP4C is altered [214].

The abscission checkpoint is driven by stresses, among which the most studied is the
presence of anaphase chromatin bridges in association with chromosome integrity [215].
Stretches of DNA linking the two daughter cell genomes can be driven by replication
defects, by incomplete homologous recombination events, or by telomere dysfunction and
telomeric fusions [216–220]. DNA bridges are divided into ordinary and ultrafine. The
latter are detected exclusively by staining the associated proteins, while ordinary DNA
bridges are visible with conventional DNA staining methods [221,222]. Aurora B localizes
at the midbody in response to the presence of these chromatin bridges (Figure 4B). Its
recruitment is controlled by the Mre11-Rad50-Nbs1 (MRN) complex, the DNA double-
strand break signaling kinase ATM, and its target CHK2 [223]. To revert Aurora B activity
and overcome the abscission checkpoint, specialized factors localize at the midbody as RIF1
and PP1γ and PKCε [214,224,225]. The data suggest that RIF1 and PP1γ counteract Aurora
B dependent phosphorylation of the ESCRT subunit CHMP4C [224]. The kinase ULK3,
whose ESCRT target is IST1, also localizes at the midbody and controls abscission [226].

In parallel, to protect and stabilize chromosome bridges, cells reduce the depolymer-
ization of actin filaments at the bridge and produce actin patches at either side of the
bridge [227]. These latter structures could contribute to reducing the tension at the bridges
by counteracting the velocity by which the daughter cells move when separating from each
other [228]. Importantly, actin delays recruitment of ESCRT III proteins at the abscission
site [229].

The abscission checkpoint bodies, consisting of cytoplasmic elements containing
phosphorylated Aurora B, CHMP4C, CHMP4B, and ALIX, are a further element in the
abscission picture, whose mechanistic role is yet to be fully unraveled [230].

Notwithstanding the abundant control of the abscission timing and the protection
of chromatin bridges, the outcome of cytokinesis in the presence of these structures can
be detrimental for genome integrity (Figure 4B). While in the best-case scenario stable
chromatin bridges can be resolved without permanent DNA damage, unstable bridges and
abscission control defects can lead to chromatin breakage, DNA damage, breakage–fusion–
bridge cycles, and kataegis and chromothripsis [219,231,232]. In this latter process, clusters
of localized rearrangements are randomly reassembled by DNA repair or aberrant DNA
replication generating profound genome alterations [233]. Chromatin bridges can also
lead to cleavage furrow regression, tetraploid cells, and chromosomal instability [234,235].
The cytoplasmic exonuclease TREX1 has also been implicated in cleaving chromosome
bridges [219,236]. Finally, the presence of chromatin bridges also drives the production of
micronuclei containing bridge DNA [237–239].

3.3. Abscission Defects and Cancer

The precise determinants of the destiny of chromosomal bridges are yet to be un-
raveled. It is not yet fully understood what drives chromatin bridge breakage or furrow
regression. In either case, the presence of chromatin bridges and abscission checkpoint de-
fects are drivers of genomic alterations and chromosome instability and are associated with
cancer development and/or aggressiveness [240–242]. This highlights the importance of ex-
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ploring the properties of ESCRT subunits for the understanding of new molecular cascades
driving cancer and to identify new therapeutic targets. Several studies have already given
insights into this perspective. The increase in Aurora B expression, for example, has been
described in several tumor types and is associated with unfavorable prognosis [243–245].
Moreover, a CHMP4C polymorphism impairing ALIX-binding activity, has been associated
with ovarian cancer [246,247].

4. Conclusions

Both for its role in the abscission process and in safeguarding the integrity of the
nuclear membrane of mitotic and interphase cells, the ESCRT machinery profoundly
impacts the correct organization of the genome and the dysfunction that ensues. By
directly repairing breaches in the nuclear membrane, by controlling the abscission process,
and, indirectly, by influencing genome organization, the machinery has a strong impact
on cellular resilience and organismal pathologies. For future studies in the field, it will
be interesting to reflect on the continuum of events linking the final stages of nuclear
membrane organization and the cleavage of the bridge linking nuclei exiting division. It
is possible that with a dynamic analysis of these events, enabled by modern cytological
analysis tools, new interpretations can be offered.

Finally, an aspect deserving further study is the potential identification of individual
ESCRT components as therapeutic targets or tools. This can be achieved either by tar-
geting synthetic lethal dependencies, as already demonstrated for VPS4, or by correcting
expression defects [248,249]. In either case, the genes themselves or molecules that con-
trol/mimic their expression can provide new therapeutic avenues to explore in various
pathological contexts.
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