Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = cracked media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12766 KiB  
Article
Simulation Study on Rock Crack Expansion in CO2 Directional Fracturing
by Kang Wang and Chunguang Chang
Processes 2024, 12(9), 1813; https://doi.org/10.3390/pr12091813 - 26 Aug 2024
Viewed by 365
Abstract
In underground construction projects, traversing hard rock layers demands concentrated CO2 fracturing energy and precise directional crack expansion. Due to the discontinuity of the rock mass at the tip of prefabricated directional fractures in CO2 fracturing, traditional simulations assuming continuous media [...] Read more.
In underground construction projects, traversing hard rock layers demands concentrated CO2 fracturing energy and precise directional crack expansion. Due to the discontinuity of the rock mass at the tip of prefabricated directional fractures in CO2 fracturing, traditional simulations assuming continuous media are limited. It is challenging to set boundary conditions for high strain rate and large deformation processes. The dynamic expansion mechanism of the 3D fracture network in CO2 directional fracturing is not yet fully understood. By treating CO2 fracturing stress waves as hemispherical resonance waves and using a particle expansion loading method along with dynamic boundary condition processing, a 3D numerical model of CO2 fracturing is constructed. This model analyzes the dynamic propagation mechanism of 3D spatial fractures network in CO2 directional fracturing rock materials. The results show that in undirected fracturing, the fracture network relies on the weak structures near the rock borehole, whereas in directional fracturing, the crack propagation is guided, extending the fracture’s range. Additionally, the tip of the directional crack is vital for the re-expansion of the rock mass by high-pressure CO2 gas, leading to the formation of a symmetrical, umbrella-shaped structure with evenly developed fractures. The findings also demonstrate that the discrete element method (DEM) effectively reproduces the dynamic fracture network expansion at each stage of fracturing, providing a basis for studying the CO2 directional rock cracking mechanism. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 8840 KiB  
Article
Study on the Evolution of Mechanical Properties and Acoustic Emission of Medium-Permeability Sandstone under Multi-Level Cyclic Loading Stress Paths
by Debin Xia, Hejuan Liu, Jianjun Liu, Yintong Guo, Mancang Liu, Xiaosong Qiu, Haibo Li, Hongying Tan and Jun Lu
Processes 2024, 12(8), 1773; https://doi.org/10.3390/pr12081773 - 21 Aug 2024
Viewed by 438
Abstract
Depleted gas reservoirs are important natural gas storage media, thus research on the mechanical properties and damage evolution of reservoir rocks under alternating load conditions has significant practical implications for seal integrity studies. This paper conducted multi-level cyclic loading triaxial compression experiments on [...] Read more.
Depleted gas reservoirs are important natural gas storage media, thus research on the mechanical properties and damage evolution of reservoir rocks under alternating load conditions has significant practical implications for seal integrity studies. This paper conducted multi-level cyclic loading triaxial compression experiments on medium-porosity medium-permeability sandstone under different confining pressures and used acoustic emission (AE) instruments to detect the AE characteristics during the experiment, analyzing the mechanical characteristics, AE, and damage evolution characteristics. The experimental results show that after cyclic loading, the peak strength of sandstone increased by 14–17%. With the increase in the upper limit stress of cyclic loading, the elastic modulus showed a trend of first increasing and then gradually decreasing. The damage variable of rock samples rose with a rise in the upper limit stress of cyclic loading and confining pressure, and the rock damage was mostly localized at the peak stress. The AE b-value increased generally as confining pressure increased, showing that fractures occurred quicker and more unevenly at lower confining pressures. The distribution of RA-AF values shows that a sudden increase in stress causes the initiation and expansion of cracks in medium-permeability sandstone, and that tensile and shear cracks form continuously during the cyclic loading process, with shear cracks developing more pronounced. This research can provide some theoretical guidance for the long-term stable operation and pressure enhancement expansion of depleted gas reservoir storage facilities. Full article
Show Figures

Figure 1

17 pages, 5795 KiB  
Article
Analysis of Damage and Permeability Evolution of Sandstone under Compression Deformation
by Yao Rong, Yang Sun, Xiangsheng Chen, Haibin Ding and Changjie Xu
Appl. Sci. 2024, 14(16), 7368; https://doi.org/10.3390/app14167368 - 21 Aug 2024
Viewed by 379
Abstract
A large number of experimental studies have demonstrated that the permeability and damage of rock are not constant but rather functionally dependent on stresses or stress-induced deformation. Neglecting the influence of damage and permeability evolution on rock mechanics and sealing properties can result [...] Read more.
A large number of experimental studies have demonstrated that the permeability and damage of rock are not constant but rather functionally dependent on stresses or stress-induced deformation. Neglecting the influence of damage and permeability evolution on rock mechanics and sealing properties can result in an overestimation of the safety and stability of underground engineering, leading to an incomplete assessment of the risks associated with surrounding rock failure. To address this, the damage and permeability evolution functions of rock under compression were derived through a combination of experimental results and theoretical analysis, unifying the relationship between porosity and permeability in both porous media flow and fractured flow. Based on this, a fluid–solid coupled seepage model considering rock damage and permeability evolution was proposed. More importantly, this model was utilized to investigate the behavior of deformation, damage, and permeability, as well as their coupled effects. The model’s validity was verified by comparing its numerical results with experimental data. The analysis results show that the evolution of permeability and porosity resulted from a competitive interaction between effective mean stress and stress-induced damage. When the effective mean stress was dominant, the permeability tended to decrease; otherwise, it followed an increasing trend. The damage evolution was primarily related to stress- and pressure-induced crack growth and irreversible deformation. Additionally, the influence of the seepage pressure on the strength, damage, and permeability of the investigated rock was evaluated. The model results reveal the damage and permeability evolution of the rock under compression, which has a certain guiding significance for the stability and safety analysis of rock in underground engineering. Full article
Show Figures

Figure 1

13 pages, 6687 KiB  
Article
An Investigation on the Pore Structure Characterization of Sandstone Using a Scanning Electron Microscope and an Online Nuclear Magnetic Resonance System
by Bo Tian, Xuexiang Deng, Congwang Pan and Xiangxi Meng
Appl. Sci. 2024, 14(16), 7063; https://doi.org/10.3390/app14167063 - 12 Aug 2024
Viewed by 542
Abstract
The micropore structure of porous media (such as natural rocks and man-made materials) is very complex and has strong micro heterogeneity, and pore structure is a critical parameter to estimate the rock quality. However, the pore structure characterization of rocks under load is [...] Read more.
The micropore structure of porous media (such as natural rocks and man-made materials) is very complex and has strong micro heterogeneity, and pore structure is a critical parameter to estimate the rock quality. However, the pore structure characterization of rocks under load is not studied well. In this paper, sandstone specimens were preloaded to six different stress levels, and then the pore structure of rock was characterized by SEM and NMR, respectively. The results show the following: (1) The damage in sandstone increases with predefined stress, and the rate significantly increases over 0.8 uniaxial compressive strength (UCS). (2) There is a critical value in the process of rock damage (0.8 UCS), and when it is less than this critical value, the microstructure in the rock is mainly composed of pores and micro-cracks, and the length is generally less than 5 μm; when it exceeds the critical value, there are obvious cracks or even groups of cracks inside the rock. (3) The changes in porosity can be divided into three stages, showing a “√” shape tendency. (4) The pore structure can be visually presented using NMR and SEM, and the distribution mode of the pores changes from separated points to concentrated patches to finally interconnected networks of pores with an increase in the predefined stress. Overall, NMR provides a new method for characterizing rock damage and studying rock microstructure. Full article
(This article belongs to the Special Issue Advances in Risk and Reliability Analysis)
Show Figures

Figure 1

13 pages, 10573 KiB  
Article
Phase-Field Modeling of Hydraulic Fracture in Porous Media with In Situ Stresses
by Tao You
Processes 2024, 12(8), 1671; https://doi.org/10.3390/pr12081671 - 9 Aug 2024
Viewed by 644
Abstract
While the variational phase-field model has been widely used in modeling fracturing in porous media, it poses a challenge when applying high confining pressures on a model because the relatively large deformation induced by the confining pressures might cause undesired crack nucleation when [...] Read more.
While the variational phase-field model has been widely used in modeling fracturing in porous media, it poses a challenge when applying high confining pressures on a model because the relatively large deformation induced by the confining pressures might cause undesired crack nucleation when the strain decomposition scheme are used, which is not consistent with engineering observations. This study proposes a two-step strategy to incorporate in situ stresses into phase-field modeling of hydraulic fractures, addressing the limitations of previous approaches in capturing realistic fracture initiation and propagation under high confinement. A micromechanics-based hydromechanical phase-field model is presented first, and the proposed two-step strategy is investigated with different strain decomposition schemes: isotropic, volumetric–deviatoric, and no-tension models. Two numerical examples show that the two-step strategy effectively achieves a desired initial state with geostatic stresses and zero strain, allowing for accurate simulations even in the presence of complex natural fractures. The efficiency of the proposed two-step strategy for incorporating in situ stresses is highlighted, and the challenges associated with capturing stiffness recovery and shear fracture nucleation under high confinement using strain-based models are discussed. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

20 pages, 12121 KiB  
Article
Simulation of Frost-Heave Failure of Air-Entrained Concrete Based on Thermal–Hydraulic–Mechanical Coupling Model
by Xinmiao Wang, Feng Xue, Xin Gu and Xiaozhou Xia
Materials 2024, 17(15), 3727; https://doi.org/10.3390/ma17153727 - 27 Jul 2024
Viewed by 768
Abstract
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based [...] Read more.
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal–hydraulic–mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 6085 KiB  
Article
Micromechanical Estimates Compared to FE-Based Methods for Modelling the Behaviour of Micro-Cracked Viscoelastic Materials
by Sarah Abou Chakra, Benoît Bary, Eric Lemarchand, Christophe Bourcier, Sylvie Granet and Jean Talandier
Modelling 2024, 5(2), 625-641; https://doi.org/10.3390/modelling5020033 - 20 Jun 2024
Viewed by 458
Abstract
The purpose of this study is to investigate the effective behaviour of a micro-cracked material whose matrix bulk and shear moduli are ruled by a linear viscoelastic Burgers model. The analysis includes a detailed study of randomly oriented and distributed cracks displaying an [...] Read more.
The purpose of this study is to investigate the effective behaviour of a micro-cracked material whose matrix bulk and shear moduli are ruled by a linear viscoelastic Burgers model. The analysis includes a detailed study of randomly oriented and distributed cracks displaying an overall isotropic behaviour, as well as aligned cracks resulting in a transversely isotropic medium. Effective material properties are approximated with the assumption that the homogenized equivalent medium exhibits the characteristics of a Burgers model, leading to the identification of short-term and long-term homogenized modules in the Laplace–Carson space through simplified formulations. The crucial advantage of this analytical technique consists in avoiding calculations of the inverse Laplace–Carson transform. The micromechanical estimates are validated through comparisons with FE numerical simulations on 3D microstructures generated with zero-thickness void cracks of disc shape. Intersections between randomly oriented cracks are accounted for, thereby highlighting a potential percolation phenomenon. The effects of micro-cracks on the material’s behaviour are then studied with the aim of providing high-performance creep models for macrostructure calculations at a moderate computation cost through the application of analytical homogenization techniques. Full article
Show Figures

Figure 1

20 pages, 6669 KiB  
Article
Analysis of Damage Process in a Pre-Notched Rock Specimen: The Synergy between Experimental Results and Simulations Using a Peridynamic Model
by William Ramires Almeida, Boris Nahuel Rojo Tanzi, Gabriel Birck, Ignacio Iturrioz and Giuseppe Lacidogna
Appl. Sci. 2024, 14(11), 4721; https://doi.org/10.3390/app14114721 - 30 May 2024
Viewed by 389
Abstract
The mechanical description of the failure of quasi-brittle materials is a challenging task. Rocks, concrete, ceramics, and natural or artificial composites could be considered for this material classification. Several characteristic phenomena appear as emergent global behaviors based on the interaction of many simple [...] Read more.
The mechanical description of the failure of quasi-brittle materials is a challenging task. Rocks, concrete, ceramics, and natural or artificial composites could be considered for this material classification. Several characteristic phenomena appear as emergent global behaviors based on the interaction of many simple elements, such as the effect of size and the interactions between micro-cracks. These are essential features of a complex system. These topics were investigated using acoustic emission techniques and a numerical approach that used a continuum media hypothesis called peridynamics. In this context, a pre-notched concrete specimen was manufactured. A mechanical test was performed to acquire acoustic emission signals. The problem was also simulated using the peridynamic model. The evolution of the damage process, which is presented in terms that go beyond only the global reaction vs. displacement and the evolution of the acoustical emission global parameter, is presented. Finally, the synergy between the experiments and simulations is discussed. Full article
Show Figures

Figure 1

18 pages, 8716 KiB  
Article
Effect of Process Parameters on Welding Residual Stress of 316L Stainless Steel Pipe
by Xiaowei Jiang, Wenhui Wang, Chunguang Xu, Jingdong Li and Jiangquan Lu
Materials 2024, 17(10), 2201; https://doi.org/10.3390/ma17102201 - 8 May 2024
Viewed by 751
Abstract
316L stainless steel pipes are widely used in the storage and transportation of low-temperature media due to their excellent low-temperature mechanical properties and corrosion resistance. However, due to their low thermal conductivity and large coefficient of linear expansion, they often lead to significant [...] Read more.
316L stainless steel pipes are widely used in the storage and transportation of low-temperature media due to their excellent low-temperature mechanical properties and corrosion resistance. However, due to their low thermal conductivity and large coefficient of linear expansion, they often lead to significant welding residual tensile stress and thermal cracks in the weld seam. This also poses many challenges for their secure and reliable applications. In order to effectively control the crack defects caused by stress concentration near the heat-affected zone of the weld, this paper establishes a thermal elastoplastic three-dimensional finite element (FE) model, constructs a welding heat source, and simulates and studies the influence of process parameters on the residual stress around the pipeline circumference and axial direction in the heat-affected zone. Comparison and verification were conducted using simulation and experimental methods, respectively, proving the rationality of the finite element model establishment. The axial and circumferential residual stress distribution obtained by the simulation method did not have an average deviation of more than 30 MPa from the numerical values obtained by the experimental method. This study also considers the effects of welding energy, welding speed, and welding start position on the pipe’s circumferential and axial residual stress laws. The results indicate that changes in welding energy and welding speed have almost no effect on the longitudinal residual stress but have a more significant effect on the transverse residual stress. The maximum transverse residual stress is reached at a welding energy of 1007.4~859.3 J/mm and a welding speed of 6.6 mm/s. Various interlayer arc-striking deflection angles can impact the cyclic phase angle of the transverse residual stress distribution in the seam center, but they do not alter its cyclic pattern. They do influence the amplitude and distribution of the longitudinal residual stress along the circumference. The residual stress distribution on the surface of the pipe fitting is homogenized and improved at 120°. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials (2nd Edition))
Show Figures

Figure 1

18 pages, 6321 KiB  
Article
A Study on the Corrosion Behavior of RGO/Cu/Fe-Based Amorphous Composite Coatings in High-Temperature Seawater
by Zhenhua Chu, Yunzheng Zhang, Wan Tang, Yuchen Xu and Jingxiang Xu
Coatings 2024, 14(5), 556; https://doi.org/10.3390/coatings14050556 - 1 May 2024
Viewed by 1351
Abstract
In this paper, based on an Fe-based amorphous alloy, four kinds of RGO/Cu/Fe-based amorphous composite coatings with mass ratios of 5%, 10%, 15%, and 20% of RGO/Cu were prepared on the surface of 45# steel by using high-velocity oxy-fuel (HVOF) spraying. The coatings [...] Read more.
In this paper, based on an Fe-based amorphous alloy, four kinds of RGO/Cu/Fe-based amorphous composite coatings with mass ratios of 5%, 10%, 15%, and 20% of RGO/Cu were prepared on the surface of 45# steel by using high-velocity oxy-fuel (HVOF) spraying. The coatings were immersed in simulated seawater at room temperature and at 90 °C for different lengths of time, and their corrosion resistance was tested using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffraction (XRD), and the surface morphology and phase distribution of the samples were observed. The results showed that with the increase in the introduction ratio of RGO/Cu, when the addition ratio reached 15%, the composite coating had the best corrosion resistance. After soaking in simulated seawater at 90 °C for 18 days, the surface of the coating showed slight peeling and crack propagation, but no obvious pitting phenomenon occurred. The corrosion mechanism of the RGO/Cu/Fe coating in high-temperature seawater is mainly that high temperature causes the cracking of the coating, which opens up a transport channel for corrosion media. However, due to the addition of RGO, the corrosion has a certain self-limitation effect, which is mainly due to the toughening effect of RGO on the coating and its effect on extending the corrosion channel. Full article
(This article belongs to the Topic Alloys and Composites Corrosion and Mechanical Properties)
Show Figures

Figure 1

34 pages, 19182 KiB  
Article
Shear Banding and Cracking in Unsaturated Porous Media through a Nonlocal THM Meshfree Paradigm
by Hossein Pashazad and Xiaoyu Song
Geosciences 2024, 14(4), 103; https://doi.org/10.3390/geosciences14040103 - 9 Apr 2024
Viewed by 1088
Abstract
The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This [...] Read more.
The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This article investigates the shear banding and cracking in unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical (THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechanics using integral equations, which is robust in simulating continuous and discontinuous deformation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm is used to implement the nonlocal THM constitutive model numerically. Numerical examples are presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical results are examined to study the effect of temperature variations on the formation of shear banding and cracking in unsaturated porous media. Full article
Show Figures

Figure 1

16 pages, 4182 KiB  
Article
Radon Emanation and Dynamic Processes in Highly Dispersive Media
by Vladislav B. Zaalishvili, Dmitry A. Melkov, Nikita V. Martyushev, Roman V. Klyuev, Vladislav V. Kukartsev, Vladimir Yu. Konyukhov, Roman V. Kononenko, Angelika L. Gendon and Tatiana A. Oparina
Geosciences 2024, 14(4), 102; https://doi.org/10.3390/geosciences14040102 - 9 Apr 2024
Cited by 3 | Viewed by 1087
Abstract
The paper considers a dispersive geological medium (seismically turbid medium, as defined by A.V. Nikolaev), which is in a stress–strain state. Results of studies on the joint monitoring of seismic effects and radon emanation in various geological environments are presented. It is concluded [...] Read more.
The paper considers a dispersive geological medium (seismically turbid medium, as defined by A.V. Nikolaev), which is in a stress–strain state. Results of studies on the joint monitoring of seismic effects and radon emanation in various geological environments are presented. It is concluded that the turbidity of the medium, as a statistical characteristic, can be generalized in terms of other media parameters, such as permeability. A stable connection between radon emanation and dynamic processes occurring in a geological environment and caused by external influences has been established. The concentration of radon can also reflect the degree of enrichment of the environment by underground fractures. Consequently, saturation of the environment with radon provides information about the presence of disturbances in a geological environment in the form of cracks and a stress–strain state of the medium before and after seismic loadings. Radon observations make it possible to assess a continuity of the environment and the possibility of leaching in natural conditions. Therefore, it could be efficiently used for underground leaching efficiency assessment. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes 2023)
Show Figures

Figure 1

19 pages, 6096 KiB  
Article
Research on the Permeability and Pore Structure Distribution Characteristics of High-Performance Mortar for Surface Treatment of Bridge Piers and Columns
by Xianzheng Yu, Hua Liu, Xiaolin Fan, Liangyu Zhu, Chengqi Zhang and Shiyi Zhang
Buildings 2024, 14(3), 811; https://doi.org/10.3390/buildings14030811 - 16 Mar 2024
Viewed by 884
Abstract
In marine environments, bridge piers and columns are prone to corrosion caused by harmful media, particularly chloride ions. This corrosion can lead to cracking of the steel bars in the protective layer of the bridge piers. To enhance the corrosion resistance of concrete [...] Read more.
In marine environments, bridge piers and columns are prone to corrosion caused by harmful media, particularly chloride ions. This corrosion can lead to cracking of the steel bars in the protective layer of the bridge piers. To enhance the corrosion resistance of concrete in bridge piers, this article introduces the use of nanoclay-modified cement mortar. This innovative material offers high-performance surface treatment options that can effectively slow down the erosion process of harmful media and reduce the risk of bridge pier column cracking. To evaluate the ion erosion resistance of this nanoclay-modified cement mortar, we conducted detailed experiments on the pore structure of cement paste. The pore structure of cement paste with different dosages of nano-kaolinite clay and the dispersion method was studied using mercury intrusion porosimetry (MIP). The fractal dimension of the pore surface area of the net cement paste was calculated from the fractal model based on thermodynamic relationships of the pore structure-related parameters obtained with mercury pressure experiments. The relationship among the multiple fractal dimensions, pore structure parameters, dispersion mode, and permeability is explored. The results show that the addition of nano-kaolinite clay particles can improve the internal pore structure of cement materials. When 1.5% nano-kaolinite clay is mechanical dispersed, the total specific pore volume and the most probable pore size are reduced by 47.83% and 56.87%, respectively, compared with the control group. The fractal dimension image of cement-based materials with nano-kaolinite clay has a range of singular points and does not have fractal characteristics in this range. Nano-kaolinite clay has a significant effect on the fractal dimension of pore size range I. The fractal dimension of the whole pore size range is not suitable for the analysis of permeability, and the fractal dimension calculated by selecting less than the critical pore size range has a good correlation with permeability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 8501 KiB  
Article
Highly Electroconductive Metal-Polymer Hybrid Foams Based on Silver Nanowires: Manufacturing and Characterization
by Petrică Linul, Radu Bănică, Oana Grad, Emanoil Linul and Nicolae Vaszilcsin
Polymers 2024, 16(5), 608; https://doi.org/10.3390/polym16050608 - 23 Feb 2024
Cited by 1 | Viewed by 972
Abstract
Due to their electroconductive properties, flexible open-cell polyurethane foam/silver nanowire (PUF/AgNW) structures can provide an alternative for the construction of cheap pressure transducers with limited lifetimes or used as filter media for air conditioning units, presenting bactericidal and antifungal properties. In this paper, [...] Read more.
Due to their electroconductive properties, flexible open-cell polyurethane foam/silver nanowire (PUF/AgNW) structures can provide an alternative for the construction of cheap pressure transducers with limited lifetimes or used as filter media for air conditioning units, presenting bactericidal and antifungal properties. In this paper, highly electroconductive metal-polymer hybrid foams (MPHFs) based on AgNWs were manufactured and characterized. The electrical resistance of MPHFs with various degrees of AgNW coating was measured during repeated compression. For low degrees of AgNW coating, the decrease in electrical resistance during compression occurs in steps and is not reproducible with repeated compression cycles due to the reduced number of electroconductive zones involved in obtaining electrical conductivity. For high AgNW coating degrees, the decrease in resistance is quasi-linear and reproducible after the first compression cycle. However, after compression, cracks appear in the foam cell structure, which increases the electrical resistance and decreases the mechanical strength. It can be considered that PUFs coated with AgNWs have a compression memory effect and can be used as cheap solutions in industrial processes in which high precision is not required, such as exceeding a maximum admissible load or as ohmic seals for product security. Full article
Show Figures

Graphical abstract

23 pages, 2936 KiB  
Article
Degradation Potential of Xerophilic and Xerotolerant Fungi Contaminating Historic Canvas Paintings
by Amela Kujović, Cene Gostinčar, Katja Kavkler, Natalija Govedić, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2024, 10(1), 76; https://doi.org/10.3390/jof10010076 - 18 Jan 2024
Cited by 3 | Viewed by 1865
Abstract
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading [...] Read more.
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking. With the aim of recognizing the most dangerous fungal species to the integrity and stability of paintings, we studied 55 recently isolated and identified strains from historic paintings or depositories, including 46 species from 16 genera. The fungi were categorized as xero/halotolerant or xero/halophilic based on their preference for solutes (glycerol or NaCl) that lower the water activity (aw) of the medium. Accordingly, the aw value of all further test media had to be adjusted to allow the growth of xero/halophilic species. The isolates were tested for growth at 15, 24 °C and 37 °C. The biodeterioration potential of the fungi was evaluated by screening their acidification properties, their ability to excrete pigments and their enzymatic activities, which were selected based on the available nutrients in paintings on canvas. A DNase test was performed to determine whether the selected fungi could utilize DNA of dead microbial cells that may be covering surfaces of the painting. The sequestration of Fe, which is made available through the production of siderophores, was also tested. The ability to degrade aromatic and aliphatic substrates was investigated to consider the potential degradation of synthetic restoration materials. Xerotolerant and moderately xerophilic species showed a broader spectrum of enzymatic activities than obligate xerophilic species: urease, β-glucosidase, and esterase predominated, while obligate xerophiles mostly exhibited β-glucosidase, DNase, and urease activity. Xerotolerant and moderately xerophilic species with the highest degradation potential belong to the genus Penicillium, while Aspergillus penicillioides and A. salinicola represent obligately xerophilic species with the most diverse degradation potential in low aw environments. Full article
(This article belongs to the Special Issue Fungal Biodeterioration)
Show Figures

Figure 1

Back to TopTop