Shear Banding and Cracking in Unsaturated Porous Media through a Nonlocal THM Meshfree Paradigm
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Governing Equation
2.2. Kinematics
2.3. Correspondence THM Constitutive Model
2.3.1. Constitutive Correspondence Principle
2.3.2. Thermal Elastoplastic Model for Unsaturated Soils
2.4. Energy-Based Bond Breakage Criterion
3. Numerical Implementation
3.1. Global Integration in Time
Algorithm 1 Summary of the numerical integration algorithm of the thermo–hydro–mechanical (THM) periporomechanic (PPM) paradigm | |
Given: and compute: | |
1: | Update time |
2: | while do |
3: | for all points do |
4: | Compute the velocity predictor using (42) |
5: | Apply boundary conditions |
6: | Compute displacement predictor using (43) |
7: | for each neighbor do |
8: | Update deformation state using (53) |
9: | Compute deformation gradient tensor using (54) |
10: | end for |
11: | Compute unrotated rate of deformation tensor using (57) |
12: | Update temperature using (60) and suction using (59) |
13: | Update preconsolidation pressure |
14: | Compute trial elastic strain tensor using (62) |
15: | Compute the trial effective stress |
16: | Compute the trial yield function |
17: | if then |
18: | Update effective stress |
19: | else if then |
20: | Compute the residual |
21: | if then |
22: | Go to line 30 |
23: | else if then |
24: | Compute using (73) |
25: | Solve using (71) |
26: | Update the using (72) |
27: | |
28: | Go to line 20 |
29: | end if |
30: | Update effective stress using (26) |
31: | end if |
32: | Compute the effective force state using (75) |
33: | Compute using (45) |
34: | Solve acceleration using (44) |
35: | Update velocity using (47) |
36: | Update displacement using (48) |
37: | Compute kinematic energy using (51) |
38: | Compute internal energy using (49) and external energy using (50) |
39: | Check energy balance |
40: | for each neighbor do |
41: | Compute bond energy |
42: | if then |
43: | Update influence function |
44: | Update damage variable |
45: | end if |
46: | end for |
47: | end for |
48: | end while |
49: |
3.2. Implementation of the Material Model
4. Numerical Examples
4.1. Accuracy Assessment with Isoerror Maps
4.2. Shear Banding Under Non-Isothermal Conditions
4.2.1. Scenario 1: Elevated Constant Temperature
4.2.2. Scenario 2: Increasing Temperature
4.2.3. Scenario 3: Increasing Temperature and Decreasing Suction
4.3. Cracking in an Elastic Unsaturated Disk Specimen
4.4. Discussions
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 10. [Google Scholar]
- Cheng, A.H.D. Poroelasticity; Springer: Berlin/Heidelberg, Germany, 2016; Volume 27. [Google Scholar]
- Coussy, O. Poromechanics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Matasovic, N.; Kavazanjian, E., Jr.; Augello, A.J.; Bray, J.D.; Seed, R.B. Solid waste landfill damage caused by 17 January 1994 Northridge earthquake. Northridge Calif. Earthq. 1994, 17, 221–229. [Google Scholar]
- Zoback, M.D. Reservoir Geomechanics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wartman, J.; Montgomery, D.R.; Anderson, S.A.; Keaton, J.R.; Benoît, J.; dela Chapelle, J.; Gilbert, R. The 22 March 2014 Oso landslide, Washington, USA. Geomorphology 2016, 253, 275–288. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Pearson Education India: Chennai, India, 1996. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Gens, A. Soil–environment interactions in geotechnical engineering. Géotechnique 2010, 60, 3–74. [Google Scholar] [CrossRef]
- Wang, K.; Song, X. Strain localization in non-isothermal unsaturated porous media considering material heterogeneity with stabilized mixed finite elements. Comput. Methods Appl. Mech. Eng. 2020, 359, 112770. [Google Scholar] [CrossRef]
- Song, X.; Wang, M.C. Molecular dynamics modeling of a partially saturated clay-water system at finite temperature. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 2129–2146. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, X. Nonequilibrium molecular dynamics (NEMD) modeling of nanoscale hydrodynamics of clay-water system at elevated temperature. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 889–909. [Google Scholar] [CrossRef]
- Sánchez, M.; Gens, A.; Olivella, S. THM analysis of a large-scale heating test incorporating material fabric changes. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 391–421. [Google Scholar] [CrossRef]
- Coccia, C.R.; McCartney, J. A thermo-hydro-mechanical true triaxial cell for evaluation of the impact of anisotropy on thermally induced volume changes in soils. Geotech. Test. J. 2012, 35, 227–237. [Google Scholar] [CrossRef]
- Zhang, X.; Briaud, J.L. Three dimensional numerical simulation of residential building on shrink–swell soils in response to climatic conditions. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 1369–1409. [Google Scholar] [CrossRef]
- Song, X.; Wang, K.; Bate, B. A hierarchical thermo-hydro-plastic constitutive model for unsaturated soils and its numerical implementation. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1785–1805. [Google Scholar] [CrossRef]
- Song, X.; Wang, K.; Ye, M. Localized failure in unsaturated soils under non-isothermal conditions. Acta Geotech. 2018, 13, 73–85. [Google Scholar] [CrossRef]
- Habibishandiz, M.; Saghir, M. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms. Therm. Sci. Eng. Prog. 2022, 30, 101267. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, R.; Cai, G.; Hu, W.; Yang, G. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics. Comput. Geotech. 2021, 137, 104272. [Google Scholar] [CrossRef]
- Vasheghani Farahani, M.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Heat transfer in unfrozen and frozen porous media: Experimental measurement and pore-scale modeling. Water Resour. Res. 2020, 56, e2020WR027885. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. A stabilized computational nonlocal poromechanics model for dynamic analysis of saturated porous media. Int. J. Numer. Methods Eng. 2021, 122, 5512–5539. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. Updated Lagrangian unsaturated periporomechanics for extreme large deformation in unsaturated porous media. Comput. Methods Appl. Mech. Eng. 2022, 400, 115511. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. Computational coupled large-deformation periporomechanics for dynamic failure and fracturing in variably saturated porous media. Int. J. Numer. Methods Eng. 2023, 124, 80–118. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. A computational periporomechanics model for localized failure in unsaturated porous media. Comput. Methods Appl. Mech. Eng. 2021, 384, 113932. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. Computational multiphase periporomechanics for unguided cracking in unsaturated porous media. Int. J. Numer. Methods Eng. 2022, 123, 2837–2871. [Google Scholar] [CrossRef]
- Menon, S.; Song, X. Shear banding in unsaturated geomaterials through a strong nonlocal hydromechanical model. Eur. J. Environ. Civ. Eng. 2022, 26, 3357–3371. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T. Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 2000, 48, 1549–1570. [Google Scholar] [CrossRef]
- Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002, 69, 813–833. [Google Scholar] [CrossRef]
- Khoei, A.R. Extended Finite Element Method: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Miehe, C.; Welschinger, F.; Hofacker, M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 2010, 83, 1273–1311. [Google Scholar] [CrossRef]
- De Borst, R. Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Menon, S.; Song, X. Coupled analysis of desiccation cracking in unsaturated soils through a non-local mathematical formulation. Geosciences 2019, 9, 428. [Google Scholar] [CrossRef]
- François, B.; Laloui, L. ACMEG-TS: A constitutive model for unsaturated soils under non-isothermal conditions. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1955–1988. [Google Scholar] [CrossRef]
- Bolzon, G.; Schrefler, B.A. Thermal effects in partially saturated soils: A constitutive model. Int. J. Numer. Anal. Methods Geomech. 2005, 29, 861–877. [Google Scholar] [CrossRef]
- Gens, A.; Jouanna, P.; Schrefler, B. Modern Issues in Non-Saturated Soils; Number BOOK; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Wu, W.; Li, X.; Charlier, R.; Collin, F. A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils. Comput. Geotech. 2004, 31, 155–167. [Google Scholar] [CrossRef]
- Dumont, M.; Taibi, S.; Fleureau, J.M.; Abou-Bekr, N.; Saouab, A. A thermo-hydro-mechanical model for unsaturated soils based on the effective stress concept. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1299–1317. [Google Scholar] [CrossRef]
- Mašín, D.; Khalili, N. A thermo-mechanical model for variably saturated soils based on hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1461–1485. [Google Scholar] [CrossRef]
- Xiong, Y.; Ye, G.; Zhu, H.; Zhang, S.; Zhang, F. Thermo-elastoplastic constitutive model for unsaturated soils. Acta Geotech. 2016, 11, 1287–1302. [Google Scholar] [CrossRef]
- Zhou, C.; Ng, C.W.W. Simulating the cyclic behaviour of unsaturated soil at various temperatures using a bounding surface model. Géotechnique 2016, 66, 344–350. [Google Scholar] [CrossRef]
- Schofield, A.N.; Wroth, P. Critical State Soil Mechanics; McGraw-Hill: London, UK, 1968; Volume 310. [Google Scholar]
- Zienkiewicz, O.C.; Chan, A.; Pastor, M.; Schrefler, B.; Shiomi, T. Computational Geomechanics; Citeseer: University Park, PA, USA, 1999; Volume 613. [Google Scholar]
- Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. Peridynamic states and constitutive modeling. J. Elast. 2007, 88, 151–184. [Google Scholar] [CrossRef]
- Song, X.; Silling, S.A. On the peridynamic effective force state and multiphase constitutive correspondence principle. J. Mech. Phys. Solids 2020, 145, 104161. [Google Scholar] [CrossRef]
- Song, X.; Khalili, N. A peridynamics model for strain localization analysis of geomaterials. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 77–96. [Google Scholar] [CrossRef]
- Song, X.; Menon, S. Modeling of chemo-hydromechanical behavior of unsaturated porous media: A nonlocal approach based on integral equations. Acta Geotech. 2019, 14, 727–747. [Google Scholar] [CrossRef]
- Song, X.; Pashazad, H. Computational Cosserat periporomechanics for strain localization and cracking in deformable porous media. Int. J. Solids Struct. 2023, 288, 112593. [Google Scholar] [CrossRef]
- Pashazad, H.; Song, X. Computational multiphase micro-periporomechanics for dynamic shear banding and fracturing of unsaturated porous media. Int. J. Numer. Methods Eng. 2023, 125, e7418. [Google Scholar] [CrossRef]
- Kakogiannou, E.; Sanavia, L.; Nicot, F.; Darve, F.; Schrefler, B.A. A porous media finite element approach for soil instability including the second-order work criterion. Acta Geotech. 2016, 11, 805–825. [Google Scholar] [CrossRef]
- Song, X.; Borja, R.I. Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Methods Eng. 2014, 97, 658–682. [Google Scholar] [CrossRef]
- Song, X. Transient bifurcation condition of partially saturated porous media at finite strain. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 135–156. [Google Scholar] [CrossRef]
- Borja, R.I. Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput. Methods Appl. Mech. Eng. 2004, 193, 5301–5338. [Google Scholar] [CrossRef]
- Simo, J.C.; Hughes, T.J. Computational Inelasticity; Springer Science & Business Media: New York, NY, USA, 1998; Volume 7. [Google Scholar]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashazad, H.; Song, X. Shear Banding and Cracking in Unsaturated Porous Media through a Nonlocal THM Meshfree Paradigm. Geosciences 2024, 14, 103. https://doi.org/10.3390/geosciences14040103
Pashazad H, Song X. Shear Banding and Cracking in Unsaturated Porous Media through a Nonlocal THM Meshfree Paradigm. Geosciences. 2024; 14(4):103. https://doi.org/10.3390/geosciences14040103
Chicago/Turabian StylePashazad, Hossein, and Xiaoyu Song. 2024. "Shear Banding and Cracking in Unsaturated Porous Media through a Nonlocal THM Meshfree Paradigm" Geosciences 14, no. 4: 103. https://doi.org/10.3390/geosciences14040103