Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = colorimetric sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5236 KiB  
Article
A Multimode Detection Platform for Biothiols Using BODIPY Dye-Conjugated Gold Nanoparticles
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2024, 3(3), 214-228; https://doi.org/10.3390/colorants3030015 - 12 Aug 2024
Viewed by 568
Abstract
This study explored the synthesis and application of BODIPY-functionalized gold nanoparticles (AuNPs) for the sensitive detection of biothiols via an indicator displacement assay coupled with surface-enhanced Raman scattering (SERS) techniques, alongside their efficacy for in vitro cancer cell imaging. Moreover, the assay allowed [...] Read more.
This study explored the synthesis and application of BODIPY-functionalized gold nanoparticles (AuNPs) for the sensitive detection of biothiols via an indicator displacement assay coupled with surface-enhanced Raman scattering (SERS) techniques, alongside their efficacy for in vitro cancer cell imaging. Moreover, the assay allowed for the visible colorimetric detection of biothiols under normal and ultraviolet light conditions. The BODIPY (boron-dipyrromethene) fluorophores were strategically conjugated to the surface of gold nanoparticles, forming a robust nanohybrid that leverages the plasmonic properties of AuNPs for enhanced spectroscopic sensitivity. The detection mechanism exploited the displacement of the BODIPY indicator upon interaction with biothiols, triggering a measurable change in fluorescence and SERS signals. This dual-mode sensing approach provides high selectivity and sensitivity for biothiol detection, with detection limits reaching nanomolar concentrations using fluorescence and femtomolar concentration for cysteine using SERS. Furthermore, the BODIPY-AuNP complexes demonstrated excellent biocompatibility and photostability, facilitating their use in the fluorescence imaging of biothiol presence within cellular environments and highlighting their potential for diagnostic and therapeutic applications in biomedical research. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Figure 1

20 pages, 3401 KiB  
Article
Starch-Based Functional Films Enhanced with Bacterial Nanocellulose for Smart Packaging: Physicochemical Properties, pH Sensitivity and Colorimetric Response
by Sanja Mahović Poljaček, Tamara Tomašegović, Maja Strižić Jakovljević, Sonja Jamnicki Hanzer, Ivana Murković Steinberg, Iva Žuvić, Mirela Leskovac, Gregor Lavrič, Urška Kavčič and Igor Karlovits
Polymers 2024, 16(16), 2259; https://doi.org/10.3390/polym16162259 - 9 Aug 2024
Viewed by 875
Abstract
Starch-based pH-sensing films with bacterial nanocellulose (BNC) and red cabbage anthocyanins (RCA) as active components were investigated in this research. Their structural, physical, surface and colorimetric properties were analyzed, mainly as a function of BNC concentration. The aim of the research was to [...] Read more.
Starch-based pH-sensing films with bacterial nanocellulose (BNC) and red cabbage anthocyanins (RCA) as active components were investigated in this research. Their structural, physical, surface and colorimetric properties were analyzed, mainly as a function of BNC concentration. The aim of the research was to relate the changes in the intermolecular interactions between the components of the films (starch, anthocyanins and BNC) to the physical, surface and colorimetric properties that are important for the primary intended application of the produced films as pH indicators in smart packaging. The results showed that maize starch (MS) was more suitable as a matrix for the stabilization of anthocyanins compared to potato starch (PS). PS-based films showed a lower value of water contact angle than MS-based films, indicating stronger hydrophilicity. The swelling behavior results indicate that the concentrations of BNC in MS-based films (cca 10%) and the concentration of about 50% BNC in PS-based films are required if satisfactory properties of the indicator in terms of stability in a wet environment are to be achieved. The surface free energy results of PS-based films with BNC were between 62 and 68 mJ/m2 and with BNC and RCA between 64 and 68 mJ/m2; for MS-based films, the value was about 65 mJ/m2 for all samples with BNC and about 68 mJ/m2 for all samples with BNC and RCA. The visual color changes after immersion in different buffer solutions (pH 2.0–10.5) showed a gradual transition from red/pink to purple, blue and green for the observed samples. Films immersed in different buffers showed lower values of 2 to 10 lightness points (CIE L*) for PS-based films and 10 to 30 lightness points for MS-based films after the addition of BNC. The results of this research can make an important contribution to defining the influence of intermolecular interactions and structural changes on the physical, surface and colorimetric properties of bio-based pH indicators used in smart packaging applications. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

19 pages, 3448 KiB  
Article
Trimetallic FeCoNi Metal–Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples
by Zehui Deng, Jiaqing Cao, Lei Zhao, Zhao Zhang and Jianwei Yuan
Molecules 2024, 29(16), 3739; https://doi.org/10.3390/molecules29163739 - 7 Aug 2024
Viewed by 776
Abstract
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this [...] Read more.
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal–organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of H2O2 to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26–2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50–5.89 folds) and H2O2 (1.73–3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker H2O2 and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for H2O2 and 0.045 μM for TP) and wider linear ranges (6–800 μM for H2O2 and 0.5–80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient. Full article
Show Figures

Graphical abstract

16 pages, 5237 KiB  
Article
Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container
by Janet Crespo-Cajigas, Abuzar Kabir, Joel Carrasco, Amatullah Shahid, Kenneth G. Furton and Lauryn E. DeGreeff
Analytica 2024, 5(3), 295-310; https://doi.org/10.3390/analytica5030019 - 7 Jul 2024
Cited by 1 | Viewed by 874 | Correction
Abstract
Contamination of trace levels of volatile organic compounds (VOCs) in enclosed spaces is not usually a significant cause for concern; however, it can be relevant in the case of canine scent detection training as a canine’s superior sense of smell makes them highly [...] Read more.
Contamination of trace levels of volatile organic compounds (VOCs) in enclosed spaces is not usually a significant cause for concern; however, it can be relevant in the case of canine scent detection training as a canine’s superior sense of smell makes them highly likely to detect low levels of contamination, contributing to inefficient training. Thus, herein, we address the need for a simple, low-cost, robust, vapochromic sensor to determine the cross-contamination of VOCs within closed containers, such as canine training aid kits. This study focuses on the development of a vapor sensor, which produces a rapid colorimetric change when a target chemical vapor is present. A pH indicator is used as the colorimetric dye and its incorporation into a sol–gel matrix on a paper substrate is confirmed via SEM characterization. The sensor’s stability and performance is tested against exposure to various levels of sunlight and temperature. The design allows the sensor to present a clear and unambiguous visible response to the release of the volatile target within a closed container. It can be readily incorporated into existing training kits and functions as a straightforward reminder of when training aids need to be changed or a new containment system should be considered. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

25 pages, 6056 KiB  
Review
Recent Development of Electrospun Nanostructured Fibers as Colorimetric Probes for Metal Ion Sensing: A Review
by Mohanraj Jagannathan, Ravi Kumar Yohan and Sungbo Cho
Chemosensors 2024, 12(7), 129; https://doi.org/10.3390/chemosensors12070129 - 5 Jul 2024
Viewed by 904
Abstract
The colorimetric detection of metal ions has witnessed a surge in advancements, with nanostructured fibers emerging as a powerful platform for environmental monitoring and remediation applications. These fibers offer several advantages, including a high surface area, enhanced sensitivity and selectivity, non-intrusive analysis, rapid [...] Read more.
The colorimetric detection of metal ions has witnessed a surge in advancements, with nanostructured fibers emerging as a powerful platform for environmental monitoring and remediation applications. These fibers offer several advantages, including a high surface area, enhanced sensitivity and selectivity, non-intrusive analysis, rapid response times, robustness under harsh conditions, and user-friendly handling. This unique combination makes them particularly suitable for visible eye detection of metal ions in remote or challenging environments. This review provides a concise overview of recent developments in nanostructured fibers, and their cutting-edge fabrication methods, for the colorimetric-based detection of various heavy metal ions in real-time samples. By exploiting the unique properties of these fibers, colorimetric detection offers a promising and cost-effective approach for heavy metal ion determination. This review delves into the design principles, functionalization strategies, and detection mechanisms employed in these innovative sensors. We highlight the potential of nanostructured fibers as a well-established and efficient platform for the colorimetric detection of heavy metals, paving the way for more sustainable and accessible environmental monitoring solutions. Full article
Show Figures

Figure 1

26 pages, 12538 KiB  
Article
Chloride Gradient Is Involved in Ammonium Influx in Human Erythrocytes
by Julia Sudnitsyna, Tamara O. Ruzhnikova, Mikhail A. Panteleev, Alexandra Kharazova, Stepan Gambaryan and Igor V. Mindukshev
Int. J. Mol. Sci. 2024, 25(13), 7390; https://doi.org/10.3390/ijms25137390 - 5 Jul 2024
Viewed by 664
Abstract
The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not [...] Read more.
The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl and HCO3). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

16 pages, 5170 KiB  
Article
Development of Electrochemical and Colorimetric Biosensors for Detection of Dopamine
by Rimsha Khan, Saima Anjum, Nishat Fatima, Nosheen Farooq, Aqeela Shaheen, Javier Fernandez Garcia, Muhammad Imran Khan and Abdallah Shanableh
Chemosensors 2024, 12(7), 126; https://doi.org/10.3390/chemosensors12070126 - 3 Jul 2024
Viewed by 1099
Abstract
Neurotransmitters are essential chemical messengers required for proper brain function, and any changes in their concentrations can lead to neuronal diseases. Therefore, sensitive and selective detection is crucial. This study presents a fast and simple colorimetric method for dopamine detection using three reagent [...] Read more.
Neurotransmitters are essential chemical messengers required for proper brain function, and any changes in their concentrations can lead to neuronal diseases. Therefore, sensitive and selective detection is crucial. This study presents a fast and simple colorimetric method for dopamine detection using three reagent solutions: AgNP and MPA, Ag/Au nanocomposite, and mercaptophenylacetic acid. TEM images showed a narrow distribution of Ag and Au nanoparticles with average sizes of 20 nm and 13 nm, respectively, with gold nanoparticles bound to the edges of silver nanoparticles. A paper-based biosensor was created using manual wax printing for the colorimetric detection of dopamine. Visual detection onsite showed color changes with both the silver nanoparticles and mercaptophenylacetic acid mixture and the silver–gold nanoparticle composite. Electrochemical detection using a glassy carbon electrode modified with 8 mM mercaptophenylacetic acid demonstrated high selectivity and sensitivity towards dopamine, with a peak in the range of 0.7–0.9 V. Interferences were minimized, ensuring high sensitivity and selective detection of dopamine. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

16 pages, 4005 KiB  
Article
Development of a Sensitive Colorimetric Indicator for Detecting Beef Spoilage in Smart Packaging
by Dariush Karimi Alavijeh, Bentolhoda Heli and Abdellah Ajji
Sensors 2024, 24(12), 3939; https://doi.org/10.3390/s24123939 - 18 Jun 2024
Cited by 1 | Viewed by 874
Abstract
This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a [...] Read more.
This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform’s efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform’s sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

25 pages, 9101 KiB  
Review
Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives
by Abhijnan Bhat, Furong Tian and Baljit Singh
Sensors 2024, 24(12), 3889; https://doi.org/10.3390/s24123889 - 15 Jun 2024
Viewed by 1487
Abstract
Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as “carcinogenic to humans” by the International Agency for Research on Cancer (IARC) [...] Read more.
Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as “carcinogenic to humans” by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern. Full article
Show Figures

Figure 1

13 pages, 4456 KiB  
Article
3D Printed Hydrogel Sensor for Rapid Colorimetric Detection of Salivary pH
by Magdalena B. Łabowska, Agnieszka Krakos and Wojciech Kubicki
Sensors 2024, 24(12), 3740; https://doi.org/10.3390/s24123740 - 8 Jun 2024
Viewed by 982
Abstract
Salivary pH is one of the crucial biomarkers used for non-invasive diagnosis of intraoral diseases, as well as general health conditions. However, standard pH sensors are usually too bulky, expensive, and impractical for routine use outside laboratory settings. Herein, a miniature hydrogel sensor, [...] Read more.
Salivary pH is one of the crucial biomarkers used for non-invasive diagnosis of intraoral diseases, as well as general health conditions. However, standard pH sensors are usually too bulky, expensive, and impractical for routine use outside laboratory settings. Herein, a miniature hydrogel sensor, which enables quick and simple colorimetric detection of pH level, is shown. The sensor structure was manufactured from non-toxic hydrogel ink and patterned in the form of a matrix with 5 mm × 5 mm × 1 mm individual sensing pads using a 3D printing technique (bioplotting). The authors’ ink composition, which contains sodium alginate, polyvinylpyrrolidone, and bromothymol blue indicator, enables repeatable and stable color response to different pH levels. The developed analysis software with an easy-to-use graphical user interface extracts the R(ed), G(reen), and B(lue) components of the color image of the hydrogel pads, and evaluates the pH value in a second. A calibration curve used for the analysis was obtained in a pH range of 3.5 to 9.0 using a laboratory pH meter as a reference. Validation of the sensor was performed on samples of artificial saliva for medical use and its mixtures with beverages of different pH values (lemon juice, coffee, black and green tea, bottled and tap water), and correct responses to acidic and alkaline solutions were observed. The matrix of square sensing pads used in this study provided multiple parallel responses for parametric tests, but the applied 3D printing method and ink composition enable easy adjustment of the shape of the sensing layer to other desired patterns and sizes. Additional mechanical tests of the hydrogel layers confirmed the relatively high quality and durability of the sensor structure. The solution presented here, comprising 3D printed hydrogel sensor pads, simple colorimetric detection, and graphical software for signal processing, opens the way to development of miniature and biocompatible diagnostic devices in the form of flexible, wearable, or intraoral sensors for prospective application in personalized medicine and point-of-care diagnosis. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Figure 1

14 pages, 4120 KiB  
Article
Bimetallic Fe3O4@Co3O4/CN as a Nanozyme with Dual Enzyme-Mimic Activities for the Colorimetric Determination of Mercury(II)
by Yanyan Xing, Pingping He, Deyong Wang, Yuan Liang, Xing Gao and Xiaohong Hou
Chemosensors 2024, 12(6), 104; https://doi.org/10.3390/chemosensors12060104 - 7 Jun 2024
Viewed by 974
Abstract
Colorimetric biosensor-based nanozymes have received considerable attention in various fields thanks to the advantages of the simple preparation, good stability, and regulable catalytic activity of nanozymes. In this study, a bimetallic nanozyme Fe3O4@Co3O4/CN was prepared [...] Read more.
Colorimetric biosensor-based nanozymes have received considerable attention in various fields thanks to the advantages of the simple preparation, good stability, and regulable catalytic activity of nanozymes. In this study, a bimetallic nanozyme Fe3O4@Co3O4/CN was prepared via the high-temperature calcination of Fe3O4-PVP@ZIF-67. The material retained its skeletal structure before calcination, which prevented the aggregation of nanoparticles and exposed more active sites of the nanozyme, substantially enhancing the intrinsic dual enzyme-mimetic activities, including peroxidase- and oxidase-like activities. In particular, Fe3O4@Co3O4/CN with oxidase-like activity catalyzed the colorless tetramethylbenzidine (TMB) to become blue oxTMB with oxygen. Reducing glutathione (GSH) could inhibit the above oxidation reaction. In contrast, with respect to the existence of mercury(II), GSH bound to mercury(II) due to the strong affinity between mercury(II) and -SH, thus eliminating the inhibition and restoring the oxTMB signal. A simple and effective colorimetric sensor was fabricated to detect mercury(II) based on the above principles. The proposed measurement had a linear range of 0.1–15 μM and a limit of detection (LOD) of 0.017 μM. It was shown that the established colorimetric sensing system could be successfully applied to detect mercury(II) in water samples, and the Fe3O4@Co3O4/CN nanozyme proved to be a promising candidate for biosensing application. Full article
(This article belongs to the Special Issue Chemosensors in Biological Challenges, Volume II)
Show Figures

Figure 1

14 pages, 3181 KiB  
Article
Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food
by Xiaodong Chen, Chenglu Zhao, Qiwei Zhao, Yunfei Yang, Sanxiu Yang, Rumeng Zhang, Yuqing Wang, Kun Wang, Jing Qian and Lingliang Long
Foods 2024, 13(11), 1758; https://doi.org/10.3390/foods13111758 - 4 Jun 2024
Viewed by 622
Abstract
Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) [...] Read more.
Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 μM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

15 pages, 4613 KiB  
Article
Photonic Nanochains for Continuous Glucose Monitoring in Physiological Environment
by Gongpu Shi, Luying Si, Jinyang Cai, Hao Jiang, Yun Liu, Wei Luo, Huiru Ma and Jianguo Guan
Nanomaterials 2024, 14(11), 964; https://doi.org/10.3390/nano14110964 - 1 Jun 2024
Viewed by 662
Abstract
Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing [...] Read more.
Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

12 pages, 2628 KiB  
Article
Agarose-Based Hydrogel Film with Embedded Oriented Photonic Nanochains for Sensing pH
by Dunyi Xiao, Huiru Ma, Wei Luo and Jianguo Guan
Polymers 2024, 16(11), 1530; https://doi.org/10.3390/polym16111530 - 29 May 2024
Viewed by 756
Abstract
Responsive photonic crystal hydrogel sensors are renowned for their colorimetric sensing ability and can be utilized in many fields such as medical diagnosis, environmental detection, food safety, and industrial production. Previously, our group invented responsive photonic nanochains (RPNCs), which improve the response speed [...] Read more.
Responsive photonic crystal hydrogel sensors are renowned for their colorimetric sensing ability and can be utilized in many fields such as medical diagnosis, environmental detection, food safety, and industrial production. Previously, our group invented responsive photonic nanochains (RPNCs), which improve the response speed of photonic crystal hydrogel sensors by at least 2 to 3 orders of magnitude. However, RPNCs are dispersed in a liquid medium, which needs a magnetic field to orient them for the generation of structural colors. In addition, during repeated use, the process of cleaning and redispersing can cause entanglement, breakage, and a loss of RPNCs, resulting in poor stability. Moreover, when mixing with the samples in liquid, the RPNCs may lead to the contamination of the samples being tested. In this paper, we incorporate one-dimensional oriented RPNCs with agarose gel film to prepare heterogeneous hydrogel films. Thanks to the non-responsive and porous nature of the agarose gel, the protons diffuse freely in the gel, which facilitates the fast response of the RPNCs. Furthermore, the “frozen” RPNCs in agarose gel not only enable the display of structural colors without the need for a magnet but also improve the cycling stability and long-term durability of the sensor, and will not contaminate the samples. This work paves the way for the application of photonic crystal sensors. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

3 pages, 484 KiB  
Abstract
All-Solid-State Optodes: Recent Developments and Applications
by Larisa Lvova, Fabrizio Caroleo, Gabriele Magna, Federica Mandoj, Sara Nardis, Manuela Stefanelli, Roberto Paolesse and Corrado Di Natale
Proceedings 2024, 97(1), 221; https://doi.org/10.3390/proceedings2024097221 - 29 May 2024
Viewed by 620
Abstract
The development of novel sensing materials and analytical systems remains challenging nowadays. Among various transduction principles employed in chemical sensors, the optical transduction is often preferred, due to the fast response time, simplicity of preparation, and easy signal acquisition of optodes. In this [...] Read more.
The development of novel sensing materials and analytical systems remains challenging nowadays. Among various transduction principles employed in chemical sensors, the optical transduction is often preferred, due to the fast response time, simplicity of preparation, and easy signal acquisition of optodes. In this contribution, the main aspects of novel optical sensor development and their application in both single and array configurations for liquid sample analysis will be discussed. The applications of fluorimetric and colorimetric all-solid-state optical sensors and sensory arrays recently developed or under investigation for ecological monitoring, quality assessment, and medical and health care will be illustrated. Full article
Show Figures

Figure 1

Back to TopTop