Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (265)

Search Parameters:
Keywords = circovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 486 KiB  
Article
Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs
by Hina Jhelum, Benedikt Kaufer and Joachim Denner
Viruses 2024, 16(7), 1119; https://doi.org/10.3390/v16071119 - 11 Jul 2024
Viewed by 511
Abstract
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), [...] Read more.
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 2291 KiB  
Article
Molecular Detection of Viral and Bacterial Pathogens in Red Foxes (Vulpes vulpes) from Italy
by Martina Magliocca, Roberta Taddei, Lorenza Urbani, Cristina Bertasio, Veronica Facile, Laura Gallina, Maria Sampieri, Gianluca Rugna, Silva Rubini, Giulia Maioli, Alessia Terrusi, Mara Battilani and Andrea Balboni
Animals 2024, 14(13), 1969; https://doi.org/10.3390/ani14131969 - 3 Jul 2024
Viewed by 905
Abstract
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022–2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), [...] Read more.
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022–2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), Circovirus canine (CanineCV), Canine distemper virus (CDV), and Leptospira spp. A total of 39 of 126 (30.9%) red foxes were infected with at least one pathogen and five of these were coinfected: 20/126 (15.9%) red foxes tested positive for PPVC-1, 3/126 (2.4%) for CAdV, 20/126 (15.9%) for CanineCV, and 2/126 (1.6%) for Leptospira spp. DNA. No foxes tested positive for CDV RNA. The pathogens identified were genetically analysed. New findings were reported such as a fox with multiple feline panleukopenia virus (FPV) and canine parvovirus type 2b (CPV-2b) infection associated with quasispecies dynamics, typical genetic characteristics of the identified CanineCV, and the first detection in red foxes of Leptospira ST198 related to L. interrogans serogroup Australis. Further studies are necessary to investigate the transmission between domestic animals and wildlife and to understand the role of red foxes in the maintenance of these pathogens not only in the wild but also in urban and peri-urban environments. Full article
Show Figures

Figure 1

25 pages, 1173 KiB  
Review
The Reproduction Number of Swine Viral Respiratory Diseases: A Systematic Review
by Dana C. Pittman Ratterree, Sapna Chitlapilly Dass and Martial L. Ndeffo-Mbah
Vet. Sci. 2024, 11(7), 300; https://doi.org/10.3390/vetsci11070300 - 2 Jul 2024
Viewed by 1035
Abstract
Diseases in the swine industry can cause significant economic and health impacts. This review examines R0 estimates for respiratory diseases in pigs, assessing variations and comparing transmission risks within and between farms. A literature search of three databases aggregated peer-reviewed research articles [...] Read more.
Diseases in the swine industry can cause significant economic and health impacts. This review examines R0 estimates for respiratory diseases in pigs, assessing variations and comparing transmission risks within and between farms. A literature search of three databases aggregated peer-reviewed research articles on swine viral respiratory diseases’ R0 values. The study focused on seven diseases: Aujeszky’s disease (AD), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Circovirus, Influenza A (IA), Encephalomyocarditis Virus (EV), Classical Swine Fever (CSF), and African Swine Fever (ASF). R0 values were estimated for transmission within and between herds/farms using various methods, from complex mathematical models to simple calculations. Data primarily came from disease surveillance and laboratory experiments. The median R0 for within-herd and between-herd transmission was 10 and 3.31 for AD, 2.78 and 1.14 for PRRSV, 5.9 and 0.89 for Circovirus, 1.75 and 1.6 for CSF, and 3.94 and 3.15 for ASF. For IA and EV, only within-herd R0 values were estimated at 8.65 and 1.3, respectively. Diseases with high R0 values highlight the need for prompt detection and response to outbreaks. Continuous monitoring and evaluation of pathogen transmissibility are crucial for enhancing disease surveillance and reducing the impact of livestock diseases. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Swine Viruses)
Show Figures

Figure 1

11 pages, 5314 KiB  
Article
DNA Virome in Cardiac Tissue from Green Sea Turtles (Chelonia mydas) with Myocarditis
by Christabel Hannon, Subir Sarker, Willy W. Suen and Helle Bielefeldt-Ohmann
Viruses 2024, 16(7), 1053; https://doi.org/10.3390/v16071053 - 29 Jun 2024
Viewed by 538
Abstract
As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, [...] Read more.
As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, which could not be attributed to parasitism by spirorchid flukes or bacterial infections. We, therefore, undertook an investigation to determine whether virus infections might be part of the pathogenesis. Deep sequencing revealed abundant DNA virus contigs in the heart tissue, of which CRESS and circoviruses appeared to be the most consistently present. Further analysis revealed the homology of some of the circoviruses to the beak and feather disease virus. While a causative link to myocarditis could not be established, the presence of these viruses may play a contributing role by affecting the immune system and overall health of animals exposed to pollutants, higher water temperatures, and decreasing nutrition. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

9 pages, 1717 KiB  
Communication
Identification of Aichivirus in a Pet Rat (Rattus norvegicus) in Italy
by Flora Alfano, Maria Gabriella Lucibelli, Francesco Serra, Martina Levante, Simona Rea, Amalia Gallo, Federica Petrucci, Alessia Pucciarelli, Gerardo Picazio, Marina Monini, Ilaria Di Bartolo, Dario d’Ovidio, Mario Santoro, Esterina De Carlo, Giovanna Fusco and Maria Grazia Amoroso
Animals 2024, 14(12), 1765; https://doi.org/10.3390/ani14121765 - 11 Jun 2024
Cited by 1 | Viewed by 603
Abstract
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and [...] Read more.
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health. Full article
(This article belongs to the Special Issue General Epidemiology of Animal Viruses)
Show Figures

Figure 1

12 pages, 1470 KiB  
Article
First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy
by Silvia Dei Giudici, Lorena Mura, Piero Bonelli, Luca Ferretti, Salwa Hawko, Giulia Franzoni, Pier Paolo Angioi, Anna Ladu, Graziella Puggioni, Elisabetta Antuofermo, Maria Luisa Sanna, Giovanni Pietro Burrai and Annalisa Oggiano
Viruses 2024, 16(6), 932; https://doi.org/10.3390/v16060932 - 8 Jun 2024
Viewed by 571
Abstract
Porcine parvoviruses (PPVs) are among the most important agents of reproductive failure in swine worldwide. PPVs comprise eight genetically different species ascribed to four genera: Protoparvovirus (PPV1, PPV8), Tetraparvovirus (PPV2-3), Copiparvovirus (PPV4-6), and Chaphamaparvovirus (PPV7). In 2016, PPV7 was firstly detected in the [...] Read more.
Porcine parvoviruses (PPVs) are among the most important agents of reproductive failure in swine worldwide. PPVs comprise eight genetically different species ascribed to four genera: Protoparvovirus (PPV1, PPV8), Tetraparvovirus (PPV2-3), Copiparvovirus (PPV4-6), and Chaphamaparvovirus (PPV7). In 2016, PPV7 was firstly detected in the USA and afterwards in Europe, Asia, and South America. Recently, it was also identified in Italy in pig farms with reproductive failure. This study aimed to evaluate the circulation of PPV7 in domestic and wild pigs in Sardinia, Italy. In addition, its coinfection with Porcine Circovirus 2 (PCV2) and 3 (PCV3) was analysed, and PPV7 Italian strains were molecularly characterised. PPV7 was detected in domestic pigs and, for the first time, wild pigs in Italy. The PPV7 viral genome was detected in 20.59% of domestic and wild pig samples. PPV7 detection was significantly lower in domestic pigs, with higher PCV2/PCV3 co-infection rates observed in PPV7-positive than in PPV7-negative domestic pigs. Molecular characterisation of the NS1 gene showed a very high frequency of recombination that could presumably promote virus spreading. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Viruses Research in Europe)
Show Figures

Figure 1

13 pages, 5233 KiB  
Article
The PCV3 Cap Virus-like Particle Vaccine with the Chimeric PCV2-Neutralizing Epitope Gene Is Effective in Mice
by Xingchen Wu, Qikai Wang, Wang Lu, Ying Wang, Zehao Han, Libin Liang, Shimin Gao, Haili Ma and Xiaomao Luo
Vet. Sci. 2024, 11(6), 264; https://doi.org/10.3390/vetsci11060264 - 8 Jun 2024
Viewed by 920
Abstract
Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine [...] Read more.
Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine circovirus infections. In this study, we used both E. coli and mammalian expression systems to express PCV3 Cap (Cap3) and a chimeric gene containing the PCV2-neutralizing epitope within the PCV3 Cap (Cap3-Cap2E), which were assembled into virus-like particle (VLP) vaccines. We found that Cap3 lacking nuclear localization signal (NLS) could not form VLPs, while Cap3 with a His-tag successfully assembled into VLPs. Additionally, the chimeric of PCV2-neutralizing epitopes did not interfere with the assembly process of VLPs. Various immunization approaches revealed that pCap3-Cap2E VLP vaccines were capable of activating high PCV3 Cap-specific antibody levels and effectively neutralizing both PCV3 and PCV2. Furthermore, pCap3-Cap2E VLPs demonstrated a potent ability to activate cellular immunity, protecting against PCV3 infection and preventing lung damage in mice. In conclusion, this study successfully developed a PCV3 Cap VLP vaccine incorporating chimeric PCV2-neutralizing epitope genes, providing new perspectives for PCV3 vaccine development. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 1995 KiB  
Review
Viral Diagnosis in Psittacine Birds: A Scientometric and Systematic Review of 47 Years
by Edma Santos Antonio, Ricardo Evangelista Fraga and Janisete Gomes Silva
Animals 2024, 14(11), 1546; https://doi.org/10.3390/ani14111546 - 23 May 2024
Viewed by 665
Abstract
The first reports of viruses in psittacine birds date back to the early 1970s. Here, we elucidate the differences among these previous studies and the advances achieved. The objective of this study was to carry out a comprehensive review using both scientometric and [...] Read more.
The first reports of viruses in psittacine birds date back to the early 1970s. Here, we elucidate the differences among these previous studies and the advances achieved. The objective of this study was to carry out a comprehensive review using both scientometric and systematic methods to analyze the evolution of published studies on viruses in psittacine birds up to 2022. The search descriptors “virus”, “diagnosis”, and “Psittaciformes” were used to find the articles of interest for this study. A total of 118 articles were manually selected, and the scientometric data were organized using the software VOSviewer® version 1.6.18. The present review revealed that: (i) on average, 2.5 articles/year on the diagnosis of viral infection in psittacine birds were published since 1975; (ii) the most productive research groups are concentrated in three countries: Australia, the United States, and Germany; (iii) the most important virus in psittacine birds is the Circovirus, which causes psittacine beak and feather disease; (iv) the diagnostic method of choice is polymerase chain reaction (PCR); and (v) the most studied psittacine birds were those in the Psittacidae family that were kept in captivity. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

22 pages, 2127 KiB  
Article
Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan
by Darwuin Arrieta-Mendoza, Bruno Garces, Alejandro A. Hidalgo, Victor Neira, Galia Ramirez, Andrónico Neira-Carrillo and Sergio A. Bucarey
Vaccines 2024, 12(5), 550; https://doi.org/10.3390/vaccines12050550 - 17 May 2024
Viewed by 886
Abstract
This work evaluated in vivo an experimental-multivalent-vaccine (EMV) based on three Porcine Respiratory Complex (PRC)-associated antigens: Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae (Mhyop) and M. hyorhinis (Mhyor), microencapsulated with sulfated chitosan (M- ChS + PRC-antigens), postulating chitosan sulphate (ChS) as a mimetic [...] Read more.
This work evaluated in vivo an experimental-multivalent-vaccine (EMV) based on three Porcine Respiratory Complex (PRC)-associated antigens: Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae (Mhyop) and M. hyorhinis (Mhyor), microencapsulated with sulfated chitosan (M- ChS + PRC-antigens), postulating chitosan sulphate (ChS) as a mimetic of the heparan sulfate receptor used by these pathogens for cell invasion. The EMV was evaluated physicochemically by SEM (Scanning-Electron-Microscopy), EDS (Energy-Dispersive-Spectroscopy), Pdi (Polydispersity-Index) and zeta potential. Twenty weaned pigs, distributed in four groups, were evaluated for 12 weeks. The groups 1 through 4 were as follows: 1-EMV intramuscular-route (IM), 2-EMV oral-nasal-route (O/N), 3-Placebo O/N (M-ChS without antigens), 4-Commercial-vaccine PCV2-Mhyop. qPCR was used to evaluate viral/bacterial load from serum, nasal and bronchial swab and from inguinal lymphoid samples. Specific humoral immunity was evaluated by ELISA. M-ChS + PRC-antigens measured between 1.3–10 μm and presented low Pdi and negative zeta potential, probably due to S (4.26%). Importantly, the 1-EMV protected 90% of challenged animals against PCV2 and Mhyop and 100% against Mhyor. A significant increase in antibody was observed for Mhyor (1-EMV and 2-EMV) and Mhyop (2-EMV), compared with 4-Commercial-vaccine. No difference in antibody levels between 1-EMV and 4-Commercial-vaccine for PCV2-Mhyop was observed. Conclusion: The results demonstrated the effectiveness of the first EMV with M-ChS + PRC-antigens in pigs, which were challenged with Mhyor, PCV2 and Mhyop, evidencing high protection for Mhyor, which has no commercial vaccine available. Full article
(This article belongs to the Topic Advances in Vaccines and Antimicrobial Therapy)
Show Figures

Figure 1

13 pages, 5915 KiB  
Article
Metagenomics to Identify Viral Communities Associated with Porcine Respiratory Disease Complex in Tibetan Pigs in the Tibetan Plateau, China
by Long Zhou, Han Zhou, Yandi Fan, Jinghao Wang, Rui Zhang, Zijing Guo, Yanmin Li, Runmin Kang, Zhidong Zhang, Danjiao Yang and Jie Liu
Pathogens 2024, 13(5), 404; https://doi.org/10.3390/pathogens13050404 - 13 May 2024
Viewed by 813
Abstract
Tibetan pig is a unique pig breed native to the Qinghai–Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction [...] Read more.
Tibetan pig is a unique pig breed native to the Qinghai–Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

14 pages, 1670 KiB  
Article
Porcine Circovirus Type 3 (PCV3) in Poland: Prevalence in Wild Boar Population in Connection with African Swine Fever (ASF)
by Maciej Piotr Frant, Natalia Mazur-Panasiuk, Anna Gal-Cisoń, Łukasz Bocian, Magdalena Łyjak and Anna Szczotka-Bochniarz
Viruses 2024, 16(5), 754; https://doi.org/10.3390/v16050754 - 10 May 2024
Viewed by 793
Abstract
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due [...] Read more.
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78–99.80%. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

11 pages, 2585 KiB  
Article
Establishment of an ELISA Based on a Recombinant Antigenic Protein Containing Multiple Prominent Epitopes for Detection of African Swine Fever Virus Antibodies
by Dossêh Jean Apôtre Afayibo, Zhonghui Zhang, Hualin Sun, Jingsheng Fu, Yaru Zhao, Tharheer Oluwashola Amuda, Mengli Wu, Junzheng Du, Guiquan Guan, Qingli Niu, Jifei Yang and Hong Yin
Microorganisms 2024, 12(5), 943; https://doi.org/10.3390/microorganisms12050943 - 7 May 2024
Viewed by 969
Abstract
African swine fever virus (ASFV) poses a significant threat to the global pig industry, necessitating accurate and efficient diagnostic methods for its infection. Previous studies have often focused on a limited number of epitopes from a few proteins for detecting antibodies against ASFV. [...] Read more.
African swine fever virus (ASFV) poses a significant threat to the global pig industry, necessitating accurate and efficient diagnostic methods for its infection. Previous studies have often focused on a limited number of epitopes from a few proteins for detecting antibodies against ASFV. Therefore, the current study aimed to use multiple B-cell epitopes in developing an indirect Enzyme-Linked Immunosorbent Assay (ELISA) for enhanced detection of ASFV antibodies. For the expression of recombinant protein, k3 derived from 27 multiple peptides of 11 ASFV proteins, such as p72, pA104R, pB602L, p12, p14.5, p49, pE248R, p30, p54, pp62, and pp220, was used. To confirm the expression of the recombinant protein, we used the Western blotting analysis. The purified recombinant K3 protein served as the antigen in our study, and we employed the indirect ELISA technique to detect anti-ASFV antibodies. The present finding showed that there was no cross-reactivity with antibodies targeting Foot-and-mouth disease virus (FMDV), Porcine circovirus type 2 (PCV2), Pseudorabies virus (PRV), Porcine reproductive and respiratory syndrome virus (PRRSV), and Classical swine fever virus (CSFV). Moreover, the current finding was sensitive enough to find anti-ASFV in serum samples that had been diluted up to 32 times. The test (k3-iELISA) showed diagnostic specificity and sensitivity of 98.41% and 97.40%, respectively. Moreover, during the present investigation, we compared the Ingenasa kit and the k3-iELISA to test clinical pig serum, and the results revealed that there was 99.00% agreement between the two tests, showing good detection capability of the k3-iELISA method. Hence, the current finding showed that the ELISA kit we developed can be used for the rapid detection of ASFV antibodies and used as an alternative during serological investigation of ASF in endemic areas. Full article
(This article belongs to the Special Issue Animal Virology, Molecular Diagnostics and Vaccine Development)
Show Figures

Figure 1

12 pages, 1962 KiB  
Article
The Development of a Multienzyme Isothermal Rapid Amplification Assay to Visually Detect Duck Hepatitis B Virus
by Shuqi Xu, Yuanzhuo Man, Xin Xu, Jun Ji, Yan Wang, Lunguang Yao, Qingmei Xie and Yingzuo Bi
Vet. Sci. 2024, 11(5), 191; https://doi.org/10.3390/vetsci11050191 - 26 Apr 2024
Viewed by 1341
Abstract
Duck hepatitis B virus (DHBV) is widely prevalent in global ducks and has been identified in Chinese geese with a high prevalence; the available detection techniques are time-consuming and require sophisticated equipment. In this study, an assay combining multienzyme isothermal rapid amplification (MIRA) [...] Read more.
Duck hepatitis B virus (DHBV) is widely prevalent in global ducks and has been identified in Chinese geese with a high prevalence; the available detection techniques are time-consuming and require sophisticated equipment. In this study, an assay combining multienzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) was developed for the efficient and rapid detection of DHBV. The primary reaction condition of the MIRA assay for DHBV detection was 10 min at 38 °C without a temperature cycler. Combined with the LFD assay, the complete procedure of the newly developed MIRA assay for DHBV detection required only 15 min, which is about one-fourth of the reaction time for routine polymerase chain reaction assay. And electrophoresis and gel imaging equipment were not required for detection and to read the results. Furthermore, the detection limit of MIRA was 45.6 copies per reaction, which is approximately 10 times lower than that of a routine polymerase chain reaction assay. The primer set and probe had much simpler designs than loop-mediated isothermal amplification, and they were only specific to DHBV, with no cross-reactivity with duck hepatitis A virus subtype 1 and duck hepatitis A virus subtype 3, goose parvovirus, duck enteritis virus, duck circovirus, or Riemerella anatipestifer. In this study, we offer a simple, fast, and accurate assay method to identify DHBV in clinical serum samples of ducks and geese, which would be suitable for widespread application in field clinics. Full article
Show Figures

Figure 1

14 pages, 7068 KiB  
Article
Transcriptomic Investigation of the Virus Spectrum Carried by Midges in Border Areas of Yunnan Province
by Lifen Yang, Weichen Wu, Sa Cai, Jing Wang, Guopeng Kuang, Weihong Yang, Juan Wang, Xi Han, Hong Pan, Mang Shi and Yun Feng
Viruses 2024, 16(5), 674; https://doi.org/10.3390/v16050674 - 25 Apr 2024
Viewed by 859
Abstract
Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which [...] Read more.
Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (−ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases. Full article
(This article belongs to the Special Issue Vectors for Insect Viruses)
Show Figures

Figure 1

15 pages, 3345 KiB  
Article
PCV2 Induced Endothelial Derived IL-8 Affects MoDCs Maturation Mainly via NF-κB Signaling Pathway
by Mengyu Zhang, Weicheng Xu, Ning Yang, Zhuowei Li, Shuanghai Zhou, Xuewei Liu, Jianfang Wang and Huanrong Li
Viruses 2024, 16(4), 646; https://doi.org/10.3390/v16040646 - 22 Apr 2024
Viewed by 994
Abstract
Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial [...] Read more.
Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop