Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = bio-microplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2776 KiB  
Article
Biobased Compostable Plastics End-of-Life: Environmental Assessment Including Carbon Footprint and Microplastic Impacts
by Anthony Keyes, Christopher M. Saffron, Shilpa Manjure and Ramani Narayan
Polymers 2024, 16(21), 3073; https://doi.org/10.3390/polym16213073 - 31 Oct 2024
Viewed by 567
Abstract
In this paper, we examine how traditional life-cycle assessment (LCA) for bio-based and compostable plastics overlooks issues surrounding carbon sequestration and microplastic persistence. To outline biased comparisons drawn from these omitted environmental impacts, we provide, as an example, a comparative LCA for compostable [...] Read more.
In this paper, we examine how traditional life-cycle assessment (LCA) for bio-based and compostable plastics overlooks issues surrounding carbon sequestration and microplastic persistence. To outline biased comparisons drawn from these omitted environmental impacts, we provide, as an example, a comparative LCA for compostable biobased vs. non-compostable fossil-based materials. In doing so we (1) demonstrate the proper way to capture carbon footprints to make fair comparisons and (2) identify the overlooked issues of microplastics and the need for non-persistent alternatives. By ensuring accurate biogenic carbon capture, key contributors to CO2 evolution are properly identified, allowing well-informed changes to formulations that can reduce the environmental impact of greenhouse gas emissions. In a complimentary manner, we summarize the growing research surrounding microplastic persistence and toxicity. We highlight the fundamental ability and the growing number of studies that show that industrial composting can completely mineralize certified compostable materials. This mineralization exists as a viable solution to combat microplastic persistence, currently an absent impact category in LCA. In summary, we propose a new paradigm in which the value proposition of biobased materials can be accurately captured while highlighting compostables as a solution for the increasing microplastic accumulation in the environment. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Figure 1

29 pages, 4167 KiB  
Review
Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions
by Olga Senko, Olga Maslova, Nikolay Stepanov, Aysel Aslanli, Ilya Lyagin and Elena Efremenko
Microorganisms 2024, 12(10), 2024; https://doi.org/10.3390/microorganisms12102024 - 6 Oct 2024
Viewed by 1077
Abstract
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between [...] Read more.
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs). HSs constitute a macrocomponent of natural non-living organic matter of aquatic and soil ecosystems, formed and transformed in the processes of mineralization of bio-organic substances in environmental conditions. Analysis of the main mechanisms of their influence on each other and the effects produced that accelerate or inhibit polymer degradation can create the basis for scientifically based approaches to the most effective solution to the problem of degradation of SPs, including in the form of microplastics. This review is aimed at comparing various aspects of interactions of SPs, MOs, and HSs in laboratory experiments (in vitro) and environmental investigations (in situ) aimed at the biodegradation of polymers, as well as pollutants (antibiotics and pesticides) that they absorb. Comparative calculations of the degradation velocity of different SPs in different environments are presented. A special place in the analysis is given to the elemental chemical composition of HSs, which are most successfully involved in the biodegradation of SPs. In addition, the role of photo-oxidation and photoaging of polymers under the influence of the ultraviolet spectrum of solar radiation under environmental conditions on the (bio)degradation of SPs in the presence of HSs is discussed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

19 pages, 4889 KiB  
Article
Insights on Microplastic Contamination from Municipal and Textile Industry Effluents and Their Removal Using a Cellulose-Based Approach
by Solange Magalhães, Daniel Paciência, João M. M. Rodrigues, Björn Lindman, Luís Alves, Bruno Medronho and Maria da Graça Rasteiro
Polymers 2024, 16(19), 2803; https://doi.org/10.3390/polym16192803 - 3 Oct 2024
Viewed by 905
Abstract
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. [...] Read more.
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. Data were further discussed and compared with a municipal wastewater treatment plant (WWTP) effluent. All effluent samples were collected at the final stage of treatment in their respective WWTP. Laser diffraction spectroscopy was used to evaluate MP dimensions, while optical and fluorescence microscopies were used for morphology analysis and the identification of predominant plastic types, respectively. Electrophoresis was employed to unravel the prevalence of negative surface charge on these plastic microparticles. The analysis revealed that polyethylene terephthalate (PET) and polyamide were the dominant compounds in textile effluents, with PET being predominant in municipal WWTP effluents. Surprisingly, despite the municipal WWTP exhibiting higher efficiency in MP removal (ca. 71% compared to ca. 55% in textile industries), it contributed more to overall pollution. A novel bio-based flocculant, a cationic cellulose derivative derived from wood wastes, was developed as a proof-of-concept for MP flocculation. The novel derivatives were found to efficiently flocculate PET MPs, thus allowing their facile removal from aqueous media, and reducing the threat of MP contamination from effluents discharged from WWTPs. Full article
(This article belongs to the Special Issue Micro- and Nanoplastics Engineering and Design for Research)
Show Figures

Figure 1

15 pages, 4781 KiB  
Article
The Structural and Functional Responses of Rhizosphere Bacteria to Biodegradable Microplastics in the Presence of Biofertilizers
by Xueyu Cheng, Xinyang Li, Zhonghua Cai, Zongkang Wang and Jin Zhou
Plants 2024, 13(18), 2627; https://doi.org/10.3390/plants13182627 - 20 Sep 2024
Viewed by 856
Abstract
Biodegradable microplastics (Bio-MPs) are a hot topic in soil research due to their potential to replace conventional microplastics. Biofertilizers are viewed as an alternative to inorganic fertilizers in agriculture due to their potential to enhance crop yields and food safety. The use of [...] Read more.
Biodegradable microplastics (Bio-MPs) are a hot topic in soil research due to their potential to replace conventional microplastics. Biofertilizers are viewed as an alternative to inorganic fertilizers in agriculture due to their potential to enhance crop yields and food safety. The use of both can have direct and indirect effects on rhizosphere microorganisms. However, the influence of the coexistence of “Bio-MPs and biofertilizers” on rhizosphere microbial characteristics remains unclear. We investigated the effects of coexisting biofertilizers and Bio-MPs on the structure, function, and especially the carbon metabolic properties of crop rhizosphere bacteria, using a pot experiment in which polyethylene microplastics (PE-MPs) were used as a reference. The results showed that the existence of both microplastics (MPs) changed the physicochemical properties of the rhizosphere soil. Exposure to MPs also remarkably changed the composition and diversity of rhizosphere bacteria. The network was more complex in the Bio-MPs group. Additionally, metagenomic analyses showed that PE-MPs mainly affected microbial vitamin metabolism. Bio-MPs primarily changed the pathways related to carbon metabolism, such as causing declined carbon fixation/degradation and inhibition of methanogenesis. After partial least squares path model (PLS-PM) analysis, we observed that both materials influenced the rhizosphere environment through the bacterial communities and functions. Despite the degradability of Bio-MPs, our findings confirmed that the coexistence of biofertilizers and Bio-MPs affected the fertility of the rhizosphere. Regardless of the type of plastic, its use in soil requires an objective and scientifically grounded approach. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

19 pages, 2045 KiB  
Review
Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors
by Roberto Bargagli and Emilia Rota
Animals 2024, 14(16), 2386; https://doi.org/10.3390/ani14162386 - 17 Aug 2024
Viewed by 1362
Abstract
Despite decreasing anthropogenic mercury (Hg) emissions in Europe and the banning and restriction of many persistent organic pollutants (POPs) under the Stockholm Convention, Mediterranean marine mammals still have one of the highest body burdens of persistent pollutants in the world. Moreover, the Mediterranean [...] Read more.
Despite decreasing anthropogenic mercury (Hg) emissions in Europe and the banning and restriction of many persistent organic pollutants (POPs) under the Stockholm Convention, Mediterranean marine mammals still have one of the highest body burdens of persistent pollutants in the world. Moreover, the Mediterranean basin is one of the most sensitive to climate change, with likely changes in the biogeochemical cycle and bioavailability of Hg, primary productivity, and the length and composition of pelagic food webs. The availability of food resources for marine mammals is also affected by widespread overfishing and the increasing number of alien species colonizing the basin. After reporting the most recent findings on the biogeochemical cycle of Hg in the Mediterranean Sea and the physico-chemical and bio-ecological factors determining its exceptional bioaccumulation in odontocetes, this review discusses possible future changes in the bioavailability of the metal. Recent ocean–atmosphere–land models predict that in mid-latitude seas, water warming (which in the Mediterranean is 20% faster than the global average) is likely to decrease the solubility of Hg and favor the escape of the metal to the atmosphere. However, the basin has been affected for thousands of years by natural and anthropogenic inputs of metals and climate change with sea level rise (3.6 ± 0.3 mm year−1 in the last two decades), and the frequency of extreme weather events will likely remobilize a large amount of legacy Hg from soils, riverine, and coastal sediments. Moreover, possible changes in pelagic food webs and food availability could determine dietary shifts and lower growth rates in Mediterranean cetaceans, increasing their Hg body burden. Although, in adulthood, many marine mammals have evolved the ability to detoxify monomethylmercury (MMHg) and store the metal in the liver and other organs as insoluble HgSe crystals, in Mediterranean populations more exposed to the metal, this process can deplete the biological pool of Se, increasing their susceptibility to infectious diseases and autoimmune disorders. Mediterranean mammals are also among the most exposed in the world to legacy POPs, micro- and nanoplastics, and contaminants of emerging interest. Concomitant exposure to these synthetic chemicals may pose a much more serious threat than the Se depletion. Unfortunately, as shown by the literature data summarized in this review, the most exposed populations are those living in the NW basin, the main feeding and reproductive area for most Mediterranean cetaceans, declared a sanctuary for their protection since 2002. Thus, while emphasizing the adoption of all available approaches to mitigate anthropogenic pressure with fishing and maritime traffic, it is recommended to direct future research efforts towards the assessment of possible biological effects, at the individual and population levels, of chronic and simultaneous exposure to Hg, legacy POPs, contaminants of emerging interest, and microplastics. Full article
Show Figures

Figure 1

18 pages, 3650 KiB  
Article
Generation of Microplastics from Biodegradable Packaging Films Based on PLA, PBS and Their Blend in Freshwater and Seawater
by Annalisa Apicella, Konstantin V. Malafeev, Paola Scarfato and Loredana Incarnato
Polymers 2024, 16(16), 2268; https://doi.org/10.3390/polym16162268 - 10 Aug 2024
Cited by 1 | Viewed by 1430
Abstract
Biodegradable polymers and their blends have been advised as an eco-sustainable solution; however, the generation of microplastics (MPs) from their degradation in aquatic environments is still not fully grasped. In this study, we investigated the formation of bio-microplastics (BMPs) and the changes in [...] Read more.
Biodegradable polymers and their blends have been advised as an eco-sustainable solution; however, the generation of microplastics (MPs) from their degradation in aquatic environments is still not fully grasped. In this study, we investigated the formation of bio-microplastics (BMPs) and the changes in the physicochemical properties of blown packaging films based on polylactic acid (PLA), polybutylene succinate (PBS) and a PBS/PLA 70/30 wt% blend after degradation in different aquatic media. The tests were carried out in two temperature/light conditions to simulate degradation in either warm water, under sunlight exposure (named Warm and Light—W&L), and cold deep water (named Cold and Dark—C&D). The pH changes in the aqueous environments were evaluated, while the formed BMPs were analyzed for their size and shape alongside with variations in polymer crystallinity, surface and mechanical properties. In W&L conditions, for all the films, the hydrolytic degradation led to the reorganization of the polymer crystalline phases, strong embrittlement and an increase in hydrophilicity. The PBS/PLA 70/30 blend exhibited increased resistance to degradation with respect to the neat PLA and PBS films. In C&D conditions, no microparticles were observed up to 12 weeks of degradation. Full article
(This article belongs to the Special Issue Development and Application of Bio-Based Polymers)
Show Figures

Graphical abstract

14 pages, 4564 KiB  
Article
Enhanced Marine Biodegradation of Polycaprolactone through Incorporation of Mucus Bubble Powder from Violet Sea Snail as Protein Fillers
by Koh Yoshida, Sayaka Teramoto, Jin Gong, Yutaka Kobayashi and Hiroshi Ito
Polymers 2024, 16(13), 1830; https://doi.org/10.3390/polym16131830 - 27 Jun 2024
Cited by 1 | Viewed by 1196
Abstract
Microplastics’ spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To [...] Read more.
Microplastics’ spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 4462 KiB  
Article
Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates
by Kalyani Prasad Bhagwat, Denis Rodrigue and Laura Romero-Zerón
Pollutants 2024, 4(2), 231-250; https://doi.org/10.3390/pollutants4020015 - 6 May 2024
Viewed by 2382
Abstract
The rapid increase in soil and water pollution is primarily attributed to anthropogenic factors, notably the mismanagement of post-consumer plastics on a global scale. This exploratory research design evaluated the effectiveness of natural hydrophobic cattail (Typha Latifolia) fibres (CFs) as bio-adsorbents [...] Read more.
The rapid increase in soil and water pollution is primarily attributed to anthropogenic factors, notably the mismanagement of post-consumer plastics on a global scale. This exploratory research design evaluated the effectiveness of natural hydrophobic cattail (Typha Latifolia) fibres (CFs) as bio-adsorbents of microplastic particles (MPPs) from wastewater. The study investigates how the composition of the adsorption environment affects the adsorption rate. Straightforward batch adsorption tests were conducted to evaluate the “spontaneous” sorption of MPPs onto CFs. Five MPP materials (PVC, PP, LDPE, HDPE, and Nylon 6) were evaluated. Industrial wastewater (PW) and Type II Distilled Water (DW) were employed as adsorption environments. The batch test results show that CFs are effective in removing five MPP materials from DW and PW. However, a higher removal percentage of MPPs was observed in PW, ranging from 89% to 100% for PVC, PP, LDPE, and HDPE, while the adsorption of Nylon 6 increased to 29.9%, a removal increase of 50%. These findings indicate that hydrophobic interactions drive the “spontaneous and instantaneous” adsorption process and that adjusting the adsorption environment can effectively enhance the MPP removal rate. This research highlights the significant role that bio-substrates can play in mitigating environmental pollution, serving as efficient, sustainable, non-toxic, biodegradable, low-cost, and reliable adsorbents for the removal of MPPs from wastewaters. Full article
Show Figures

Figure 1

20 pages, 2562 KiB  
Article
Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts
by Lukas Zeilerbauer, Johannes Lindorfer, Pauline Fuchs, Melanie Knöbl, Asle Ravnås, Trygve Maldal, Eimund Gilje, Christian Paulik and Jörg Fischer
Sustainability 2024, 16(8), 3487; https://doi.org/10.3390/su16083487 - 22 Apr 2024
Viewed by 1998
Abstract
Recently, the European Commission announced their intention to restrict intentionally added microplastics to reduce the amount emitted by 0.5 million tons per year. Findings on microplastics indicate toxic behavior for biota, yet many mechanisms remain in the dark. Microplastics also pose a challenge [...] Read more.
Recently, the European Commission announced their intention to restrict intentionally added microplastics to reduce the amount emitted by 0.5 million tons per year. Findings on microplastics indicate toxic behavior for biota, yet many mechanisms remain in the dark. Microplastics also pose a challenge in life cycle assessment as methods are actively being developed. Considering this recent decision, an anticipatory life cycle assessment was performed, comparing the impacts of natural grass pitches with artificial grass pitches using bio-based infill materials as well as polymeric ones made from recycled and virgin materials. The aim was to confirm if microplastics are in fact a considerable environmental hazard when compared to more traditional impacts. The microplastics’ impact was modeled after the MarILCA group’s work on the new midpoint of physical effects on biota. The results showed that the influence of the microplastics remains negligible when using the method provided. For most midpoint categories, the wood-based infill showed the best results, often closely tied with the infill made from recycled rubber from tires. A sensitivity analysis revealed that neither the physical effects on biota nor the greenhouse gas emissions from degradation in a marine environment are deciding factors when assessing the endpoint of ecosystem damage. Full article
(This article belongs to the Special Issue Microplastic Pollution and Impact)
Show Figures

Figure 1

26 pages, 3524 KiB  
Review
Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers
by Manuel Burelo, Araceli Martínez, Josué David Hernández-Varela, Thomas Stringer, Monserrat Ramírez-Melgarejo, Alice Y. Yau, Gabriel Luna-Bárcenas and Cecilia D. Treviño-Quintanilla
Molecules 2024, 29(2), 387; https://doi.org/10.3390/molecules29020387 - 12 Jan 2024
Cited by 15 | Viewed by 4584
Abstract
In 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.4%, and this rising tendency will increase yearly. Of this data, less than 2% correspond to bio-based plastics. Currently, polymers, including elastomers, are non-recyclable and [...] Read more.
In 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.4%, and this rising tendency will increase yearly. Of this data, less than 2% correspond to bio-based plastics. Currently, polymers, including elastomers, are non-recyclable and come from non-renewable sources. Additionally, most elastomers are thermosets, making them complex to recycle and reuse. It takes hundreds to thousands of years to decompose or biodegrade, contributing to plastic waste accumulation, nano and microplastic formation, and environmental pollution. Due to this, the synthesis of elastomers from natural and renewable resources has attracted the attention of researchers and industries. In this review paper, new methods and strategies are proposed for the preparation of bio-based elastomers. The main goals are the advances and improvements in the synthesis, properties, and applications of bio-based elastomers from natural and industrial rubbers, polyurethanes, polyesters, and polyethers, and an approach to their circular economy and sustainability. Olefin metathesis is proposed as a novel and sustainable method for the synthesis of bio-based elastomers, which allows for the depolymerization or degradation of rubbers with the use of essential oils, terpenes, fatty acids, and fatty alcohols from natural resources such as chain transfer agents (CTA) or donors of the terminal groups in the main chain, which allow for control of the molecular weights and functional groups, obtaining new compounds, oligomers, and bio-based elastomers with an added value for the application of new polymers and materials. This tendency contributes to the development of bio-based elastomers that can reduce carbon emissions, avoid cross-contamination from fossil fuels, and obtain a greener material with biodegradable and/or compostable behavior. Full article
(This article belongs to the Special Issue Natural Polymers and Biopolymers IV)
Show Figures

Figure 1

16 pages, 2390 KiB  
Article
The Degradability of Microplastics May Not Necessarily Equate to Environmental Friendliness: A Case Study of Cucumber Seedlings with Disturbed Photosynthesis
by Yi-Fan Zhang, Zhi-Yun Huang, Yi-Fan Li, Xin-Lei Lu, Gen-Rui Li, Shan-Shan Qi, Irfan Ullah Khan, Guan-Lin Li, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2024, 14(1), 53; https://doi.org/10.3390/agriculture14010053 - 27 Dec 2023
Cited by 3 | Viewed by 1835
Abstract
In the environment, degradable plastics are decomposed into biodegradable microplastics (Bio-MPs), but there is limited study on the impact on plant growth and development. Therefore, this study aimed to investigate biodegradable polylactic acid microplastics (PLA-MPs) and nonbiodegradable polystyrene microplastics (PS-MPs) with different concentrations [...] Read more.
In the environment, degradable plastics are decomposed into biodegradable microplastics (Bio-MPs), but there is limited study on the impact on plant growth and development. Therefore, this study aimed to investigate biodegradable polylactic acid microplastics (PLA-MPs) and nonbiodegradable polystyrene microplastics (PS-MPs) with different concentrations (0.02%, 0.2%, and 2% w/w) to explore their short-term toxic effects on cucumbers. The results of this study showed that PLA-MPs significantly (p < 0.05) reduced the aboveground and belowground biomass of cucumber seedlings compared to the control. At the level of 2% MPs, the chlorophyll content and PRI vegetation index of cucumber plants decreased significantly, anthocyanin content increased, and the photosynthetic system was disturbed. Likewise, the antioxidant defensive system of cucumber was affected after exposure to MPs stress, especially under 2% levels. The hyperspectral image is a novel technique which analyzed the chlorophyll content and absorption under MPs treatment; there was still a high correlation between chlorophyll content, anthocyanin content, and MCARI vegetation index, so a single vegetation index could be used for rapid detection of plant physiological status. Our study suggests that Bio-MPs have potential ecological toxicity that could affect the growth of cucumber seedlings through deactivation of the PSII reaction center. Therefore, biodegradable plastics do not seem to be the optimal solution, and there is an urgent need for long-term monitoring and evaluation of the biological toxicity of biodegradable MPs. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

26 pages, 1370 KiB  
Review
What Are “Bioplastics”? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility
by Maximilian Lackner, Anindya Mukherjee and Martin Koller
Polymers 2023, 15(24), 4695; https://doi.org/10.3390/polym15244695 - 13 Dec 2023
Cited by 15 | Viewed by 4790
Abstract
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end [...] Read more.
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end up in the environment, most of this pollution can be attributed to a lack of infrastructure for appropriately collecting and recycling plastic waste, mainly due to mismanagement. Because of the huge production volumes of plastics, their merits of being cheap to produce and process and their recalcitrance have turned into a huge disadvantage, since plastic waste has become the end point of our linear economic usage model, and massive amounts have started to accumulate in the environment, leading to microplastics pollution and other detrimental effects. A possible solution to this is offered by “bioplastics”, which are materials that are either (partly) biobased and/or degradable under defined conditions. With the rise of bioplastics in the marketplace, several standards and test protocols have been developed to assess, certify, and advertise their properties in this respect. This article summarizes and critically discusses different views on bioplastics, mainly related to the properties of biodegradability and biobased carbon content; this shall allow us to find a common ground for clearly addressing and categorizing bioplastic materials, which could become an essential building block in a circular economy. Today, bioplastics account for only 1–2% of all plastics, while technically, they could replace up to 90% of all fossil-based plastics, particularly in short-lived goods and packaging, the single most important area of use for conventional plastics. Their replacement potential not only applies to thermoplastics but also to thermosets and elastomers. Bioplastics can be recycled through different means, and they can be made from renewable sources, with (bio)degradability being an option for the mismanaged fraction and special applications with an intended end of life in nature (such as in seed coatings and bite protection for trees). Bioplastics can be used in composites and differ in their properties, similarly to conventional plastics. Clear definitions for “biobased” and “biodegradable” are needed to allow stakeholders of (bio)plastics to make fact-based decisions regarding material selection, application, and end-of-life options; the same level of clarity is needed for terms like “renewable carbon” and “bio-attributed” carbon, definitions of which are summarized and discussed in this paper. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 9032 KiB  
Article
Preliminary Research on Moss-Based Biocomposites as an Alternative Substrate in Moss Walls
by Rafael Alvarez Gutiérrez, Johan Blom, Bert Belmans, Anouk De Bock, Lars Van den Bergh and Amaryllis Audenaert
Sustainability 2023, 15(23), 16500; https://doi.org/10.3390/su152316500 - 2 Dec 2023
Viewed by 2196
Abstract
Addressing urban air pollution is a pressing challenge, prompting the exploration of mitigation strategies such as urban greening. However, certain innovative greening approaches, while promising, may inadvertently incorporate unsustainable elements that undermine their eco-friendly philosophy. In this context, our research focuses on addressing [...] Read more.
Addressing urban air pollution is a pressing challenge, prompting the exploration of mitigation strategies such as urban greening. However, certain innovative greening approaches, while promising, may inadvertently incorporate unsustainable elements that undermine their eco-friendly philosophy. In this context, our research focuses on addressing the replacement of a petroleum-based filter substrate in an existing ‘green’ outdoor air purification system that utilizes ‘moss filters’, known as a ‘moss wall’. This initiative is driven by concerns about microplastic leakage from the substrate and the need to optimize the moss wall system in terms of circularity. This preliminary study presents a crucial first step, aiming to assess the feasibility of developing a circular, bio-based plate as a replacement for the existing microfiber filter substrate. The focus is on the potential of this plate to recycle moss from the system itself as raw material, ensuring structural integrity and the ability to support its own weight. To achieve this goal, a series of controlled experiments were conducted in a laboratory setting using cellulose, corn starch, and metakaolin binders. Our findings indicated that cellulose was crucial for the structural integrity, starch significantly enhanced the sample strength, and metakaolin improved the water resistance. These insights culminated in the creation of a laboratory-scale moss-based composite prototype, with moss constituting more than half of the total mass. This prototype demonstrated promising results as a starting point for a more environmentally friendly and bio-based moss wall substrate. Subsequent research efforts will concentrate on optimizing the binder and fiber composition, evaluating and improving the bioreceptivity and filter properties, conducting outdoor testing, and scaling up the prototype for practical implementation. Full article
(This article belongs to the Special Issue Advances in Nature-Based Solutions for Sustainable Green Buildings)
Show Figures

Figure 1

16 pages, 2319 KiB  
Article
UV Light Causes Structural Changes in Microplastics Exposed in Bio-Solids
by Somayye Sadat Alavian Petroody, Seyed Hossein Hashemi, Luka Škrlep, Branka Mušič, Cornelis A. M. van Gestel and Andrijana Sever Škapin
Polymers 2023, 15(21), 4322; https://doi.org/10.3390/polym15214322 - 4 Nov 2023
Cited by 6 | Viewed by 3909
Abstract
Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied [...] Read more.
Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied the effect of UV-A and UV-C, applied at 70 °C, on three types of MPs, polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET), that are commonly found in sewage sludge, using three shapes (fibers, lines, granules). The MPs were exposed to UV radiation in bio-solid suspensions, and to air and water as control. The structural changes in and degradation of the MPs were investigated using Attenuated Total Reflectance–Fourier Transform Infrared Spectrometry (ATR-FTIR) and surface morphology was performed with SEM analysis. UV exposure led to the emergence of carbonyl and hydroxyl groups in all of the PP samples. In PE and PET, these groups were formed only in the bio-solid suspensions. The presence of carbonyl and hydroxyl groups increased with an increasing exposure time. Overall, UV radiation had the greatest impact on the MPs in the bio-solids suspension. Due to the surface-to-volume ratio of the tested samples, which influences the degradation rate, the fibers were more degraded than the other two plastic shapes. UV-A was slightly more effective at degrading the MPs than UV-C. These findings show that ultraviolet radiation in combination with an elevated temperature affects the structure of polymers in wastewater bio-solids, which can accelerate their degradation. Full article
(This article belongs to the Special Issue Degradation and Stability of Polymer Based Systems)
Show Figures

Figure 1

56 pages, 8502 KiB  
Review
A Review on Melt-Spun Biodegradable Fibers
by Mohammadreza Naeimirad, Bas Krins and Gert-Jan M. Gruter
Sustainability 2023, 15(19), 14474; https://doi.org/10.3390/su151914474 - 4 Oct 2023
Cited by 13 | Viewed by 4770
Abstract
The growing awareness of environmental issues and the pursuit of sustainable materials have sparked a substantial surge in research focused on biodegradable materials, including fibers. Within a spectrum of fabrication techniques, melt-spinning has emerged as an eco-friendly and scalable method for making fibers [...] Read more.
The growing awareness of environmental issues and the pursuit of sustainable materials have sparked a substantial surge in research focused on biodegradable materials, including fibers. Within a spectrum of fabrication techniques, melt-spinning has emerged as an eco-friendly and scalable method for making fibers from biodegradable plastics (preferably bio-based), intended for various applications. This paper provides a comprehensive overview of the advancements in the realm of melt-spun biodegradable fibers. It delves into global concerns related to micro- and nanoplastics (MNPs) and introduces the concept of biodegradable fibers. The literature review on melt-spun biodegradable monofilaments and multifilaments unveils a diverse range of polymers and copolymers that have been subjected to testing and characterization for their processing capabilities and the performance of the resultant fibers, particularly from mechanical, thermal, and biodegradation perspectives. The paper discusses the impact of different factors such as polymer structure, processing parameters, and environmental conditions on the ultimate properties, encompassing spinnability, mechanical and thermal performance, and biodegradation, with schematic correlations provided. Additionally, the manuscript touches upon applications in sectors such as clothing, technical textiles, agriculture, biomedical applications, and environmental remediation. It also spotlights the challenges encountered in the commercialization of these fibers, addresses potential solutions, and outlines future prospects. Finally, by shedding light on the latest developments, challenges, and opportunities in the field, this review endeavors to stimulate further innovation and adoption of biodegradable fibers. It seeks to unlock their potential and contribute to the realization of a more environmentally conscious society. Full article
(This article belongs to the Special Issue Fiber Science and Material Innovation)
Show Figures

Figure 1

Back to TopTop