Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions
Abstract
:1. Introduction
2. Effect of the Presence of HSs on the Biodegradation of SPs
2.1. Analysis of Theoretical Capabilities of MOs in the Degradation Processes of SPs in the Presence of HSs
2.2. Effect of HSs on the Biodegradation of SPs In Vitro
2.3. Effect of HSs on the Biodegradation of SPs In Situ
2.3.1. Biodegradation of SPs in Water Ecosystems Containing HSs
2.3.2. Biodegradation of SPs in Soil Containing HSs
2.3.3. Biodegradation of SPs in Composting
2.3.4. Biodegradation of SPs in Anaerobic Digestion
3. Analysis of Mutual Participation of HSs and MOs in the Processes of Biodegradation of SPs
4. Effect of HS Photochemical Activity on PS (Bio)Degradation
5. Prospects for the Development of Processes Associated with the Presence of MPs, MOs, and HSs in Ecosystems
- -
- HSs exhibit surfactant properties that modify the surfaces of MP particles, thereby improving their accessibility to enzymes responsible for the biodegradation of polymers;
- -
- Processes of adhesion/immobilization of MOs on HSs are known, while the possibilities for the formation of more numerous populations by cells with the manifestation of quorum effects are realized. As a result, the efficiency of biocatalytic processes and the resistance of cells to the negative impact of external factors increase [72];
- -
- There is a direct relationship between the presence of low concentrations of HSs and increased microbial respiration, an increase in the concentration of biofilm biomass per unit area of polymers, and stimulation of the synthesis of microbial enzymes that are involved in the processes of MP destruction;
- -
- HSs provide MO cells with protection from MP particles and xenobiotics due to competitive adsorption interactions, prevent the formation of toxic MP complexes with xenobiotics, and improve the availability of pollutants for biodegradation, promoting the intensification of the SPs biodegradation process;
- -
- HSs act as additional sources of nutrients for MOs, which contributes not only to the growth of MO cells in the ecosystem but also to an increase in their diversity in situ. HSs, even in the presence of MPs, stimulate the restoration and dynamic development of microbiological communities, but this process requires special control;
- -
- In an aqueous environment, HA promotes the formation of ROS, which has a positive effect on the processes of photoaging and surface oxidation of SPs, while FA can act as ROS “traps”;
- -
- HSs bind to MP particles through the formation of hydrogen bonds and hydrophobic interactions, and in water bodies, such complex particles can sediment to the bottom, and in soil, they can change the characteristics of the environment, which, as a consequence, can lead to inhibition of plant growth;
- -
- HSs gradually accumulate in anaerobic bioreactors used for methanogenesis and processing of sludge waste from treatment plants and inhibit methanogenesis, while HSs do not always exhibit good sorption properties in relation to MPs;
- -
- HSs can enter into various donor–acceptor interactions with living cells and organic substances, on the basis of which HSs as electron shuttles can be the basis for the development of new approaches to the biodegradation of SPs, the nature, composition, and concentration of HSs affect the efficiency of polymer biodegradation under the influence of different MOs.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable polymers. Nat. Rev. Methods Primers 2022, 2, 46. [Google Scholar] [CrossRef]
- Zhou, J.; Hsu, T.G.; Wang, J. Mechanochemical degradation and recycling of synthetic polymers. Angew. Chem. 2023, 135, e202300768. [Google Scholar] [CrossRef]
- Prashantha, K.; Amita, K. Insights into carcinogenic potential of micro(nano) plastics. Express Polym. Lett. 2023, 17, 118–119. [Google Scholar] [CrossRef]
- Wu, C.S.; Wang, S.S.; Wu, D.Y.; Gu, W. Modified poly (ε-caprolactone) with larvae protein environmentally friendly nanofiber: Assessment of interface properties and characterization. Express Polym. Lett. 2024, 18, 835–850. [Google Scholar] [CrossRef]
- Paleri, D.M.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Preparation and characterization of eco-friendly hybrid biocomposites from natural rubber, biocarbon, and carbon black. Express Polym. Lett. 2021, 15, 236–249. [Google Scholar] [CrossRef]
- Musioł, M.; Rydz, J.; Sikorska, W.; Janeczek, H.; Jurczyk, S. Organic recycling challenges of (bio) degradable packages: Degradation studies of polylactide/cork composites. Express Polym. Lett. 2024, 18, 868–880. [Google Scholar] [CrossRef]
- Açık, G. Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(epsilon-caprolactone)s. Express Polym. Lett. 2020, 14, 272–280. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Musavi, S.F.; Habibi, M.; Maleki, R.; Golgoli, M.; Zargar, M.; Dumée, L.F.; Baroutian, S.; Razmjou, A. Molecular mechanisms of microplastics degradation: A review. Sep. Purif. Technol. 2023, 309, 122906. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, Z.; Hu, R.; Huang, Y.; Li, F.; Ma, W.; Wu, X.; Dong, H.; Song, K.; Xu, X.; et al. Toxicity of microplastics and nanoplastics: Invisible killers of female fertility and offspring health. Front. Physiol. 2023, 14, 1254886. [Google Scholar] [CrossRef]
- Yang, X.; Liao, H.M.; Tan, A.J.; Gan, S.X.; Yang, G.L. Effects of microplastics and cadmium on growth rate, photosynthetic pigment content and antioxidant enzymes of duckweed (Lemma minor). Environ. Sci. Pollut. Res. 2023, 30, 96181–96190. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M. How microplastics interact with food chain: A short overview of fate and impacts. J. Food Sci. Technol. 2024, 61, 403–413. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Perminova, I.V. Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules 2021, 26, 2706. [Google Scholar] [CrossRef] [PubMed]
- Maslova, O.V.; Senko, O.V.; Stepanov, N.A.; Lyagin, I.V.; Efremenko, E.N. Biocatalysis in the degradation of synthetic polymers. Mosc. Univ. Chem. Bull. 2024, 79, 140–145. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Maslova, O.V.; Senko, O.V.; Stepanov, N.A.; Aslanli, A.G. Catalytic degradation of microplastics. Russ. Chem. Rev. 2023, 92, RCR5069. [Google Scholar] [CrossRef]
- Wang, X.; Muhmood, A.; Ren, D.; Tian, P.; Li, Y.; Yu, H.; Wu, S. Exploring the mechanisms of humic acid mediated degradation of polystyrene microplastics under ultraviolet light conditions. Chemosphere 2023, 327, 138544. [Google Scholar] [CrossRef]
- Pedroza, R.H.; David, C.; Lodeiro, P.; Rey-Castro, C. Interactions of humic acid with pristine poly(lactic acid) microplastics in aqueous solution. Sci. Total Environ. 2024, 908, 168366. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hu, T.; Liu, Y.; Liu, J.; Wang, Y.; Wang, P.; Zhou, J.; Chen, M.; Yang, B.; Li, L. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies. J. Hazard. Mater. 2021, 405, 124086. [Google Scholar] [CrossRef] [PubMed]
- Borelbach, P.; Kopitzky, R.; Dahringer, J.; Gutmann, P. Degradation behavior of biodegradable man-made fibers in natural soil and in compost. Polymers 2023, 15, 2959. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, X.; Tian, H.; Zhao, G.; Chi, Y.; Jia, B.; Zhang, J. The broad application and mechanism of humic acids for treating environmental pollutants: Insights from bibliometric analysis. J. Clean. Prod. 2022, 337, 130510. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Senko, O.; Lyagin, I.; Maslova, O.; Aslanli, A. Artificial humic substances as biomimetics of natural analogues: Production, characteristics and preferences regarding their use. Biomimetics 2023, 8, 613. [Google Scholar] [CrossRef]
- Stepanov, N.; Senko, O.; Perminova, I.; Efremenko, E. A new approach to assess the effect of various humic compounds on the metabolic activity of cells participating in methanogenesis. Sustainability 2019, 11, 3158. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Senko, O.; Maslova, O.; Volikov, A.; Zhirkova, A.; Perminova, I. Strategies for variable regulation of methanogenesis efficiency and velocity. Appl. Microbiol. Biotechnol. 2022, 106, 6833–6845. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, J.; Zheng, L.; Zhu, W.; Xue, X.; Yu, Y.; Deng, Y.; Wang, H. Adsorption behaviors and mechanisms of humic acid on virgin and aging microplastics. J. Mol. Liq. 2022, 363, 119819. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Park, S.B.; Shin, M.; Kim, S.; Kim, M.S.; Shin, G.; Kang, T.; Kim, H.J.; Oh, D.X.; et al. Mimicking real-field degradation of biodegradable plastics in soil and marine environments: From product utility to end-of-life analysis. Polym. Test. 2024, 131, 108338. [Google Scholar] [CrossRef]
- Farzi, A.; Dehnad, A.; Fotouhi, A.F. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agric. Biotechnol. 2019, 17, 25–31. [Google Scholar] [CrossRef]
- Shao, H.; Chen, M.; Fei, X.; Zhang, R.; Zhong, Y.; Ni, W.; Tao, X.; He, X.; Zhang, E.; Yong, B.; et al. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms 2019, 7, 379. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.G.; Hinduja, M.; Sujitha, K.; Rajan, N.N.; Dharani, G. Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total. Environ. 2021, 774, 145002. [Google Scholar] [CrossRef] [PubMed]
- Biki, S.P.; Mahmud, S.; Akhter, S.; Rahman, M.J.; Rix, J.J.; Al Bachchu, M.A.; Ahmed, M. Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from land fill soil site. Environ. Technol. Innov. 2021, 22, 101495. [Google Scholar] [CrossRef]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Hou, L.; Xi, J.; Liu, J.; Wang, P.; Xu, T.; Liu, T.; Qu, W.; Lin, Y.B. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 2022, 286, 131758. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, H.M.; Yu, H.C.; Jeon, E.; Lee, S.; Li, J.; Kim, D.H. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 2020, 54, 6987–6996. [Google Scholar] [CrossRef]
- Rong, Z.; Ding, Z.H.; Wu, Y.H.; Xu, X.W. Degradation of low-density polyethylene by the bacterium Rhodococcus sp. C-2 isolated from seawater. Sci. Total Environ. 2024, 907, 167993. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Maidarjav, A.; Nyamjav, I.; Kim, H.R.; Suh, D.E.; Lee, S. Biodegradation of ethylene vinyl acetate using Klebsiella aerogenes EM011 isolated from effective microorganisms. J. Environ. Polym. Degrad. 2024, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Lin, Y.; Gou, H.; Zhang, Y.; Yang, L. Degradation of polyethylene by Klebsiella pneumoniae Mk-1 isolated from soil. Ecotoxicol. Environ. Saf. 2023, 258, 114965. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.K.; Sharma, K.K.; Chandra, H. M icrococcus luteus strain CGK112 isolated from cow dung demonstrated efficient biofilm-forming ability and degradation potential toward high-density polyethylene (HDPE). Arch. Microbiol. 2022, 204, 402. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Manderia, S.; Singh, S.; Deva, M. Isolation and characterization of polyvinyl chloride (PVC) degrading bacteria from polluted sites of Gwalior city, MP, India. Nat. Environ. Pollut. Technol. 2022, 21, 201–207. [Google Scholar] [CrossRef]
- Osman, M.; Satti, S.M.; Luqman, A.; Hasan, F.; Shah, Z.; Shah, A.A. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J. Polym. Environ. 2018, 26, 301–310. [Google Scholar] [CrossRef]
- El-Dash, H.A.; Yousef, N.E.; Aboelazm, A.A.; Awan, Z.A.; Yahya, G.; El-Ganiny, A.M. Optimizing eco-friendly degradation of polyvinyl chloride (PVC) plastic using environmental strains of Malassezia species and Aspergillus fumigatus. Int. J. Mol. Sci. 2023, 24, 15452. [Google Scholar] [CrossRef]
- Şimşek Uygun, B.; Malkoç, S. Microplastics Biodegradation by Aspergillus flavus and Aspergillus versicolor. Eurasian J. Bio. Chem. Sci. 2024, 7, 5–9. [Google Scholar] [CrossRef]
- Mohamed, H.; Shah, A.M.; Nazir, Y.; Naz, T.; Nosheen, S.; Song, Y. Biodegradation of poly (vinyl alcohol) by an orychophragmus rhizosphere-associated fungus Penicillium brevicompactum OVR-5, and its proposed PVA biodegradation pathway. World J. Microbiol. Biotechnol. 2022, 38, 10. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, Z.; Luqman, A.; Hasan, F.; Osman, M.; Shah, A.A. Biodegradation of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by newly isolated Penicillium oxalicum SS2 in soil microcosms and partial characterization of extracellular depolymerase. Curr. Microbiol. 2020, 77, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jin, T.; Xu, X.; Yin, X.; Zhang, D.; Geng, M.; Pang, C.; Luo, G.; Xiong, L.; Peng, J.; et al. Screening and degradation characteristics of plastic-degrading microorganisms in film-mulched vegetable soil. Int. Biodeter. Biodegr. 2024, 186, 105686. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Yang, T.-X.; Yang, M.; Wu, J.-Q.; Li, X.; Chen, X.-D.; Tang, L.; Yang, X.-Y. Preliminary identification of soil fungi for the degradation of polyurethane film. Arch. Microbiol. 2023, 205, 145. [Google Scholar] [CrossRef]
- Giyahchi, M.; Moghimi, H. Acceleration a yeast-based biodegradation process of polyethylene terephthalate microplastics by Tween 20: Efficiency, by-product analysis, and metabolic pathway Prediction. Environ. Pollut. 2024, 351, 124106. [Google Scholar] [CrossRef]
- Vaksmaa, A.; Polerecky, L.; Dombrowski, N.; Kienhuis, M.V.; Posthuma, I.; Gerritse, J.; Boekhout, T.; Niemann, H. Polyethylene degradation and assimilation by the marine yeast Rhodotorula mucilaginosa. ISME Commun. 2023, 3, 68. [Google Scholar] [CrossRef]
- Lou, H.; Fu, R.; Long, T.; Fan, B.; Guo, C.; Li, L.; Zhang, J.; Zhang, G. Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Sci. Total Environ. 2022, 853, 158604. [Google Scholar] [CrossRef] [PubMed]
- Zahari, N.Z.; Abdullah, S.N.; Tuah, P.M.; Cleophas, F.N. Biodegradation of low-density polyethylene (LDPE) and starch–based plastic (SBP) by thermophiles Bacillus subtilis and Candida tropicalis. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1173, 012035. [Google Scholar] [CrossRef]
- Kumar, R.V.; Kanna, G.R.; Elumalai, S. Biodegradation of polyethylene by green photosynthetic microalgae. J. Bioremediat. Biodegrad. 2017, 8, 381. [Google Scholar] [CrossRef]
- Falah, W.; Chen, F.J.; Zeb, B.S.; Hayat, M.T.; Mahmood, Q.; Ebadi, A.; Toughani, M.; Li, E.Z. Polyethylene terephthalate degradation by microalga Chlorella vulgaris along with pretreatment. Mater. Plast. 2020, 57, 260–270. [Google Scholar] [CrossRef]
- Gowthami, A.; Marjuk, M.S.; Raju, P.; Devi, K.N.; Santhanam, P.; Kumar, S.D.; Perumal, P. Biodegradation efficacy of selected marine microalgae against Low-Density Polyethylene (LDPE): An environment friendly green approach. Mar. Pollut. Bull. 2023, 190, 114889. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, P.; Rout, J. Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water. Energ. Ecol. Environ. 2019, 4, 240–252. [Google Scholar] [CrossRef]
- Zhang, G.; Li, B.; Yang, Y.; Zhang, Z.; Cheng, D.; Wang, F.; Wei, Z.; Mao, N.; Wang, S.; Liu, X.; et al. Biodegradation of humic acids by Streptomyces rochei to promote the growth and yield of corn. Microbiol. Res. 2024, 286, 127826. [Google Scholar] [CrossRef] [PubMed]
- Thomason, W.E.; Evanylo, G.K.; Zhang, X.; Strickland, M.S.; Chim, B.K.; Diatta, A.A. The synergistic effects of humic substances and biofertilizers on plant development and microbial activity: A review. Int. J. Plant Soil Sci. 2020, 32, 56–75. [Google Scholar]
- Feoktistova, A.; Bakaeva, M.; Timergalin, M.; Chetverikova, D.; Kendjieva, A.; Rameev, T.; Hkudaygulov, G.; Nazarov, A.; Kudoyarova, G.; Chetverikov, S. Effects of humic substances on the growth of Pseudomonas plecoglossicida 2,4-D and wheat plants inoculated with this strain. Microorganisms 2022, 10, 1066. [Google Scholar] [CrossRef]
- Gertsen, M.M.; Dmitrieva, E.D.; Dremova, A.A. Determination of the dependence of humic acids on the growth parameters of Rhodococcus microorganisms in the presence of hexadecane. Acta Ecol. Sin. 2023, 43, 413–418. [Google Scholar] [CrossRef]
- Yang, S.; Wang, K.; Yu, X.; Xu, Y.; Ye, H.; Bai, M.; Zhao, L.; Sun, Y.; Li, X.; Li, Y. Fulvic acid more facilitated the soil electron transfer than humic acid. J. Hazard. Mater. 2024, 469, 134080. [Google Scholar] [CrossRef]
- Egbomuche, R.C.; Ekwenye, U.N.; Udofia, G.E.; Ikeh, C.E.; Ikeh, A.O. Utilization of humic substances by bacteria isolated from humic freshwater sediment ecosystem. J. Environ. Clim. Ecol. 2024, 1, 1–16. Available online: https://journals.stecab.com/index.php/jece/article/view/22 (accessed on 1 September 2024).
- Barakova, N.V.; Sharova, N.Y.; Juskauskajte, A.R.; Mityukov, A.S.; Romanov, V.A.; Nsengumuremyi, D. Fungicidal activity of ultradisperse humic sapropel suspensions. Agron. Res. 2017, 15, 639–648. [Google Scholar]
- Abo-Elnaga, H.I.G. Control of green mould of citrus by using Trichoderma harzianum, humic acid or garlic. Arch. Phytopathol. Plant Prot. 2013, 46, 1118–1126. [Google Scholar] [CrossRef]
- Wu, M.; Song, M.; Liu, M.; Jiang, C.; Li, Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci. Rep. 2016, 6, 32858. [Google Scholar] [CrossRef]
- Fedoseeva, E.V.; Tereshina, V.M.; Danilova, O.A.; Ianutsevich, E.A.; Yakimenko, O.S.; Terekhova, V.A. Effect of humic acid on the composition of osmolytes and lipids in a melanin-containing phytopathogenic fungus Alternaria alternata. Environ. Res. 2021, 193, 110395. [Google Scholar] [CrossRef]
- Feifičová, D.; Šnajdr, J.; Siglová, M.; Čejková, A.; Masák, J.; Jirků, V. Influence of humic acids on the growth of the microorganisms utilizing toxic compounds (comparison between yeast and bacteria). Chimia 2005, 59, 749. [Google Scholar] [CrossRef]
- Popa, D.G.; Lupu, C.; Constantinescu-Aruxandei, D.; Oancea, F. Humic substances as microalgal biostimulants—Implications for microalgal biotechnology. Mar. Drugs 2022, 20, 327. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of plastic polymers by fungi: A brief review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Ma, X.; Hu, J.; Wang, X.; Choi, S.; Zhang, T.A.; Tsang, Y.F.; Gao, M.T. An integrated strategy for the utilization of rice straw: Production of plant growth promoter followed by ethanol fermentation. Process Saf. Environ. Prot. 2019, 129, 1–7. [Google Scholar] [CrossRef]
- Wei, S.; Wu, M.; Li, G.; Liu, M.; Jiang, C.; Li, Z. Fungistatic activity of multiorigin humic acids in relation to their chemical structure. J. Agric. Food Chem. 2018, 66, 7514–7521. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Hou, S.; Yang, Y.; Cheng, D.; Gao, B.; Wan, Y.; Li, Y.C.; Yu, Z.; Yao, Y.; Xie, J. Cu (II)-based water-dispersible humic acid: Synthesis, characterizations, and antifungal and growth-promoting performances. J. Agric. Food Chem. 2019, 67, 12987–13000. [Google Scholar] [CrossRef]
- Cudowski, A.; Pietryczuk, A.; Górniak, A. Effect of humic acid on the growth and metabolism of Candida albicans isolated from surface waters in North-Eastern Poland. Int. J. Environ. Res. Public Health 2022, 19, 9408. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.D.; Ferizović, D.; Biundo, A.; Lindblad, P. Hints at the applicability of microalgae and cyanobacteria for the biodegradation of plastics. Sustainability 2020, 12, 10449. [Google Scholar] [CrossRef]
- Efremenko, E.; Senko, O.; Stepanov, N.; Aslanli, A.; Maslova, O.; Lyagin, I. Quorum sensing as a trigger that improves characteristics of microbial biocatalysts. Microorganisms 2023, 11, 1395. [Google Scholar] [CrossRef]
- Shabbir, S.; Faheem, M.; Dar, A.A.; Ali, N.; Kerr, P.G.; Yu, Z.G.; Li, Y.; Frei, S.; Albasher, G.; Gilfedder, B.S. Enhanced periphyton biodegradation of endocrine disrupting hormones and microplastic: Intrinsic reaction mechanism, influential humic acid and microbial community structure elucidation. Chemosphere 2022, 293, 133515. [Google Scholar] [CrossRef] [PubMed]
- Khoshnamvand, M.; You, D.; Xie, Y.; Feng, Y.; Sultan, M.; Pei, D.S.; Fu, A. Alleviating binary toxicity of polystyrene nanoplastics and atrazine to Chlorella vulgaris through humic acid interaction: Long-term toxicity using environmentally relevant concentrations. Chemosphere 2024, 358, 142111. [Google Scholar] [CrossRef]
- Li, F.; Bai, X.; Ji, Y.; Kang, M. Understanding microplastic aging driven by photosensitization of algal extracellular polymeric substances. J. Hazard. Mater. 2024, 469, 133949. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of hybrid humic acids modification of environmentally safe biodegradable films based on hydroxypropyl methyl cellulose. Chemistry 2023, 17, 357–364. [Google Scholar] [CrossRef]
- Tian, P.; Muhmood, A.; Xie, M.; Cui, X.; Su, Y.; Gong, B.; Yu, H.; Li, Y.; Fan, W.; Wang, X. New insights into the distribution and interaction mechanism of microplastics with humic acid in river sediments. Chemosphere 2022, 307, 135943. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Lee, Y.K.; Li, X.; Hur, J. Environmental condition-dependent effects of aquatic humic substances on the distribution of phenanthrene in microplastic-contaminated aquatic systems. Environ. Pollut. 2024, 348, 123809. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Senko, O.; Maslova, O.; Lyagin, I.; Aslanli, A. Progressive biocatalysts for the treatment of aqueous systems containing pharmaceutical pollutants. Life 2023, 13, 841. [Google Scholar] [CrossRef]
- Anielak, A.M.; Styszko, K.; Kłeczek, A.; Łomińska-Płatek, D. Humic substances—Common carriers of micropollutants in municipal engineering. Energies 2022, 15, 8496. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D.; Salvestrini, S. Sorption of organic pollutants by humic acids: A review. Molecules 2020, 25, 918. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Taipale, S.J.; Vesamäki, J.; Kautonen, P.; Kukkonen, J.V.; Biasi, C.; Nissinen, R.; Tiirola, M. Biodegradation of microplastic in freshwaters: A long-lasting process affected by the lake microbiome. Environ. Microbiol. 2023, 25, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, X.; Tang, X.; Kong, F. Investigation of the adsorption of norfloxacin by biodegradable and non-biodegradable microplastics aged by chemical oxidation. J. Polym. Environ. 2023, 31, 3894–3906. [Google Scholar] [CrossRef]
- Hanachi, P.; Khoshnamvand, M.; Walker, T.R.; Hamidian, A.H. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid. Aquat. Toxicol. 2022, 245, 106123. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, K.I.; Kostina, N.V.; Plakunov, V.K.; Zhurina, M.V. Effect of humic acids on biofilm formation on polyethylene surface and its biodegradation by soil bacteria. Eurasian Soil Sci. 2022, 55, 474–484. [Google Scholar] [CrossRef]
- Šerá, J.; Huynh, F.; Ly, F.; Vinter, Š.; Kadlečková, M.; Krátká, V.; Máčalová, D.; Koutný, M.; Wallis, C. Biodegradable polyesters and low molecular weight polyethylene in soil: Interrelations of material properties, soil organic matter substances, and microbial community. Int. J. Mol. Sci. 2022, 23, 15976. [Google Scholar] [CrossRef]
- Tao, Y.; Shi, H.; Jiao, Y.; Han, S.; Akindolie, M.S.; Yang, Y.; Chen, Z.; Zhang, Y. Effects of humic acid on the biodegradation of di-n-butyl phthalate in mollisol. J. Clean. Prod. 2020, 249, 119404. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Sun, H.; Xing, R.; Zhou, S. Degradation of microplastics by hydroxyl radicals generated during microbially driven humus redox transformation. Water Res. 2022, 221, 118731. [Google Scholar] [CrossRef]
- Sable, S.; Ahuja, S.; Bhunia, H. Biodegradation kinetic modeling of pro-oxidant filled polypropylene composites under thermophilic composting conditions after abiotic treatment. Environ. Sci. Pollut. Res. 2021, 28, 21231–21244. [Google Scholar] [CrossRef]
- Feuilloley, P.; Cesar, G.; Benguigui, L.; Grohens, Y.; Pillin, I.; Bewa, H.; Lefaux, S.; Jamal, M. Degradation of polyethylene designed for agricultural purposes. J. Polym. Environ. 2005, 13, 349–355. [Google Scholar] [CrossRef]
- Sable, S.; Ahuja, S.; Bhunia, H. Biodegradation kinetic modeling of acrylic acid-grafted polypropylene during thermophilic phase of composting. Iran. Polym. J. 2020, 29, 735–747. [Google Scholar] [CrossRef]
- Vieyra, H.; Aguilar-Méndez, M.A.; San Martín-Martínez, E. Study of biodegradation evolution during composting of polyethylene–starch blends using scanning electron microscopy. J. Appl. Polym. Sci. 2013, 127, 845–853. [Google Scholar] [CrossRef]
- Kopeć, M.; Twarowska-Schmidt, K.; Gondek, K. Effect of composting plant material with copolyester on quality of organic matter. Ecol. Chem. Eng. S 2016, 23, 143–154. [Google Scholar] [CrossRef]
- Kunioka, M.; Ninomiya, F.; Funabashi, M. Novel evaluation method of biodegradabilities for oil-based polycaprolactone by naturally occurring radiocarbon-14 concentration using accelerator mass spectrometry based on ISO 14855-2 in controlled compost. Polym. Degrad. Stab. 2007, 92, 1279–1288. [Google Scholar] [CrossRef]
- Sciscione, F.; Hailes, H.C.; Miodownik, M. The performance and environmental impact of pro-oxidant additive containing plastics in the open unmanaged environment—A review of the evidence. R. Soc. Open Sci. 2023, 10, 230089. [Google Scholar] [CrossRef]
- Efremenko, E.; Senko, O.; Stepanov, N.; Mareev, N.; Volikov, A.; Perminova, I. Suppression of methane generation during methanogenesis by chemically modified humic compounds. Antioxidants 2020, 9, 1140. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Luo, F.; Yi, J.; He, Q.; Dong, B. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresour Technol. 2014, 153, 55–61. [Google Scholar] [CrossRef]
- Maslova, O.; Senko, O.; Stepanov, N.; Gladchenko, M.; Gaydamaka, S.; Akopyan, A.; Eseva, E.; Anisimov, A.; Efremenko, E. Sulfur containing mixed wastes in anaerobic processing by new immobilized synthetic consortia. Bioresour. Technol. 2022, 362, 127794. [Google Scholar] [CrossRef] [PubMed]
- Maslova, O.; Senko, O.; Stepanov, N.; Gladchenko, M.; Gaydamaka, S.; Akopyan, A.; Polikarpova, P.; Lysenko, S.; Anisimov, A.; Efremenko, E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. Bioresour. Technol. 2020, 319, 124248. [Google Scholar] [CrossRef] [PubMed]
- Al Hosni, A.S.; Pittman, J.K.; Robson, G.D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Manag. 2019, 97, 105–114. [Google Scholar] [CrossRef]
- Vázquez-Alcántara, L.; Oliart-Ros, R.M.; García-Bórquez, A.; Peña-Montes, C. Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol. Spectr. 2021, 9, e00976-21. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Chen, Y.; Rong, H.; Wei, R.; Cui, Z.; Zhou, J.; Dong, W.; Jiang, M. Fusion of chitin-binding domain from Chitinolyticbacter meiyuanensis SYBC-H1 to the leaf-branch compost cutinase for enhanced PET hydrolysis. Front. Bioeng. Biotechnol. 2021, 9, 762854. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.; Stepanov, N.; Senko, O.; Maslova, O.; Lyagin, I.; Domnin, M.; Aslanli, A. “Stop, little pot” as the motto of suppressive management of various microbial consortia. Microorganisms 2024, 12, 1650. [Google Scholar] [CrossRef]
- Genuino, D.A.D.; Bataller, B.G.; Capareda, S.C.; de Luna, M.D.G. Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar. J. Environ. Chem. Eng. 2017, 5, 4101–4107. [Google Scholar] [CrossRef]
- Zhao, S.; Ta, N.; Li, Z.; Yang, Y.; Zhang, X.; Liu, D.; Zhang, A.; Wang, X. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions. Appl. Soil Ecol. 2018, 123, 484–493. [Google Scholar] [CrossRef]
- Janczak, K.; Hrynkiewicz, K.; Znajewska, Z.; Dąbrowska, G. Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. Int. Biodeter. Biodegr. 2018, 130, 65–75. [Google Scholar] [CrossRef]
- Seddaiu, G.; Porcu, G.; Ledda, L.; Roggero, P.P.; Agnelli, A.; Corti, G. Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agric. Ecosyst. Environ. 2013, 167, 1–11. [Google Scholar] [CrossRef]
- Canellas, L.P.; Façanha, A.R. Chemical nature of soil humified fractions and their bioactivity. Pesqui. Agropecu. Bras. 2004, 39, 233–240. [Google Scholar] [CrossRef]
- Cui, P.; Liao, H.; Bai, Y.; Li, X.; Zhao, Q.; Chen, Z.; Yu, Z.; Yi, Z.; Zhou, S. Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation. Sci. Total Environ. 2019, 692, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Becher, M.; Symanowicz, B.; Jaremko, D.; Trzcinska, E. Chemical composition of compost from municipal waste in the context of use as fertiliser. Acta Agrophys. 2018, 25, 329–341. [Google Scholar] [CrossRef]
- Golebiowska, D.; Mielnik, L.; Gonet, S. Characteristics of humic acids in bottom sediments of Lobelia lakes. Environ. Int. 1996, 22, 571–578. [Google Scholar] [CrossRef]
- Mengchang, H.E.; Yehong, S.H.I.; Chunye, L.I.N. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. J. Environ. Sci. 2008, 20, 1294–1299. [Google Scholar] [CrossRef]
- Ali, J.; Li, Y.; Wang, X.; Zhao, J.; Xi, N.; Zhang, Z.; Xia, X. Climate-zone-dependent effect mechanism of humic acid and fulvic acid extracted from river sediments on aggregation behavior of graphene oxide. Sci. Total Environ. 2020, 721, 137682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, L.; Chen, J. Sources and selective preservation of organic matter in the karst watershed: Evidence from sediment records in a plateau deep lake, Southwestern China. Environ. Sci. Pollut. Res. 2021, 28, 4762–4777. [Google Scholar] [CrossRef]
- Qiang, T.; Shan, X.; Ni, Z. Comparative characteristic studies on soil and commercial humic acids. Fresenius’ J. Anal. Chem. 1993, 347, 330–336. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Li, C. Evolution of humic substances during anaerobic sludge digestion. Environ. Eng. Manag. J. 2017, 16, 1577–1582. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, Q.P.; Tian, S.J.; Song, F.H.; Guo, F.; Huang, N.N.; Tan, W.Q.; Bai, Y.C. Photochemical reactivity of humic substances in an aquatic psystem revealed by excitation-emission matrix fluorescence. Front. Chem. 2021, 9, 679286. [Google Scholar] [CrossRef]
- Luo, H.; Liu, C.; He, D.; Sun, J.; Zhang, A.; Li, J.; Pan, X. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. Water Res. 2022, 222, 118921. [Google Scholar] [CrossRef]
- Chen, L.; Qi, H.; Yu, K.; Gao, B. Increased bio-toxicity of leachates from polyvinyl chloride microplastics during the photo-aging process in the presence of dissolved organic matter. Water Sci. Technol. 2023, 88, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Amato, P.; Muscetta, M.; Venezia, V.; Cocca, M.; Gentile, G.; Castaldo, R.; Marotta, R.; Vitiello, G. Eco-sustainable design of humic acids-doped ZnO nanoparticles for UVA/light photocatalytic degradation of LLDPE and PLA plastics. J. Environ. Chem. Eng. 2023, 11, 109003. [Google Scholar] [CrossRef]
- Wu, X.; Liu, P.; Gong, Z.; Wang, H.; Huang, H.; Shi, Y.; Zhao, X.; Gao, S. Humic acid and fulvic acid hinder long-term weathering of microplastics in lake water. Environ. Sci. Technol. 2021, 55, 15810–15820. [Google Scholar] [CrossRef]
- Gauthier, E.; Nikolić, M.; Truss, R.; Laycock, B.; Halley, P. Effect of soil environment on the photo-degradation of polyethylene films. J. Appl. Polym. Sci. 2015, 132, 42558. [Google Scholar] [CrossRef]
- Xie, M.; Ren, D.; Muhmood, A.; Tian, P.; Su, Y.; Wang, X. Revealing the effect of humic substance compounds on the aged characteristics and release compounds profiles from photodegradation of polyethylene microplastics. Arab. J. Chem. 2023, 16, 105257. [Google Scholar] [CrossRef]
- Kučerík, J.; Bakajová, B.; Pekař, M. Antioxidant effect of lignite humic acids and its salts on the thermo-oxidative stability/degradation of polyvinyl alcohol blends. Environ. Chem. Lett. 2008, 6, 241–245. [Google Scholar] [CrossRef]
- Maslova, O.; Senko, O.; Gladchenko, M.A.; Gaydamaka, S.N.; Efremenko, E. Prospects for combined applications of nanostructured catalysts and biocatalysts for elimination of hydrocarbon pollutants. Appl. Sci. 2023, 13, 5815. [Google Scholar] [CrossRef]
- Xia, W.; Rao, Q.; Deng, X.; Chen, J.; Xie, P. Rainfall is a significant environmental factor of microplastic pollution in inland waters. Sci. Total Environ. 2020, 732, 139065. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Huang, Q.; Qin, J.; Zheng, Y.; Wang, J.; Guo, G.; Hu, S. Plastic mulch debris in rhizosphere: Interactions with soil-microbe-plant systems. Sci. Total Environ. 2022, 807, 151435. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, R.; You, J.; Muir, D.C.; Zeng, E.Y. Microplastic impacts on microalgae growth: Effects of size and humic acid. Environ. Sci. Technol. 2019, 54, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zhu, Y.; Chen, M.; Wan, L.; Zhao, Y.; Gao, J.; Liao, M.; Tian, X. The humic acid-like substances released from Microcystis aeruginosa contribute to defending against smaller-sized microplastics. Chemosphere 2022, 303, 135034. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, Q.; Li, P.; Xu, M.; Zhou, Y.; Li, H.; Yan, W.; Liu, C.; Vähätalo, A.V. Impact of light-aged microplastic on microalgal production of dissolved organic matter. Sci. Total Environ. 2023, 889, 164312. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sang, W.; Abbas, M.; Xu, C.; Jiang, Z.; Ma, Y.; Shi, J.; Feng, M.; Ni, L.; Li, S. The interaction mechanisms of algal organic matter (AOM) and various types and aging degrees of microplastics. J. Hazard. Mater. 2024, 477, 135273. [Google Scholar] [CrossRef]
- Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Potential benefits of polymers in soil erosion control for agronomical plans: A laboratory experiment. Agronomy 2019, 9, 276. [Google Scholar] [CrossRef]
- Kukal, S.S.; Sarkar, M. Splash erosion and infiltration in relation to mulching and polyvinyl alcohol application in semi-arid tropics. Arch. Agron. Soil Sci. 2010, 56, 697–705. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, Y.; Ni, H.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2022, 286, 131652. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, J.; Xiao, H.; Song, Z.; Ma, K.; Deng, Y. Soil stabilization using synthetic polymer for soil slope ecological protection. Eng. Geol. 2023, 321, 107155. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Kamenskikh, T.N.; Bulicheva, M.V.; Stukova, G.I. Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency. Int. Biodeter. Biodegr. 2013, 84, 118–125. [Google Scholar] [CrossRef]
- Cunningham, C.J.; Ivshina, I.B.; Lozinsky, V.I.; Kuyukina, M.S.; Philp, J.C. Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int. Biodeter. Biodegr 2004, 54, 167–174. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Xue, Z.; Yin, X.; Yuan, L.; Yang, C. Removal of Cr (VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads—Extension from water treatment to soil remediation. J. Hazard. Mater. 2022, 426, 127809. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Lehnert, T.; Linck, L.T.; Lehmann, A.; Rillig, M.C. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 2021, 12, 616645. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Duan, C.; Cao, N.; Li, X.; Li, X.; Chen, Y.; Huang, Y.; Wang, J. Effects of microplastics on soil microbiome: The impacts of polymer type, shape, and concentration. Sci. Total Environ. 2022, 806, 150516. [Google Scholar] [CrossRef] [PubMed]
* I. SPs/Size/Time/% of Degradation (Weight Loss) [Reference] | II. MOs | III. HSs and Their Effect on the Mos [Reference] |
---|---|---|
Bacteria | ||
PET (212–500 µm)/18 days/49.2–68.8% [25] | Streptomyces sp. | HSs are used as the sole carbon source [54] |
PE (MW 5000–10,000 DA)/15 days/13.0–17.3% [26] | S. albogriseolus | |
PS (1.5 × 1.5 cm)/60 days/34% [27] | Bacillus paralicheniformis | HSs increase the bacterial growth rate and are used as source of N [55] |
LDPE (1 × 1 cm)/180 days/18.9% [28] | Bacillus sp. | |
PVC (3 cm2)/30 days/19% [29] | Pseudomonas citronellolis | HSs increase the bacterial growth rate [56] |
PE (1 × 1.5, 1.5 × 2 cm)/56 days/6% [30] | P. knackmussii | |
PS/15 days/2.6% [31] | Pseudomonas sp. | |
LDPE (3 × 2 cm)/30 days/11.2% [32] | Rhodococcus sp. | The stimulating effect of HSs on bacterial growth, HSs are used as a carbon source [57] |
PP (2.4 mm)/40 days/6.4% [33] | Rhodococcus sp. | |
EVA (0.2 × 0.2 or 2.5 × 2.5 cm2)/30 days/0.65% [34] | Klebsiella aerogenes | HSs can act as electron shuttles to promote electron transfer from extracellular respiratory bacteria to solid electron acceptors or organic pollutants [58] |
PE (1 × 1 cm)/30 days/2.2% [35] | K. pneumoniae | |
HDPE (2 × 2 cm)/90 days/3.9% [36] | Micrococcus luteus | The MOs can use HSs as the sole carbon source and energy [59] |
PVC (3 cm2)/180 days/8.4% [37] | Micrococcus sp. | |
Fungi | ||
PU (2 × 2 cm)/25 days/15–20% [38] | Aspergillus fumigatus | Inhibition of cell growth and enzyme synthesis [60] |
PVC (10 × 2 cm)/30 days/2.2% [39] | A. fumigatus | |
PP, PE, PS (3–5 mm)/70 days/18.3%, 6.8%, 1.9% [40] | A. flavus | |
PP, PE, PS/70 days/6.7%, 5.1%, 3.3% [40] | A. versicolor | |
PVA/10 days/81% [41] | Penicillium brevicompactum | Inhibition of cell growth [61] |
PHB and PHBV/7 days/99% [42] | P. oxalicum | |
LDPE (2 × 2, 5 × 5 cm)/90 days/1.5–1.7% [43] | Fusarium oxysporum | Inhibition of growth up to 30% at HSs 50 mg/kg soil [62] |
PU (thickness of 0.1 mm)/60 days/3.3% [44] | Alternaria alternata | No growth inhibition in presence of 200 mg/L of HSs [63] |
Yeast | ||
PET (75–300 μm)/30 days/10% [45] | Vanrija sp. | Growth inhibition: HSs compose an additional layer on the yeast surface and decrease diffusion of nutrients and metabolites [64] |
UV-irradiated 13C-labeled PE/365 days/3.8% [46] | Rhodotorula mucilaginosa | |
PE (10 × 3 cm)/60 days/13.9% [47] | Meyerozyma guilliermondii | |
LDPE (5 × 3 cm)/49 days/3.2% [48] | Candida tropicalis | |
Photosynthetic micro-organisms | ||
LDPE (1 × 1 cm)/30 days/8.2% [49] | Anabaena spiroides | Biostimulants [65] |
LDPE (1 × 1 cm)/30 days/3.7% [49] | Scenedesmus dimorphus | |
PET (2 × 2 cm)/30 days/5.5% [50] | Chlorella vulgaris | |
LDPE (2 × 2 cm)/45 days/20.2% [51] | Picochlorum maculatum | |
LDPE (1 × 1 cm)/42 days/30% [52] | Oscillatoria subbrevis | |
LDPE (1 × 1 cm)/42 days/27% [53] | Nostoc carneum |
SPs (Sample Size) [Reference] | MOs, Type of HSs, Conditions of Biodegradation | Result |
---|---|---|
PP (≥1 mm) [73] | 4 g/L epilithon biofilms (Proteobacteria, Actinobacteria, Bacteroidetes) and HA (5 mg/L, Sigma-Aldrich, St. Louis, MO, USA), 30 °C, in the dark, 36 days | Weight loss of PP —12.3% |
PS (80 nm) [74] | Chlorella vulgaris; amino-functionalized polystyrene nanoplastics (0.05–0.4 mg/L) and atrazine (10 μg/L) with HA (1 mg/L, Sigma); cultivation at 23 °C, with white fluorescent lamps, 21 days | HA protected the C. vulgaris cells from oxidative stress induced by atrazine present on the surface of PS |
PS (3 µm) [75] | Chlorella vulgaris, 2000 lx (light: dark = 18:6), 25 °C, Xenon test chamber (1.8 kW xenon arc lamp) and a Daylight-Q filter-0.1 g of PS/20 mL of the extracellular polymeric substances (EPS) extracted from microalgae biomass (pH 6.8; 7.0 mg/L dissolved organic carbon); irradiance-0.68 W/m2 (340 nm), 20 days | The PS surface became rough and exhibited a layered peeling. The increased OH production can be attributed to the presence of HA-like substances in the cell EPS |
Hydroxypropyl methyl cellulose (film) [76] | A from lignite was introduced to the polymicrobial biofilm. Biodegradation was in presence of fungi (A. niger, P. funiculosum, P. variotii, A. terreus, A. pullulans, P. ochrochloron —106 spores/mL for each type of cells), 10% (w/w) HA, 6 months | Hydroxypropyl methyl cellulose film biodegradation was 91%. |
* SPs (Sample Size) [Reference] | MOs, Type of HSs, Conditions of Biodegradation | Result |
---|---|---|
PE (1.2–40.0 μm) [84] | HSs-containing lake water (Lake Haukijärvi, dissolved organic carbon-16 mg/L, pH 6.4), 2 g PE in 150 mL lake waters, 56 days, 110 rpm, 21 °C | Degradation rate of PE-0.45 ± 0.21% per year. The biodegradation rate of PE in the HS-containing lake water was 5–30 times higher than in the clean lake water. |
PLA, PET, PP-100~150 μm [85] | The NOR adsorption experiments: 0.1 g aged MPs (400 mM K2S2O8, 70 °C, 12 h) and 20 mL of NOR solutions with different concentrations (1, 2, 4, 6, 10, 15 mg/L), 25 °C, 36 h with addition of HA (0–8 mg/L, Analytical pure Shanghai, China) | HA had an inhibitory effect on the adsorption of NOR on the MPs which may be caused by the competitive adsorption interaction between HA and MPs. |
PCL (0.2–3 mm), PBS (0.1 mm), PBAT (0.5 mm) [24] | Seawater, 20 °C, 6–12 months; plastic particles were enclosed in a larger fishing net and submerged in coastal seas (Republic of Korea) at a depth of 1.5–2 m, 12 months | PCL weight loss in aquarium with sea water—0.2 mm samples fully degrade after 6 months, 2 mm samples—20% after 1 year; in real marine seawater PCL (2–3 mm)—35–45% degradation; PBS and PBAT > 30% |
* SPs (Sample Size) [Reference] | MOs, Type of HSs, Conditions of Biodegradation | Result |
---|---|---|
LDPE–1 × 2 cm [87] | Communities of MOs isolated from the LDPE surface incubated in the Orthic Acrisol soil (Proteobacteria, Bacteroidetes, Actinobacteria) with 0.05–0.50 mg/mL HA (extracted from the upper horizons of ferrallitic soil, typical chernozem and humate fertilizer based on lowland peat), 30 °C, 14 days | Increasing roughness of the LDPE surface by 2.0–3.5 times |
PLA, PHB, PBAT (5 × 5 mm), PE (0.5–2 mm) [88] | Lufa 2.2 soil—1.8% organic carbon, 0.02% nitrogen, pH 5.6; 300 mg of plastic, 30 g soil (dw), and 15 mL of mineral media, 12 months. Carbon content—49% and 42% for FA and HA, respectively | Mineralization of PBAT; degradation: PLA—25%, PHB > 90%, PE—15% |
PAM–(3 × 106 g/mol) [17] | Soil (11.5 g/kg organic matter, pH 6.9) with 0.07 g/g immobilized on biochar (sewage sludge and coconut shell) Klebsiella sp. (0.5 × 109 CFU/g), 1.5 mg PAM/g dry weight soil, pH 6.6, 38 °C, 30 days | Degradation—69.1%. |
PCL, PBS, PBAT (films 0.2 mm–2 mm thickness and size 3 × 3 cm or powder 200 μm) [24] | Horticultural topsoil and fertile soil (140 g of topsoil, or 98 g of topsoil, and 42 g of vermicompost (fertilized soil) mixed with 140 g of water), 6 months | Weight loss: in the horticultural soil: PCL—2%, PBS—1%, PBAT—0.2%; in the fertilized soil–PBAT—0.2%, PCL and PBS—100% |
DBP [89] | 20 mg/kg of DBP in mollisol soil (Harbin, China, pH 7.8, organic matter 2.75%) with addition of 1.5 g/kg HA (Shanghai Ryon Biological Technology Co., Ltd., Shanghai, China), 60 days | The half-life of DBP was shortened from 11.65 to 3.36 days |
* SPs (Sample Size) [Reference] | Processes with Participation of HSs, Conditions of Biodegradation | Result |
---|---|---|
PS-MPs (5 × 5 mm) [90] | Bacillus thermotolerans, aerobic process, 6 h, tryptic soy broth and anaerobic process, 18 h, minimal salts medium supplemented with 5 mM Glucose as an electron donor, 50 °C. Commercial humic acid (CHA—Tianjin Guangfu Fine Chemical Research Institute), chicken manure compost humic acid (CMHA), dairy manure compost humic acid (DMHA), and sludge compost humic acid (SHA)—10 g/L of medium | Oxidative degradation during HA redox cycles—weight loss of PS-MPs—5.9–18.1% within 8 weeks The lowest efficiency of PS-MPs degradation was in SHA than in DMHA, CMHA, and maximum with CHA |
PP and PP composites (50 × 120 mm) [91] | Abiotic treatment (8 h of UV exposure at 60 °C and 4 h of condensation at 50 °C) and composting 58 °C, 45 days | Degradation—11.2–36.4% |
PCL/starch (60/40 w/w)—50 μm Polyester—60 μm PE with peroxidant—36 μm [92] | Composting, 50 days | Biodegradation for material PCL/starch—88%, polyester—60%, PE—1.1% |
Acrylic acid-grafted PP—80–85 μm [93] | Composting, 58 °C, 45 days | Carbon conversion from SPs to CO2—1.5–5.6% |
LDPE–starch (0–50%)—4 × 4 cm [94] | Composting, 125 days | Weight loss—0.25–13.03% |
Copolyester poly (succinate-co-glutarate-co-adipate-co-terephthalate 1,4-butylene)—10 × 10 cm [95] | Mass of fiber 8–16 wt%, composting 40–45 °C, 90 days | Single pieces (10 mm long) were found at initial concentration of SPs 8%, and tangled fibers were noted at initial concentration of SPs 16% |
Composite fibers from PLA, PLA/PHA, and PLA/PBS—13–26 μm [18] | Compost, pH 7.1, moisture 53%, 58 °C, 28 days | All fibers showed a decrease in strength and molecular weight |
PCL—180.7 μm [96] | Composting (polymer 10 g, activated compost-144 g and sea sand—320 g), 58 °C, 56 days | Degradation—79.9% |
SPs (Sample Size) [Reference] | MOs, Type of HSs, Conditions of AD | Result |
---|---|---|
PAM [99] | High-solid anaerobic digestion, dewatered sewage sludge (Anting Waste Water Treatment Plant) PAM—500 mg/L, pH 10.0, 120 rpm, 35 °C, 26 days | Removal of PAM—35.9% |
PVA cryogel [100,101] | AD of oil desulfurization wastes, pH 7.0—8.5, 35 °C, 3 years. PVA cryogel is used as a carrier for the immobilization of MOs | There is no degradation of the SPs used as a cell carrier for 3 years under anaerobic conditions |
PVA cryogel [98] | AD pH 7.0–8.5, 35 °C, 1–10 g/L HSs, 16 days. PVA cryogel is used as a carrier for the immobilization of MOs |
Origin of HSs [Reference] | HA/FA | Ratio of Chemical Elements | ||
---|---|---|---|---|
H/C | C/N | O/C | ||
Biochar | ||||
Biochar * [17] | n/d *** | 0.03–0.05 | 19.9–59.0 | 0.17–0.29 |
Biochar ** [106] | n/d | 0.06 | 56.89 | 0.39 |
Biochar ** [107] | 1.85–2.17 | 0.41–1.00 | n/d | 0.06–0.29 |
Soil | ||||
HA (upper horizons of ferrallitic soil) * [87] | - | 0.08 | 15.00 | 0.67 |
Compost soil * [108] | n/d | n/d | 12.00 | n/d |
Agro-forestry soils ** [109] | 5.20–12.30 | 1.1–1.8 | 11.60–19.90 | n/d |
Red clay soil (Utisol) ** [110] | 0.90–2.50 | 0.92–2.07 | 15.56–40.98 | 1.14–4.63 |
Compost | ||||
Chicken manure compost HA * [90] | - | n/d | 16.6 | 0.27 |
Dairy manure compost HA * [90] | - | n/d | 21.7 | 0.28 |
Sludge compost HA * [90] | - | n/d | 31.4 | 0.24 |
Chicken manure/rice husk compost ** [111] | 0.36–1.10 | 0.08–0.19 | 6.79–10.56 | n/d |
Municipal waste compost ** [112] | 1.61–3.32 | 1.03–1.15 | 11.16–16.67 | 0.54–0.59 |
Water sediments | ||||
lake sediments ** [113] | n/d | 1.40–1.60 | 11.10–13.70 | 0.50–1.00 |
lake sediments ** [114] | n/d | 0.12 | 8.10 | 0.62 |
river sediments ** [114] | n/d | 0.08–0.11 | 8.7–14.0 | 0.69–0.78 |
river sediments ** [115] | 0.39–3.32 | 1.00–2.20 | 9.43–43.48 | 0.48–1.38 |
lake sediments ** [116] | 2.69–8.70 | 1.39–4.16 | 8.30–15.03 | 0.66–18.88 |
Landfill/Anaerobic digestion | ||||
sewage sludge AD ** [117] | n/d | 1.85 | 5.44 | n/d |
sewage sludge AD ** [118] | 5.41 | 1.7–1.8 | 6.4–7.0 | 0.40–0.60 |
SPs [Reference] | HSs | Degradation Conditions | Effects |
---|---|---|---|
PP-MPs [120] | HA | Laboratory xenon-lamp, temperature 60 °C, humidity 70%, light irradiance 1000 W/m2 | The oxygen content of PP-MPs increased by 1.5% after the addition of HA. |
PVC-MPs [121] | 5 mg/L HA | 100 mg/L PVC-MPs, laboratory photochemical reactor, 25 °C, 72 h | The presence of HA enhances the photoaging of PVC-MPs, while the presence of HA significantly increased the toxicity of the filtrate. |
PS-MPs [15] | HA | Laboratory aqueous system, UV light (365 nm), irradiation intensity of 60 mW/cm2, 25 °C, PS-MPs:HA = 1:1 (w/w), 40 days | Weight loss of PS-MPs was increased by 4.3% in presence of HA. HA provided 42.62% increase in the concentration of oxygen-containing compounds within photodegradation of PS-MPs. |
LDPE, PLA (thin films 4 × 2 cm with 150 µm thick) [122] | HA-doped/ ZnO nano- particles Molecular weight of HA-227.17 g/mol | Photocatalytic methods, based on the action of ROS. Laboratory aqueous system, ZnO-based photocatalytic material coated with LDPE and PLA films was placed in a bath containing water and exposed to UVA/light irradiation, UV range at 305 nm, 313 nm, and 366 nm and in the visible range at 404.7 nm and 435.8 nm, 25 °C 75 h and 225 h | HA/nanoparticles demonstrated improved photocatalytic activity for SPs compared to conventional ZnO. |
PP-MPs (100–150 μm) [123] | HA (Suwannee River humic acid) and FA (Pony Lake fulvic acid) SRHA/PLFA | Photoaging, lake water in laboratory 0.5 g of PP MPs and 20 mL of 10 mg C/L (carbon content per liter of solution) SRHA/PLFA, 500 W mercury lamp, stirring at 700 rad/min, 25 °C | Photoaging of PP-MPs significantly slowed down in lake water compared to ultrapure water after 12 days of UV irradiation in the presence of HA and FA. The chromophores in HA and FA competed for photons with MPs through the light-shielding effect, thereby causing less fragmentation of PP-MPs. |
PE [124] | HA granulate and FA powder were purchased from Omnia Specialities | Soil from different regions of Australia, natural conditions, 48 days | HA and FA increase rate of PE photo-oxidation. The impact of soil on PE photo-oxidation was complex and dependent at least in part on soil components that varied between different soil types, consequently influencing their photochemistry. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senko, O.; Maslova, O.; Stepanov, N.; Aslanli, A.; Lyagin, I.; Efremenko, E. Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions. Microorganisms 2024, 12, 2024. https://doi.org/10.3390/microorganisms12102024
Senko O, Maslova O, Stepanov N, Aslanli A, Lyagin I, Efremenko E. Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions. Microorganisms. 2024; 12(10):2024. https://doi.org/10.3390/microorganisms12102024
Chicago/Turabian StyleSenko, Olga, Olga Maslova, Nikolay Stepanov, Aysel Aslanli, Ilya Lyagin, and Elena Efremenko. 2024. "Role of Humic Substances in the (Bio)Degradation of Synthetic Polymers under Environmental Conditions" Microorganisms 12, no. 10: 2024. https://doi.org/10.3390/microorganisms12102024