Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = afterslip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 26264 KiB  
Article
Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data
by Yang He, Zhen Tian, Lina Su, Hongwu Feng, Wenhua Yan and Yongqi Zhang
Appl. Sci. 2024, 14(15), 6771; https://doi.org/10.3390/app14156771 - 2 Aug 2024
Viewed by 512
Abstract
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic [...] Read more.
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic displacements in both the temporal and spatial domains, as well as the associated dynamic mechanisms of the 2021 Maduo earthquake. The interference fringes and coseismic deformation revealed that the primary feature of this event was the rupture along a left-lateral strike-slip fault. The released seismic moment was close to 1.88 × 1020 N·m, which is equivalent to an Mw 7.45 event. Simultaneously, the maximum coseismic slip reached approximately 4 m along the fault plane. The evolution of postseismic displacements in both the temporal and spatial domains over 450 days following the mainshock was further analyzed to explore the underlying physical mechanisms. Generally, the patterns of coseismic slip and afterslip were similar, although the postseismic displacements decayed rapidly over time. The modeled afterslip downdip of the coseismic rupture (at depths of 15–40 km) effectively explains the postseismic deformation, with a released moment estimated at 4.57 × 1019 N·m (corresponding to Mw 7.04). Additionally, we found that regions with high coseismic slip tend to exhibit weak seismicity, and that afterslip and aftershocks are likely driven by each other. Finally, we estimated the Coulomb Failure Stress changes (ΔCFS) triggered by both coseismic rupture and aseismic slip resulting from this event. The co- and postseismic ΔCFS show similar patterns, but the magnitude of the postseismic ΔCFS is much lower (0.01 MPa). We found that ΔCFS notably increased on the Yushu segment of the Garze-Yushu-Xianshuihe Fault (GYXF), as well as the Maqin–Maqu and Tuosuo Lake sections of the East Kunlun Fault (EKF). Therefore, we infer that these fault segments may have a higher potential seismic risk and should be carefully monitored in the future. Full article
(This article belongs to the Special Issue Novel Approaches for Earthquake and Land Subsidence Prediction)
Show Figures

Figure 1

24 pages, 75890 KiB  
Article
Coseismic and Early Postseismic Deformation Mechanism Following the 2021 Mw 7.4 Maduo Earthquake: Insights from Satellite Radar Interferometry and GPS
by Chuanzeng Shu, Zhiguo Meng, Qiong Wu, Wei Xiong, Lijia He, Xiaoping Zhang and Dan Xu
Remote Sens. 2024, 16(8), 1399; https://doi.org/10.3390/rs16081399 - 16 Apr 2024
Cited by 1 | Viewed by 833
Abstract
Exploring the deformation mechanism of the 2021 Mw 7.4 Maduo Earthquake is crucial for better understanding the seismic hazard of the faults with low strain rates inside the Bayan Har block. This study leverages deformation information derived from Sentient-1 A/B images and GPS [...] Read more.
Exploring the deformation mechanism of the 2021 Mw 7.4 Maduo Earthquake is crucial for better understanding the seismic hazard of the faults with low strain rates inside the Bayan Har block. This study leverages deformation information derived from Sentient-1 A/B images and GPS data to investigate in detail the co- and postseismic deformation mechanisms using multiple methods. The main results are as follows. First, the postseismic InSAR time series robustly identified the reactivation of the Changmahe fault, indicating the impact of the Maduo event on surrounding active faults. Second, the joint inversion of Interferometric Synthetic Aperture Radar and GPS revealed that (1) there was a complementary and partially overlapping relationship between the coseismic slip and postseismic afterslip of the main rupture; and (2) the Changmahe fault exhibited thrust compression dislocation in the early stage and experienced a sustained compressive effect from afterslip in the one year after the mainshock. Third, modeling the processes of viscoelastic relaxation and poroelastic rebound revealed that the postseismic deformation was probably caused by a combination of afterslip (near-field) and viscoelastic relaxation (near and far field). Fourth, the stress changes driven by the Maduo event revealed that the seismic gaps inside the Maqin-Maqu segment and the Kunlun Pass-Jiangcuo fault will be potential seismic risks in the future. Full article
Show Figures

Figure 1

16 pages, 10709 KiB  
Article
Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions
by Yunfei Xiang, Yankai Bian, Jie Liu and Yin Xing
Remote Sens. 2023, 15(23), 5469; https://doi.org/10.3390/rs15235469 - 23 Nov 2023
Cited by 1 | Viewed by 803
Abstract
Based on subdaily kinematic GNSS solutions, the fault slip properties during the very early postseismic phase after the 2021 M 8.2 Chignik earthquake are investigated in this paper. The very early postseismic deformations captured by near-field GNSS sites can be well depicted by [...] Read more.
Based on subdaily kinematic GNSS solutions, the fault slip properties during the very early postseismic phase after the 2021 M 8.2 Chignik earthquake are investigated in this paper. The very early postseismic deformations captured by near-field GNSS sites can be well depicted by the power model. The comparison of afterslip determined by daily and subdaily GNSS solutions suggests that neglecting very early afterslip can result in the underestimation of postseismic slip. Compared with coseismic slip, the cumulative afterslip of the first 24 h is mainly focused in the southeast of the hypocenter, and the shallow updip afterslip appears after this earthquake. The spatio-temporal evolution of the afterslip reveals that the patch of afterslip is immediately generated after the earthquake, and then the postseismic slip gradually grows along the afterslip patch. The magnitude of the afterslip patch varies remarkably within the 24 h following the earthquake, especially in the first several hours. Meanwhile, the spatio-temporal patterns of aftershocks and afterslip exhibit strong similarity during the first 24 h, suggesting that very early afterslip may be a possible driving factor of aftershocks. Moreover, most of the afterslip patches and aftershocks occurring immediately after this earthquake are situated in the area covered by positive Coulomb Stress Change (CSC), which implies that the immediate afterslip and aftershock activities can be influenced by the coseismic CSC. The following afterslip process further releases coseismic CSC and then influences the spatio-temporal variations of aftershock activities. Thus, the afterslip may be a possible triggering mechanism of very early aftershocks for this earthquake, alongside the effects of the CSC generated by coseismic rupture. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Figure 1

18 pages, 112625 KiB  
Article
Insight into the 1 December 2016 Mw 6.2 Juliaca Earthquake, Southern Peru, by InSAR Observations and Field Investigation
by Qingfeng Hu, Weiwei Jia, Jiuyuan Yang and Yanling Zhao
Remote Sens. 2023, 15(17), 4341; https://doi.org/10.3390/rs15174341 - 3 Sep 2023
Viewed by 1080
Abstract
On 1 December 2016, an Mw 6.2 earthquake characterized by normal faulting occurred in the highlands of the central Andes in southern Peru, marking the region’s largest shallow event. The occurrence of the earthquake provides a significant chance to gain insight into the [...] Read more.
On 1 December 2016, an Mw 6.2 earthquake characterized by normal faulting occurred in the highlands of the central Andes in southern Peru, marking the region’s largest shallow event. The occurrence of the earthquake provides a significant chance to gain insight into the regional tectonic deformation and the seismogenic mechanism of the shallow normal-faulting earthquake, as well as the regional potential seismic risk. Here, we first utilize Sentinel-1A interferometric synthetic aperture radar (InSAR) data to extract the coseismic and postseismic deformation associated with this earthquake and then determine the detailed coseismic slip and postseismic afterslip distribution of this event. Coseismic modeling results indicate that the coseismic rupture is mainly characterized by normal faulting with some dextral strike-slip components. Most coseismic slip is confined to a depth range of 2–12 km, indicating an obvious slip deficit area in the shallow fault part. Further postseismic modeling reveals that the majority of afterslip is concentrated at depths of 0 to 5.4 km. The relatively shallow postseismic afterslip makes up for the coseismic slip deficit area to some extent. Through a joint analysis of the inversions, seismic data, and regional geology and geomorphology, we infer that the occurrence of this 2016 normal-faulting event is a result of regional gravitational collapse. In addition, we investigate the relationship between the 2016 earthquake and great historical earthquakes near the subduction zone of the central Andes and find that the 2016 event is likely promoted in advance by these events through our calculations of the coseismic and postseismic Coulomb stress changes. Finally, we should pay more attention to the nearby Falla Huaytacucho-Condoroma fault and the western segment of the Vilcanota Fault because of their relatively high stress loading. Full article
(This article belongs to the Special Issue Remote Sensing in Earthquake, Tectonics and Seismic Hazards)
Show Figures

Figure 1

15 pages, 23140 KiB  
Article
Coseismic and Early Postseismic Deformation of the 2020 Mw 6.4 Petrinja Earthquake (Croatia) Revealed by InSAR
by Sen Zhu, Yangmao Wen, Xiaodong Gong and Jingbin Liu
Remote Sens. 2023, 15(10), 2617; https://doi.org/10.3390/rs15102617 - 18 May 2023
Cited by 3 | Viewed by 1409
Abstract
The largest earthquake (Mw 6.4) in northwestern Croatia ruptured the faults near the city of Petrinja on 29 December 2020, at 11:19 UTC. The epicenter was located ~3 km southwest of Petrinja, ~40 km southeast of Zagreb, the capital of the Republic of [...] Read more.
The largest earthquake (Mw 6.4) in northwestern Croatia ruptured the faults near the city of Petrinja on 29 December 2020, at 11:19 UTC. The epicenter was located ~3 km southwest of Petrinja, ~40 km southeast of Zagreb, the capital of the Republic of Croatia. Here we investigated the geometric and kinematic properties of the 2020 Mw 6.4 Petrinja earthquake using a joint inversion of ascending and descending interferograms from three tracks of Sentinel-1 Single-Look Complex (SLC) images. The coseismic and early postseismic surface displacements associated with the Petrinja earthquake were imaged using standard DInSAR and SBAS time-series InSAR methods, respectively. The distributed slip model was inverted based on the ground surface displacements with maximum slip patch in 5 km depth. The early postseismic deformation occurred on the northwestern extent of coseismic slip, and it cannot be well modeled by the coseismic model. We thus suggested that the postseismic deformation was caused by a combined effect of the postseismic afterslips and aftershocks occurring in this area. Based on the inverted slip model, we calculated the Coulomb stress change in the region, and found a good correlation between positive Coulomb failure stress ∆CFS and the distribution of aftershocks. Based on these results, we identified which faults are more active, and then better estimated the seismic hazards in the region. Full article
Show Figures

Figure 1

13 pages, 30433 KiB  
Communication
Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data
by Zhanhong Huang, Lei Xie, Lei Zhao and Wenbin Xu
Remote Sens. 2023, 15(9), 2258; https://doi.org/10.3390/rs15092258 - 25 Apr 2023
Viewed by 1408
Abstract
Spatiotemporal distribution of early afterslip is essential for seismic hazard evaluation and determination of fault friction properties. In this study, we used early post-seismic COSMO-SkyMed (19 February 2014–08 April 2014) and long-term Sentinel-1 (16 October 2014–17 June 2020) observations from multiple platforms over [...] Read more.
Spatiotemporal distribution of early afterslip is essential for seismic hazard evaluation and determination of fault friction properties. In this study, we used early post-seismic COSMO-SkyMed (19 February 2014–08 April 2014) and long-term Sentinel-1 (16 October 2014–17 June 2020) observations from multiple platforms over different periods to create a rate decay model driven by post-seismic afterslip. The combined observations provide full coverage of the post-seismic deformation following the 2014 Yutian Mw 6.9 earthquake that occurred at the southwestern end of the Altyn Tagh Fault. The observation and modeling results showed that post-seismic deformation was characterized by left-lateral strike-slip movement with minor normal slip, which was consistent with that of co-seismic rupture. The maximum early afterslip (7–55 days) was as large as approximately 0.09 m with a depth of 7 km in the west of co-seismic rupture, and the maximum long-term afterslip was about 0.24 m. The simulated post-seismic deformation caused by poroelastic rebound and viscoelastic relaxation suggests that the afterslip mechanism controls the post-seismic deformation. The coupling pattern of the aftershock and afterslip indicates that the aftershock was mainly caused by the afterslip. The post-seismic spatiotemporal features of the 2014 Yutian earthquake have significant implications for analyzing seismic hazards at the southwestern end of the Altyn Tagh Fault. Full article
(This article belongs to the Special Issue Monitoring Subtle Ground Deformation of Geohazards from Space)
Show Figures

Figure 1

19 pages, 6746 KiB  
Article
Co- and Postseismic Deformation of the 2020 Mw 6.3 Nima (Tibet, China) Earthquake Revealed by InSAR Observations
by Miaomiao Zhang, Zhenhong Li, Chen Yu, Zhenjiang Liu, Xuesong Zhang, Jiatong Wang, Jing Yang, Bingquan Han and Jianbing Peng
Remote Sens. 2022, 14(21), 5390; https://doi.org/10.3390/rs14215390 - 27 Oct 2022
Cited by 1 | Viewed by 1792
Abstract
On 22 July 2020, an Mw 6.3 earthquake occurred in Nima County, central Qinghai-Tibet Plateau, China. We used the synthetic aperture radar interferometry (InSAR) technique with Sentinel-1 images to retrieve the line of sight (LOS) coseismic deformation fields which indicate that the maximum [...] Read more.
On 22 July 2020, an Mw 6.3 earthquake occurred in Nima County, central Qinghai-Tibet Plateau, China. We used the synthetic aperture radar interferometry (InSAR) technique with Sentinel-1 images to retrieve the line of sight (LOS) coseismic deformation fields which indicate that the maximum surface displacement reached ~30 cm. We then processed a series of interferograms spanning one year after the Nima earthquake with the Small Baseline Subset Interferometric SAR (SBAS-InSAR) technique. The maximum cumulative postseismic LOS surface displacement reached ~8 cm and approximately followed a logarithmic function over time. The inversion of the fault geometry and co- and afterslip distribution shows that the epicenter location was (33.18°N, 86.88°E) at a depth of 7.4 km, and the causative fault had an N29.1°E strike and 50.2° dip. The most coseismic slip was concentrated at depths between 3 to 12 km with a peak value of 2.0 m at 7.4 km, whilst most afterslips were concentrated at depths between 0 to 12 km with a peak value of 0.2 m at 5 km. The postseismic moment energy was about 5.04 × 1017 N∙m 308 days after the event, which was approximately 13.8% of the coseismic moment energy. By analyzing the contribution of afterslip and poroelastic rebound to postseismic deformation, it was concluded that afterslip was the main early postseismic deformation mechanism. Future attention should be paid to the northern segment of the West Yibug Caka fault and East Yibug Caka fault. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

32 pages, 14207 KiB  
Article
On the Patterns and Scaling Properties of the 2021–2022 Arkalochori Earthquake Sequence (Central Crete, Greece) Based on Seismological, Geophysical and Satellite Observations
by Filippos Vallianatos, Andreas Karakonstantis, Georgios Michas, Kyriaki Pavlou, Maria Kouli and Vassilis Sakkas
Appl. Sci. 2022, 12(15), 7716; https://doi.org/10.3390/app12157716 - 31 Jul 2022
Cited by 11 | Viewed by 2390
Abstract
The 27 September 2021 damaging mainshock (Mw6.0) close to Arkalochori village is the strongest earthquake that was recorded during the instrumental period of seismicity in Central Crete (Greece). The mainshock was preceded by a significant number of foreshocks that lasted nearly four months. [...] Read more.
The 27 September 2021 damaging mainshock (Mw6.0) close to Arkalochori village is the strongest earthquake that was recorded during the instrumental period of seismicity in Central Crete (Greece). The mainshock was preceded by a significant number of foreshocks that lasted nearly four months. Maximum ground subsidence of about 18 cm was estimated from InSAR processing. The aftershock sequence is located in an almost NE-SW direction and divided into two main clusters, the southern and the northern ones. The foreshock activity, the deformation area, and the strongest aftershocks are located within the southern cluster. Based on body-wave travel times, a 3-D velocity model was developed, while using combined space and ground-based geodetic techniques, the co-seismic ground deformation is presented. Moreover, we examined the co-seismic static stress changes with respect to the aftershocks’ spatial distribution during the major events of the foreshocks, the Mw = 6.0 main event as well as the largest aftershock. Both the foreshock and the aftershock sequences obey the scaling law for the frequency-magnitude distribution as derived from the framework of non-extensive statistical physics (NESP). The aftershock production rate decays according to the modified Omori scaling law, exhibiting various Omori regimes due to the generation of secondary aftershock sequences. The analysis of the inter-event time distribution, based on NESP, further indicates asymptotic power-law scaling and long-range correlations among the events. The spatiotemporal evolution of the aftershock sequence indicates triggering by co-seismic stress transfer, while its slow migration towards the outer edges of the area of the aftershocks, related to the logarithm of time, further indicates a possible afterslip. Full article
(This article belongs to the Special Issue Geographic Visualization: Evaluation and Monitoring of Geohazards)
Show Figures

Figure 1

17 pages, 78818 KiB  
Article
InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust
by Lei Zhao, Chunyan Qu, Dezheng Zhao, Xinjian Shan, Han Chen and Lian Liu
Remote Sens. 2022, 14(2), 306; https://doi.org/10.3390/rs14020306 - 10 Jan 2022
Cited by 2 | Viewed by 1898
Abstract
We use ALOS-2 and Sentinel-1 data spanning 2015–2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area [...] Read more.
We use ALOS-2 and Sentinel-1 data spanning 2015–2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area of the co-seismic deformation field, with a maximum uplift of ~80 mm within 4.5 yr after the mainshock. While in the southern coseismic uplift area, the direction of the post-seismic deformation is generally opposite to the co-seismic deformation. Additionally, two notable deformation areas are located in the region around 29° N, and near the MFT, respectively. Sentinel-1 observations reveal post-seismic uplift deformation on the north side of the co-seismic deformation field with an average rate of ~20 mm/yr in line-of-stght. The kinematic afterslip constrained by InSAR data shows that the frictional slip is distributed in both updip and downdip areas. The maximum cumulative afterslip is 0.35 m in downdip areas, and 0.2 m in the updip areas, constrained by the ALOS measurements. The stress-driven afterslip model shows that the afterslip is distributed in the downdip area with a maximum slip of 0.3 m during the first year after the earthquake. Within the 4.5 yr after the mainshock, the estimated moment released by afterslip is ~1.5174 × 1020 Nm,about 21.2% of that released by the main earthquake. Full article
Show Figures

Figure 1

17 pages, 9022 KiB  
Article
Rupture Kinematics and Coseismic Slip Model of the 2021 Mw 7.3 Maduo (China) Earthquake: Implications for the Seismic Hazard of the Kunlun Fault
by Han Chen, Chunyan Qu, Dezheng Zhao, Chao Ma and Xinjian Shan
Remote Sens. 2021, 13(16), 3327; https://doi.org/10.3390/rs13163327 - 23 Aug 2021
Cited by 42 | Viewed by 3597
Abstract
The 21 May 2021 Maduo earthquake was the largest event to occur on a secondary fault in the interior of the active Bayanhar block on the north-central Tibetan plateau in the last twenty years. A detailed kinematic study of the Maduo earthquake helps [...] Read more.
The 21 May 2021 Maduo earthquake was the largest event to occur on a secondary fault in the interior of the active Bayanhar block on the north-central Tibetan plateau in the last twenty years. A detailed kinematic study of the Maduo earthquake helps us to better understand the seismogenic environments of the secondary faults within the block, and its relationship with the block-bounding faults. In this study, firstly, SAR images are used to obtain the coseismic deformation fields. Secondly, we use a strain model-based method and steepest descent method (SDM) to resolve the three-dimensional displacement components and to invert the coseismic slip distribution constrained by coseismic displacement fields, respectively. The three-dimensional displacement fields reveal a dominant left-lateral strike-slip motion, local horizontal displacement variations and widely distributed near-fault subsidence/uplift deformation. We prefer a five-segment fault slip model, with well constrained fault geometry featuring different dip angles and striking, constrained by InSAR observations. The peak coseismic slip is estimated to be ~5 m near longitude 98.9°E at a depth of ~4–7 km. Overall, the distribution of the coseismic slip on the fault is highly correlated to the measured surface displacement offsets along the entire rupture. We observe the moderate shallow slip deficit and limited afterslip deformation following the Maduo earthquake, it may indicate the effects of off-fault deformation during the earthquake and stable interseismic creep on the fault. The occurrence of the Maduo earthquake on a subsidiary fault updates the importance and the traditional estimate of the seismic hazards for the Kunlun fault. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

15 pages, 5965 KiB  
Technical Note
Co-Seismic Inversion and Post-Seismic Deformation Mechanism Analysis of 2019 California Earthquake
by Chengsheng Yang, Ting Wang, Sainan Zhu, Bingquan Han, Jihong Dong and Chaoying Zhao
Remote Sens. 2021, 13(4), 608; https://doi.org/10.3390/rs13040608 - 8 Feb 2021
Cited by 3 | Viewed by 2650
Abstract
In July 2019, a series of seismic events, including a magnitude (Mw) 7.1 mainshock and Mw 6.4 foreshock, occurred in Eastern California. Studying these seismic events can significantly improve our understanding of the Eastern California tectonic environment. Sentinel-1A and ALOS-2 PALSAR images were [...] Read more.
In July 2019, a series of seismic events, including a magnitude (Mw) 7.1 mainshock and Mw 6.4 foreshock, occurred in Eastern California. Studying these seismic events can significantly improve our understanding of the Eastern California tectonic environment. Sentinel-1A and ALOS-2 PALSAR images were utilized to obtain co-seismic deformation fields, including mainshock and foreshock deformation. The Okada elastic dislocation model and ascending and descending orbit results were used to invert the co-seismic slip distribution and obtain a co-seismic focal mechanism solution. Using ascending Sentinel-1A images, a time-series deformation was obtained for 402 d after the earthquake, and the deformation evolution mechanism was analyzed. The maximum uplift caused by the co-seismic mechanism reached 1.5 m in the line of sight (LOS), and the maximum subsidence reached 1 m in the LOS. For 402 d after the earthquake, the area remained active, and its deformation was dominated by after-slip. The co-seismic inversion results illustrated that California earthquakes were mainly strike-slip. The co-seismic inversion magnitude was approximately Mw 7.08. The Coulomb stress change illustrated that the seismic moment caused by the co-seismic slip was 4.24 × 1026 N × m, which is approximately Mw 7.06. This finding is consistent with the co-seismic slip distribution inversion results. Full article
(This article belongs to the Special Issue Earthquake Ground Motion Observation and Modelling)
Show Figures

Figure 1

28 pages, 126741 KiB  
Article
The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation
by Alessandra Ascione, Sergio Nardò and Stefano Mazzoli
Geosciences 2020, 10(12), 493; https://doi.org/10.3390/geosciences10120493 - 9 Dec 2020
Cited by 10 | Viewed by 3862
Abstract
The MS 6.9, 1980 Irpinia earthquake occurred in the southern Apennines, a fold and thrust belt that has been undergoing post-orogenic extension since ca. 400 kyr. The strongly anisotropic structure of fold and thrust belts like the Apennines, including late-orogenic low-angle normal [...] Read more.
The MS 6.9, 1980 Irpinia earthquake occurred in the southern Apennines, a fold and thrust belt that has been undergoing post-orogenic extension since ca. 400 kyr. The strongly anisotropic structure of fold and thrust belts like the Apennines, including late-orogenic low-angle normal faults and inherited Mesozoic extensional features besides gently dipping thrusts, result in a complex, overall layered architecture of the orogenic edifice. Effective decoupling between deep and shallow structural levels of this mountain belt is related to the strong rheological contrast produced by a fluid-saturated, shale-dominated mélange zone interposed between buried autochthonous carbonates—continuous with those exposed in the foreland to the east—and the allochthonous units. The presence of fluid reservoirs below the mélange zone is shown by a high VP/VS ratio—which is a proxy for densely fractured fluid-saturated crustal volumes—recorded by seismic tomography within the buried autochthonous carbonates and the top part of the underlying basement. These crustal volumes, in which background seismicity is remarkably concentrated, are fed by fluids migrating along the major active faults. High pore fluid pressures, decreasing the yield stress, are recorded by low stress-drop values associated with the earthquakes. On the other hand, the mountain belt is characterized by substantial gas flow to the surface, recorded as both distributed soil gas emissions and vigorous gas vents. The accumulation of CO2-brine within a reservoir located at hypocentral depths beneath the Irpinia region is not only interpreted to control a multiyear cyclic behavior of microseismicity, but could also play a role in ground motions detected by space-based geodetic measurements in the postseismic period. The analysis carried out in this study of persistent scatterer interferometry synthetic aperture radar (PS-InSAR) data, covering a timespan ranging from 12 to 30 years after the 1980 mainshock, points out that ground deformation has affected the Irpinia earthquake epicentral area in the last decades. These ground motions could be a result of postseismic afterslip, which is well known to occur over years or even decades after a large mainshock such as the 23 November 1980, MS 6.9 earthquake due to cycles of CO2-brine accumulation at depth and its subsequent release by Mw ≥ 3.5 earthquakes, or most likely by a combination of both. Postseismic afterslip controls geomorphology, topography, and surface deformation in seismically active areas such as that of the present study, characterized by ~M 7 earthquakes. Yet, this process has been largely overlooked in the case of the 1980 Irpinia earthquake, and one of the main aims of this study is to fill such the substantial gap of knowledge for the epicentral area of some of the most destructive earthquakes that have ever occurred in Italy. Full article
Show Figures

Figure 1

23 pages, 27295 KiB  
Article
Illuminating the Spatio-Temporal Evolution of the 2008–2009 Qaidam Earthquake Sequence with the Joint Use of Insar Time Series and Teleseismic Data
by Simon Daout, Andreas Steinberg, Marius Paul Isken, Sebastian Heimann and Henriette Sudhaus
Remote Sens. 2020, 12(17), 2850; https://doi.org/10.3390/rs12172850 - 2 Sep 2020
Cited by 14 | Viewed by 4790
Abstract
Inferring the geometry and evolution of an earthquake sequence is crucial to understand how fault systems are segmented and interact. However, structural geological models are often poorly constrained in remote areas and fault inference is an ill-posed problem with a reliability that depends [...] Read more.
Inferring the geometry and evolution of an earthquake sequence is crucial to understand how fault systems are segmented and interact. However, structural geological models are often poorly constrained in remote areas and fault inference is an ill-posed problem with a reliability that depends on many factors. Here, we investigate the geometry of the Mw 6.3 2008 and 2009 Qaidam earthquakes, in northeast Tibet, by combining InSAR time series and teleseismic data. We conduct a multi-array back-projection analysis from broadband teleseismic data and process three overlapping Envisat tracks covering the two earthquakes to extract the spatio-temporal evolution of seismic ruptures. We then integrate both geodetic and seismological data into a self-consistent kinematic model of the earthquake sequence. Our results constrain the depth and along-strike segmentation of the thrust-faulting sequence. The 2008 earthquake ruptured a ∼32° north-dipping fault that roots under the Olongbulak pop-up structure at ∼12 km depth and fault slip evolved post-seismically in a downdip direction. The 2009 earthquake ruptured three south-dipping high-angle thrusts and propagated from ∼9 km depth to the surface and bilaterally along the south-dipping segmented 55–75° high-angle faults of the Olonbulak pop-up structure that displace basin deformed sedimentary sequences above Paleozoic bedrock. Our analysis reveals that the inclusion of the post-seismic afterslip into modelling is beneficial in the determination of fault geometry, while teleseismic back-projection appears to be a robust tool for identifying rupture segmentation for moderate-sized earthquakes. These findings support the hypothesis that the Qilian Shan is expanding southward along a low-angle décollement that partitions the oblique convergence along multiple flower and pop-up structures. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

14 pages, 4023 KiB  
Article
Rheology of the Zagros Lithosphere from Post-Seismic Deformation of the 2017 Mw7.3 Kermanshah, Iraq, Earthquake
by Xiaoran Lv, Falk Amelung, Yun Shao, Shu Ye, Ming Liu and Chou Xie
Remote Sens. 2020, 12(12), 2032; https://doi.org/10.3390/rs12122032 - 24 Jun 2020
Cited by 8 | Viewed by 3016
Abstract
We use 2018–2020 Sentinel-1 InSAR time series data to study post-seismic deformation processes following the 2017 Mw 7.3 Kermanshah, Iraq earthquake. We remove displacements caused by two large aftershock sequences from the displacement field. We find that for a six month period the [...] Read more.
We use 2018–2020 Sentinel-1 InSAR time series data to study post-seismic deformation processes following the 2017 Mw 7.3 Kermanshah, Iraq earthquake. We remove displacements caused by two large aftershock sequences from the displacement field. We find that for a six month period the response is dominated by afterslip along the up-dip extension of the coseismic rupture zone, producing up to 6 cm of radar line-of-sight displacements. The moment magnitude of afterslip is Mw 5.9 or 12% of the mainshock moment. After that period, the displacement field is best explained by viscoelastic relaxation and a lower crustal viscosity of η l c = 1 0.4 + 0.8 × 10 19   Pas . The viscosity of the uppermost mantle is not constrained by the data, except that it is larger than 0.6 × 10 19   Pas . The relatively high lower crustal and uppermost mantle viscosities are consistent with a cold and dry lithosphere of the Zagros region. Full article
(This article belongs to the Special Issue Remote Sensing in Applied Geophysics)
Show Figures

Graphical abstract

17 pages, 25837 KiB  
Article
Co- and post-seismic Deformation Mechanisms of the MW 7.3 Iran Earthquake (2017) Revealed by Sentinel-1 InSAR Observations
by Chengsheng Yang, Bingquan Han, Chaoying Zhao, Jiantao Du, Dongxiao Zhang and Sainan Zhu
Remote Sens. 2019, 11(4), 418; https://doi.org/10.3390/rs11040418 - 18 Feb 2019
Cited by 21 | Viewed by 5164
Abstract
The extraction of high-accuracy co- and post-seismic deformation fields and inversions of seismic slip distributions is significant in the comprehension of seismogenic mechanisms. On 12 November 2017, a MW 7.3 earthquake occurred on the border between Iran and Iraq. To construct the [...] Read more.
The extraction of high-accuracy co- and post-seismic deformation fields and inversions of seismic slip distributions is significant in the comprehension of seismogenic mechanisms. On 12 November 2017, a MW 7.3 earthquake occurred on the border between Iran and Iraq. To construct the co-seismic deformation field, Sentinel-1A synthetic aperture radar (SAR) images from three tracks were used. Based on a prior knowledge, least-squares iterative approximation was employed to construct the three-dimensional (3D) co-seismic deformation field. to derive a time series of 2D post-seismic deformation, the multidimensional small baseline subset (MSBAS) technique was use. Co-seismic deformation fields were asymmetric; the maximum relative displacement was nearly 90cm in the radar line-of-sight between two centers of co-seismic deformation. The 3D co-seismic deformation field showed southwestward horizontal motion and continuous subsidence-to-uplift variation from northeast to southwest. The two-dimensional (2D) post-seismic deformation time series showed a gradual decaying trend and good correspondence with the aftershock distribution. The main mechanism of post-seismic deformation was an afterslip of the post-seismic faults. We used the elastic half-space model to invert co-seismic deformation fields and obtain source parameters of the slip model. The maximum and average slips were 2.5 and 0.72 m, respectively. The average slip angle was 126.38° and the moment magnitude was MW 7.34. The results of this study will contribute to research on regional tectonic activities. Full article
(This article belongs to the Special Issue Remote Sensing of Tectonic Deformation)
Show Figures

Graphical abstract

Back to TopTop