Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data
Abstract
:1. Introduction
2. InSAR Coseismic Deformation and Postseismic Time Series
2.1. Coseismic Observations and Deformation
2.2. Postseismic Observations and Time Series
3. Results
3.1. Coseismic Model and Inversion
3.2. Afterslip Model and Inversion
4. Discussion
4.1. Decay Pattern of the Postseismic Displacements
4.2. Spatial Relationship between Coseismic Slip, Afterslip, and Aftershocks
4.3. The Effects of Coulomb Failure Stress Triggered by Coseismic Rupture and Aseismic Slip on Surrounding Faults
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite System |
SLC | Single Look Complex |
KPJF | Kunlun Pass-Jiangcuo Fault |
InSAR | Interferometric Synthetic Aperture Radar |
GCMT | Global Centroid Moment Tensor Project |
D-InSAR | Differential InSAR |
TOPS | Terrain Observation by Progressive Scan |
SRTM DEM | Shuttle Radar Topography Mission Digital Elevation Model |
LOS | Line of sight |
SAR | Synthetic Aperture Radar |
SNR | signal-to-noise ratio |
StaMPS | Stanford Method for Persistent Scatterers |
PS | Persistent Scatterers |
Coulomb Failure Stress changes | |
GYXF | Garze-Yushu-Xianshuihe Fault |
EKF | East Kunlun Fault |
DF | Dari Fault |
PS-InSAR | Persistent Scatterer InSAR |
Appendix A
References
- Li, Z.; Li, W.; Li, T.; Xu, Y.; Su, P.; Guo, P.; Sun, H.; Ha, G.; Chen, G.; Yuan, Z. Seismogenic fault and coseismic surface deformation of the Maduo Ms7.4 earthquake in Qinghai, China: A quick report. Seismol. Geol. 2021, 43, 722–737. [Google Scholar]
- Pan, J.; Bai, M.; Li, C.; Liu, F.; Li, H.; Liu, D.; Chevalier, M.; Wu, K.; Wang, P.; Lu, H.; et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 earthquake. Acta Geol. Sin. 2021, 95, 1655–1670. [Google Scholar]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Wang, W.; Fang, L.; Wu, J.; Tu, H.; Chen, L.; Lai, G.; Zhang, L. Aftershock sequence relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China. Sci. China Earth Sci. 2021, 64, 1371–1380. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, S.; Zhang, G.; Liang, J.; Zou, L.; Li, X.; Chen, Y. Analysis of seismogenic structure of Madoi, Qinghai Ms7.4 earthquake on May 22, 2021. Chin. J. Geophys. 2021, 64, 2657–2670. [Google Scholar]
- Yang, J.; Sun, W.; Hong, S.; Yuan, Z.; Li, Y.; Chen, W.; Meng, G. Coseismic deformation analysis of the 2021 Qinghai Madoi M7.4 earthquake. Chin. J. Geophys. 2021, 64, 2671–2683. [Google Scholar]
- Hua, J.; Zhao, D.; Shan, X.; Qu, C.; Zhang, Y.; Gong, W.; Wang, Z.; Li, C.; Li, Y.; Zhao, L.; et al. Coseismic deformation field, slip distribution and Coulomb stress disturbance of the 2021 Mw7.3 Maduo earthquake using sentinel-1 InSAR observations. Seismol. Geol. 2021, 43, 677–691. [Google Scholar]
- Jiang, W.; Xu, C.; Li, Z.; Wu, Y.; Tan, K.; Geng, J.; Qu, C.; Zheng, G.; Wen, Y.; He, K.; et al. Using space observation techniques to study temporal and spatial characteristics of seismogenic process, occurrence and deformation of the Qinghai Madoi Mw7.4 earthquake. Chin. J. Geophys. 2022, 65, 495–508. [Google Scholar]
- Wang, Y.; Li, Y.; Cai, Y.; Jiang, L.; Shi, H.; Jiang, Z.; Gan, W. Coseismic displacement and slip distribution of the 2021 May 22, Ms7.4 Madoi earthquake derived from GNSS observations. Chin. J. Geophys. 2022, 65, 523–536. [Google Scholar]
- Ji, L.; Liu, C.; Xu, J.; Liu, L.; Long, F.; Zhang, Z. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou Ms7.0 earthquake in China. Chin. J. Geophys. 2017, 60, 4069–4082. [Google Scholar]
- Zhang, G.; Qu, C.; Song, X.; Wang, C.; Shan, X.; Hu, J. Slip distribution and source parameters inverted from co-seismic deformation derived by InSAR technology of Wenchuan Mw7.9 earthquake. Chin. J. Geophys. 2010, 53, 269–279. [Google Scholar]
- Feng, G.; Hetland, E.; Ding, X.; Zhang, L. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophys. Res. Lett. 2010, 37, 1302. [Google Scholar] [CrossRef]
- Wang, K.; Fialko, Y. Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J. Geophys. Res. Solid Earth 2018, 123, 761–779. [Google Scholar] [CrossRef]
- Tian, Z.; Freymueller, J.; Yang, Z. Postseismic deformation due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig earthquakes and its implications for regional rheological structure. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020197. [Google Scholar] [CrossRef]
- Zheng, A.; Yu, X.; Qian, J.; Liu, X.; Zhang, W.; Chen, X.; Xu, W. Cascading rupture process of the 2021 Maduo, China earthquake revealed by the joint inversion of seismic and geodetic data. Tectonophysics 2023, 849, 229732. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Yang, Y.; Xu, Q.; Zhao, J.; Xu, L.; Liu, R. The 2021 Mw7. 4 Maduo earthquake: Coseismic slip model, triggering effect of historical earthquakes and implications for adjacent fault rupture potential. J. Geodyn. 2022, 151, 101920. [Google Scholar] [CrossRef]
- Fang, J.; Ou, Q.; Wright, T.; Okuwaki, R.; Amey, R.; Craig, T.; Elliott, J.R.; Hooper, A.; Lazecký, M.; Maghsoudi, Y. Earthquake Cycle Deformation Associated with the 2021 Mw7.4 Maduo (Eastern Tibet) Earthquake: An Intrablock Rupture Event on a Slow-Slipping Fault From Sentinel-1 InSAR and Teleseismic Data. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024268. [Google Scholar]
- Yu, P.; Xiong, W.; Chen, W.; Qiao, X.; Wang, D.; Liu, G.; Zhao, B.; Nie, Z.; Li, Y.; Zhao, L.; et al. Slip model of the 2021 Ms7.4 Madoi earthquake constrained by GNSS and InSAR coseismic deformation. Chin. J. Geophys. 2022, 65, 509–522. [Google Scholar]
- Wang, D.; Wang, D.; Zhao, B.; Li, Y.; Zhao, L.; Wang, Y.; Nie, Z.; Qiao, X.; Wang, Q. 2021 Qinghai Madoi Mw7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations. Chin. J. Geophys. 2022, 65, 537–551. [Google Scholar]
- Zhao, D.; Qu, C.; Chen, H.; Shan, X.; Song, X.; Gong, W. Tectonic and geometric control on fault kinematics of the 2021 Mw7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations. Geophys. Res. Lett. 2021, 48, e2021GL095417. [Google Scholar]
- Jin, Z.; Fialko, Y. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake. Geophys. Res. Lett. 2021, 48, e2021GL095213. [Google Scholar]
- He, L.; Feng, G.; Wu, X.; Lu, H.; Xu, W.; Wang, Y.; Liu, J.; Hu, J.; Li, Z. Coseismic and early postseismic slip models of the 2021 Mw 7.4 Maduo earthquake (western China) estimated by space-based geodetic data. Geophys. Res. Lett. 2021, 48, e2021GL095860. [Google Scholar]
- Wang, S.; Song, C.; Li, S.; Li, X. Resolving co- and early post-seismic slip variations of the 2021 Mw 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data. Earth Planet. Phys. 2022, 6, 108–122. [Google Scholar]
- Zhao, L.; Xu, W.; Fang, N.; Liu, J.; Feng, G. Coseismic and early postseismic fault slip model and the seismogenic fault friction properties of the 2021 Qinghai Madoi Mw7.3 earthquake. Chin. J. Geophys. 2023, 66, 1086–1097. [Google Scholar]
- Xiong, W.; Chen, W.; Wang, D.; Wen, Y.; Nie, Z.; Liu, G.; Wang, D.; Yu, P.; Qiao, X.; Zhao, B. Coseismic slip and early afterslip of the 2021 Mw 7.4 Maduo, China earthquake constrained by GPS and InSAR data. Tectonophysics 2022, 840, 229558. [Google Scholar] [CrossRef]
- Chen, K.; Avouac, J.; Geng, J.; Liang, C.; Zhang, Z.; Li, Z.; Zhang, S. The 2021 Mw 7.4 Madoi earthquake: An archetype bilateral slip-pulse rupture arrested at a splay fault. Geophys. Res. Lett. 2022, 49, e2021GL095243. [Google Scholar] [CrossRef]
- Zhao, D. Observation and Modelling of Coseismic, Postseismic and Interseismic Deformation Field of Fault Zone Using Time-Series InSAR Techniques. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2021. [Google Scholar]
- Huang, M.; Roland, B.; Andrew, M. Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 2014, 396, 88–96. [Google Scholar] [CrossRef]
- Song, X.; Shan, X.; Qu, C.; Han, Y.; Zhang, G.; Guo, L.; Zhang, G. The characteristics of post-seismic surface deformation of the Wenchuan Ms8.0 earthquake from InSAR. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Zhao, B.; Bürgmann, R.; Wang, D.; Tan, K.; Du, R.; Zhang, R. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha, Nepal, earthquake. J. Geophys. Res. Solid Earth 2017, 122, 8376–8401. [Google Scholar] [CrossRef]
- Hong, S.; Liu, M. Postseismic Deformation and Afterslip Evolution of the 2015 Gorkha Earthquake Constrained by InSAR and GPS Observations. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020230. [Google Scholar] [CrossRef]
- Sreejith, K.; Sunil, P.; Agrawal, R.; Saji, A.; Ramesh, D.; Rajawat, A. Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophys. Res. Lett. 2016, 43, 3160–3168. [Google Scholar] [CrossRef]
- Qu, C.; Shan, X.; Zuo, R.; Zhang, G.; Liu, Y. An integrated study on the coseismic and post-seismic deformation of the 2010 Yushu earthquake based on InSAR analysis. J. Earth Syst. Sci. 2019, 128, 46. [Google Scholar]
- Liu, Y.; Ji, L.; Zhu, L.; Zhang, W.; Liu, C.; Xu, J.; Li, N.; Zhang, C.; Kang, S. Postseismic deformation mechanism of the 2021 Mw7.3 Maduo earthquake, northeastern Tibetan plateau, China, revealed by Sentinel-1 SAR images. J. Asian Earth Sci. 2024, 265, 106089. [Google Scholar] [CrossRef]
- Shu, C.; Meng, Z.; Wu, Q.; Xiong, W.; He, L.; Zhang, X.; Xu, D. Coseismic and Early Postseismic Deformation Mechanism Following the 2021 Mw 7.4 Maduo Earthquake: Insights from Satellite Radar Interferometry and GPS. Remote Sens. 2024, 16, 1399. [Google Scholar] [CrossRef]
- Jin, Z.; Fialko, Y.; Yang, H.; Li, Y. Transient deformation excited by the 2021 M7.4 Maduo (China) earthquake: Evidence of a deep shear zone. J. Geophys. Res. Solid Earth 2023, 128, e2023JB026643. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 support in the GAMMA software. Procedia Comput. Sci 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Niu, Y.; Lu, Z.; Wang, S.; Zhao, C.; Zhu, W.; Qu, W.; Yang, C. Mapping the recent vertical crustal deformation of the Weihe Basin (China) using Sentinel-1 and ALOS-2 ScanSAR imagery. Remote Sens. 2022, 14, 3182. [Google Scholar] [CrossRef]
- Liu, C.; Ji, L.; Zhu, L.; Zhao, C. InSAR-Constrained Interseismic Deformation and Potential Seismogenic Asperities on the Altyn Tagh Fault at 91.5–95°E, Northern Tibetan Plateau. Remote Sens. 2018, 10, 943. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, L.; Liu, C. Interseismic slip rate and locking along the Maqin-Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images. J. Asian Earth Sci. 2021, 211, 104703. [Google Scholar] [CrossRef]
- Zhao, L.; Qu, C.; Zhao, D.; Shan, X.; Chen, H.; Liu, L. InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust. Remote Sens. 2022, 14, 306. [Google Scholar] [CrossRef]
- Tian, Z. Tectonic Deformation and Rheological Structure around the Southern Tibetan Plateau Based on the GPS Observations. Ph.D. Thesis, Chang’an University, Xi’an, China, 2020. [Google Scholar]
- Hooper, A. Persistent Scatter Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ding, X.; Li, Z.; Zhu, J.; Feng, G.; Long, J. Atmospheric effects on InSAR measurements and their mitigation. Sensors 2008, 8, 5426–5448. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Biggs, J.; Walters, R.; Ebmeier, S.; Wright, T.; Teanby, N.; Lu, Z. Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sens. Environ. 2015, 170, 102–114. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; Volume 15, p. EGU2013-2411-1. [Google Scholar]
- Guo, R.; Yang, H.; Li, Y.; Zheng, Y.; Zhang, L. Complex slip distribution of the 2021 Mw 7.4 Maduo, China, Earthquake: An event occurring on the slowly slipping fault. Seismol. Res. Lett. 2021, 93, 653–665. [Google Scholar] [CrossRef]
- Su, L. The Analysis and Mechanism Research of Postseismic Deformation Based on GPS Coordinate Time Series. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2020. [Google Scholar]
- Tian, Z.; Freymueller, J.; Yang, Z.; Li, Z.; Sun, H. Frictional properties and rheological structure at the Ecuadorian subduction zone revealed by the postseismic deformation due to the 2016 Mw7.8 Pedernales (Ecuador) earthquake. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025043. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Logarithmic model joint inversion method for coseismic and postseismic slip: Application to the 2017 Mw 7.3 Sarpol Zahāb earthquake, Iran. J. Geophys. Res. Solid Earth 2019, 124, 12034–12052. [Google Scholar] [CrossRef]
- Agurto, H.; Rietbrock, A.; Ryder, I.; Miller, M. Seismic-afterslip characterization of the 2010 Mw 8.8 Maule, Chile, earthquake based on moment tensor inversion. Geophys. Res. Lett. 2012, 39, L20303. [Google Scholar] [CrossRef]
- Agurto, H.; Font, Y.; Charvis, P.; Régnier, M.; Rietbrock, A.; Ambrois, D.; Paulatto, M.; Alvarado, A.; Beck, S.; Courboulex, F.; et al. Ridge subduction and afterslip control aftershock distribution of the 2016 Mw 7.8 Ecuador earthquake. Earth Planet. Sci. Lett. 2019, 520, 63–76. [Google Scholar] [CrossRef]
- Harris, R. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res. 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Ding, R.; Yang, S.; Liu, L.; Zhang, S.; Liu, H. Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards. Nat. Hazards Res. 2021, 1, 95–101. [Google Scholar] [CrossRef]
- Zhu, A.; Wang, Y.; Li, Y.; Zhang, D. Numerical simulation on the mechanism of the Madoi, Qinghai Ms 7.4 earthquake constrained by InSAR deformation. Chin. J. Geophys. 2021, 64, 4548–4561. [Google Scholar]
- Li, C. The Long-Term Faulting Behavior of the Eastern Segment (Maqin-Maqu) of the East Kunlun Fault Since the Late Quaternary. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2009. [Google Scholar]
- Shan, B.; Xiong, X.; Wang, R.; Zheng, Y.; Yadav, R. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post and interseismic stress changes. Geophys. J. Int. 2015, 200, 244–253. [Google Scholar] [CrossRef]
Usage | Date (yyyymmdd) | Track Number | Frame | Azimuth Angle (°) | Number of SAR Images |
---|---|---|---|---|---|
Coseismic Deformation | 20210520–20210526 | 106 | 474–479 | −166.97 | 2 |
20210520–20210526 | 99 | 1290–1295 | −12.89 | 2 | |
Postseismic Deformation | 20210526–20221205 | 106 | 474–479 | −166.97 | 63 |
20210526–20220819 | 99 | 1290–1295 | −12.89 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Tian, Z.; Su, L.; Feng, H.; Yan, W.; Zhang, Y. Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data. Appl. Sci. 2024, 14, 6771. https://doi.org/10.3390/app14156771
He Y, Tian Z, Su L, Feng H, Yan W, Zhang Y. Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data. Applied Sciences. 2024; 14(15):6771. https://doi.org/10.3390/app14156771
Chicago/Turabian StyleHe, Yang, Zhen Tian, Lina Su, Hongwu Feng, Wenhua Yan, and Yongqi Zhang. 2024. "Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data" Applied Sciences 14, no. 15: 6771. https://doi.org/10.3390/app14156771