Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = SELENBP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4241 KiB  
Article
Peripheral Lymphocytes in Primary Liver Cancers: Elevated NK and CD8+ T Cells and Dysregulated Selenium Metabolism
by Cheng Zhou, Zhufeng Lu, Baoye Sun, Yong Yi, Boheng Zhang, Zheng Wang and Shuang-Jian Qiu
Biomolecules 2024, 14(2), 222; https://doi.org/10.3390/biom14020222 - 14 Feb 2024
Cited by 1 | Viewed by 1780
Abstract
Peripheral blood lymphocytes (PBLs), which play a pivotal role in orchestrating the immune system, garner minimal attention in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The impact of primary liver cancers on PBLs remains unexplored. In this study, flow cytometry facilitated the quantification [...] Read more.
Peripheral blood lymphocytes (PBLs), which play a pivotal role in orchestrating the immune system, garner minimal attention in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The impact of primary liver cancers on PBLs remains unexplored. In this study, flow cytometry facilitated the quantification of cell populations, while transcriptome of PBLs was executed utilizing 10× single-cell sequencing technology. Additionally, pertinent cases were curated from the GEO database. Subsequent bioinformatics and statistical analyses were conducted utilizing R (4.2.1) software. Elevated counts of NK cells and CD8+ T cells were observed in both ICC and HCC when compared to benign liver disease (BLD). In the multivariate Cox model, NK cells and CD8+ T cells emerged as independent risk factors for recurrence-free survival. Single-cell sequencing of PBLs uncovered the downregulation of TGFβ signaling in tumor-derived CD8+ T cells. Pathway enrichment analysis, based on differential expression profiling, highlighted aberrations in selenium metabolism. Proteomic analysis of preoperative and postoperative peripheral blood samples from patients undergoing tumor resection revealed a significant upregulation of SELENBP1 and a significant downregulation of SEPP1. Primary liver cancer has a definite impact on PBLs, manifested by alterations in cellular quantities and selenoprotein metabolism. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Liver Diseases)
Show Figures

Figure 1

12 pages, 1545 KiB  
Article
Serum Selenium-Binding Protein 1 (SELENBP1) in Burn Injury: A Potential Biomarker of Disease Severity and Clinical Course
by Tabael L. Turan, Holger J. Klein, Julian Hackler, Livia Hoerner, Eddy Rijntjes, Theresia Reding Graf, Jan A. Plock and Lutz Schomburg
Antioxidants 2023, 12(11), 1927; https://doi.org/10.3390/antiox12111927 - 29 Oct 2023
Cited by 1 | Viewed by 1662
Abstract
Oxidative stress, systemic inflammation, and metabolic derangements are hallmarks of burn pathophysiology. Severely burned patients are highly susceptible to infectious complications. Selenium-binding protein 1 (SELENBP1) modulates intracellular redox homeostasis, and elevated serum concentrations have been associated with adverse clinical outcomes in trauma patients. [...] Read more.
Oxidative stress, systemic inflammation, and metabolic derangements are hallmarks of burn pathophysiology. Severely burned patients are highly susceptible to infectious complications. Selenium-binding protein 1 (SELENBP1) modulates intracellular redox homeostasis, and elevated serum concentrations have been associated with adverse clinical outcomes in trauma patients. We hypothesized that serum SELENBP1 at hospital admission and during hospitalization may constitute a meaningful biomarker of disease severity and the clinical course in burn injury, with pulmonary infection as primary endpoint. To this end, we conducted a prospective cohort study that included 90 adult patients admitted to the Burn Center of the University Hospital Zurich, Switzerland. Patients were treated according to the local standard of care, with high-dose selenium supplementation during the first week. Serum SELENBP1 was determined at nine time-points up to six months postburn and the data were correlated to clinical parameters. SELENBP1 was initially elevated and rapidly declined within the first day. Baseline SELENBP1 levels correlated positively with the Abbreviated Burn Severity Index (ABSI) (R = 0.408; p < 0.0001). In multiple logistic regression, a higher ABSI was significantly associated with increased pulmonary infection risk (OR, 14.4; 95% CI, 3.2–88.8; p = 0.001). Similarly, baseline SELENBP1 levels constituted a novel but less accurate predictor of pulmonary infection risk (OR, 2.5; 95% CI, 0.7–8.9; p = 0.164). Further studies are needed to explore the additional value of serum SELENBP1 when stratifying patients with respect to the clinical course following major burns and, potentially, for monitoring therapeutic measures aimed at reducing tissue damage and oxidative stress. Full article
(This article belongs to the Special Issue The Role of Selenium/Selenoproteins in Metabolism and Diseases)
Show Figures

Graphical abstract

12 pages, 1113 KiB  
Review
Methanethiol: A Scent Mark of Dysregulated Sulfur Metabolism in Cancer
by Thilo Magnus Philipp, Anne Sophie Scheller, Niklas Krafczyk, Lars-Oliver Klotz and Holger Steinbrenner
Antioxidants 2023, 12(9), 1780; https://doi.org/10.3390/antiox12091780 - 19 Sep 2023
Cited by 1 | Viewed by 3029
Abstract
In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels [...] Read more.
In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 3765 KiB  
Article
Serum SELENBP1 and VCL Are Effective Biomarkers for Clinical and Forensic Diagnosis of Coronary Artery Spasm
by Xinyi Lin, Zijie Lin, Xin Zhao, Zheng Liu, Chenchao Xu, Bokang Yu, Pan Gao, Zhimin Wang, Junbo Ge, Yiwen Shen and Liliang Li
Int. J. Mol. Sci. 2022, 23(21), 13266; https://doi.org/10.3390/ijms232113266 - 31 Oct 2022
Cited by 5 | Viewed by 1697
Abstract
Coronary artery spasm (CAS) plays an important role in the pathogenesis of many ischemic heart entities; however, there are no established diagnostic biomarkers for CAS in clinical and forensic settings. This present study aimed to identify such serum biomarkers by establishing a rabbit [...] Read more.
Coronary artery spasm (CAS) plays an important role in the pathogenesis of many ischemic heart entities; however, there are no established diagnostic biomarkers for CAS in clinical and forensic settings. This present study aimed to identify such serum biomarkers by establishing a rabbit CAS provocation model and integrating quantitative serum proteomics, parallel reaction monitoring/mass spectrometry-based targeted proteomics, and partial least-squares discriminant analysis (PLS-DA). Our results suggested that SELENBP1 and VCL were potential candidate biomarkers for CAS. In independent clinical samples, SELENBP1 and VCL were validated to be significantly lower in serum but not blood cells from CAS patients, with the reasons for this possibly due to the decreased secretion from cardiomyocytes. The areas under the curve of the receiver operating characteristics (ROC) analysis were 0.9384 for SELENBP1 and 0.9180 for VCL when diagnosing CAS. The CAS risk decreased by 32.3% and 53.6% for every 10 unit increases in the serum SELENBP1 and VCL, respectively. In forensic samples, serum SELENBP1 alone diagnosed CAS-induced deaths at a sensitivity of 100.0% and specificity of 72.73%, and its combination with VCL yielded a diagnostic specificity of 100.0%, which was superior to the traditional biomarkers of cTnI and CK-MB. Therefore, serum SELENBP1 and VCL could be effective biomarkers for both the clinical and forensic diagnosis of CAS. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Heart Diseases)
Show Figures

Figure 1

14 pages, 10247 KiB  
Article
Altered Capacity for H2S Production during the Spontaneous Differentiation of Caco-2 Cells to Colonocytes Due to Reciprocal Regulation of CBS and SELENBP1
by Anne Sophie Scheller, Thilo Magnus Philipp, Lars-Oliver Klotz and Holger Steinbrenner
Antioxidants 2022, 11(10), 1957; https://doi.org/10.3390/antiox11101957 - 30 Sep 2022
Cited by 3 | Viewed by 1924
Abstract
Hydrogen sulfide (H2S) has been proposed to promote tumor growth. Elevated H2S levels have been detected in human colorectal cancer (CRC) biopsies, resulting from the selective upregulation of cystathionine β-synthase (CBS). In contrast, the recently identified novel H2 [...] Read more.
Hydrogen sulfide (H2S) has been proposed to promote tumor growth. Elevated H2S levels have been detected in human colorectal cancer (CRC) biopsies, resulting from the selective upregulation of cystathionine β-synthase (CBS). In contrast, the recently identified novel H2S-generating enzyme, selenium-binding protein 1 (SELENBP1), is largely suppressed in tumors. Here, we provide the first comparative analysis of the four human H2S-producing enzymes and the key H2S-catabolizing enzyme, sulfide:quinone oxidoreductase (SQOR), in Caco-2 human colorectal adenocarcinoma cells. The gene expression pattern of proliferating Caco-2 cells parallels that of CRC, while confluent cells undergo spontaneous differentiation to a colonocyte-like phenotype. SELENBP1 and SQOR were strongly upregulated during spontaneous differentiation, whereas CBS was downregulated. Cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase remained unaffected. Terminally differentiated cells showed an enhanced capacity to produce H2S from methanethiol and homocysteine. Differentiation induced by exposure to butyrate also resulted in the upregulation of SELENBP1, accompanied by increased SELENBP1 promoter activity. In contrast to spontaneous differentiation, however, butyrate did not cause downregulation of CBS. In summary, SELENBP1 and CBS are reciprocally regulated during the spontaneous differentiation of Caco-2 cells, thus paralleling their opposing regulation in CRC. Butyrate exposure, while imitating some aspects of spontaneous differentiation, does not elicit the same expression patterns of genes encoding H2S-modulating enzymes. Full article
Show Figures

Graphical abstract

18 pages, 2138 KiB  
Article
Metformin Prevents Key Mechanisms of Obesity-Related Complications in Visceral White Adipose Tissue of Obese Pregnant Mice
by Katrin Schmitz, Eva-Maria Turnwald, Tobias Kretschmer, Ruth Janoschek, Inga Bae-Gartz, Kathrin Voßbrecher, Merlin D. Kammerer, Angela Köninger, Alexandra Gellhaus, Marion Handwerk, Maria Wohlfarth, Dirk Gründemann, Eva Hucklenbruch-Rother, Jörg Dötsch and Sarah Appel
Nutrients 2022, 14(11), 2288; https://doi.org/10.3390/nu14112288 - 30 May 2022
Cited by 2 | Viewed by 2964
Abstract
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but [...] Read more.
With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity’s key mechanisms in WAT. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

16 pages, 5305 KiB  
Article
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice
by Shan Yang, Xian-Yu Huang, Nian Zhou, Qin Wu, Jie Liu and Jing-Shan Shi
Nutrients 2022, 14(9), 1974; https://doi.org/10.3390/nu14091974 - 9 May 2022
Cited by 8 | Viewed by 3043
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli [...] Read more.
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways. Full article
(This article belongs to the Special Issue Nutrition and Liver Disease)
Show Figures

Graphical abstract

18 pages, 6584 KiB  
Article
Identification of a Four-Gene Signature Associated with the Prognosis Prediction of Lung Adenocarcinoma Based on Integrated Bioinformatics Analysis
by Yuan Wu, Lingge Yang, Long Zhang, Xinjie Zheng, Huan Xu, Kai Wang and Xianwu Weng
Genes 2022, 13(2), 238; https://doi.org/10.3390/genes13020238 - 27 Jan 2022
Cited by 14 | Viewed by 3167
Abstract
Lung adenocarcinoma (LUAD) is often diagnosed at an advanced stage, so it is necessary to identify potential biomarkers for the early diagnosis and prognosis of LUAD. In our study, a gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) in [...] Read more.
Lung adenocarcinoma (LUAD) is often diagnosed at an advanced stage, so it is necessary to identify potential biomarkers for the early diagnosis and prognosis of LUAD. In our study, a gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) in order to obtain the key modules and genes correlated with LUAD prognosis. Four hub genes (HLF, CHRDL1, SELENBP1, and TMEM163) were screened out using least absolute shrinkage and selection operator (LASSO)–Cox regression analysis; then, a prognostic model was established for predicting overall survival (OS) based on these four hub genes..Furthermore, the prognostic values of this four-gene signature were verified in four validation sets (GSE26939, GSE31210, GSE72094, and TCGA-LUAD) as well as in the GEPIA database. To assess the prognostic values of hub genes, receiver operating characteristic (ROC) curves were constructed and a nomogram was created. We found that a higher expression of four hub genes was associated with a lower risk of patient death. In a training set, it was demonstrated that this four-gene signature was a better prognostic factor than clinical factors such as age and stage of disease. Moreover, our results revealed that these four genes were suppressor factors of LUAD and that their high expression was associated with a lower risk of death. In summary, we demonstrated that this four-gene signature could be a potential prognostic factor for LUAD patients. These findings provide a theoretical basis for exploring potential biomarkers for LUAD prognosis prediction in the future. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

15 pages, 3507 KiB  
Article
Protective Effects of Sal B on Oxidative Stress-Induced Aging by Regulating the Keap1/Nrf2 Signaling Pathway in Zebrafish
by Erzhuo Li, Yunhao Wang, Qiao Li, Li Li and Lijun Wei
Molecules 2021, 26(17), 5239; https://doi.org/10.3390/molecules26175239 - 29 Aug 2021
Cited by 9 | Viewed by 2882
Abstract
The models of oxidative damage-induced aging were established by adding ethanol (C2H5OH), hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA) to zebrafish embryos in this research. To find effective protective drugs/foods, Salvianolic acid B (Sal B) was [...] Read more.
The models of oxidative damage-induced aging were established by adding ethanol (C2H5OH), hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA) to zebrafish embryos in this research. To find effective protective drugs/foods, Salvianolic acid B (Sal B) was added after the embryos were treated by these oxidative reagents. After being treated with ethanol, H2O2 and 6-OHDA, the morphological changes were obvious and the deformities included spinal curvature, heart bleeding, liver bleeding, yolk sac deformity and pericardial edema, and the expression of oxidative stress-related genes Nrf2b, sod1 and sod2 and aging-related genes myl2a and selenbp1 were significantly up-regulated compared to the control group. While after adding 0.05 μg/mL and 0.5 μg/mL Sal B to the ethanol-treated group, death rates and MDA levels decreased, the activity of antioxidant enzyme (SOD, CAT and GSH-Px) changed and Nrf2b, sod1, sod2, myl2a, selenbp1, p53 and p21 were down-regulated compared to the ethanol-treated group. The bioinformatics analysis also showed that oxidative stress-related factors were associated with a variety of cellular functions and physiological pathways. In conclusion, Sal B can protect against aging through regulating the Keap1/Nrf2 pathway as well as antioxidative genes and enzyme activity. Full article
(This article belongs to the Special Issue Natural Product Chemistry in China)
Show Figures

Graphical abstract

20 pages, 3746 KiB  
Article
Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney
by Yingxia Song, Atsushi Kurose, Renshi Li, Tomoki Takeda, Yuko Onomura, Takayuki Koga, Junpei Mutoh, Takumi Ishida, Yoshitaka Tanaka and Yuji Ishii
Int. J. Mol. Sci. 2021, 22(10), 5334; https://doi.org/10.3390/ijms22105334 - 19 May 2021
Cited by 6 | Viewed by 3062
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice [...] Read more.
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

16 pages, 2754 KiB  
Article
Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis
by Elisa B. Randi, Giovanna Casili, Simona Jacquemai and Csaba Szabo
Antioxidants 2021, 10(3), 361; https://doi.org/10.3390/antiox10030361 - 27 Feb 2021
Cited by 25 | Viewed by 4162
Abstract
Hydrogen sulfide (H2S), a mammalian gasotransmitter, is involved in the regulation of a variety of fundamental processes including intracellular signaling, cellular bioenergetics, cell proliferation, and cell differentiation. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently considered the [...] Read more.
Hydrogen sulfide (H2S), a mammalian gasotransmitter, is involved in the regulation of a variety of fundamental processes including intracellular signaling, cellular bioenergetics, cell proliferation, and cell differentiation. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently considered the three principal mammalian H2S-generating enzymes. However, recently, a fourth H2S-producing enzyme, selenium-binding-protein 1 (SELENBP1), has also been identified. The cellular regulatory role(s) of SELENBP1 are incompletely understood. The current study investigated whether SELENBP1 plays a role in the regulation of adipocyte differentiation in vitro. 3T3-L1 preadipocytes with or without SELENBP1 knock-down were subjected to differentiation-inducing conditions, and H2S production, cellular lipid accumulation, cell proliferation, and mitochondrial activity were quantified. Adipocyte differentiation was associated with an upregulation of H2S biosynthesis. SELENBP1 silencing decreased cellular H2S levels, suppressed the expression of the three “classical” H2S-producing enzymes (CBS, CSE, and 3-MST) and significantly suppressed adipocyte differentiation. Treatment of SELENBP1 knock-down cells with the H2S donor GYY4137 partially restored lipid accumulation, increased cellular H2S levels, and exerted a bell-shaped effect on cellular bioenergetics (enhancement at 1 and 3 mM, and inhibition at 6 mM). We conclude that SELENBP1 in adipocytes (1) contributes to H2S biosynthesis and (2) acts as an endogenous stimulator of adipocyte differentiation. Full article
(This article belongs to the Special Issue Hydrogen Sulfide in Biology)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Hepatitis B Virus-X Downregulates Expression of Selenium Binding Protein 1
by Young-Man Lee, Soojin Kim, Ran-Young Park and Yeon-Soo Kim
Viruses 2020, 12(5), 565; https://doi.org/10.3390/v12050565 - 20 May 2020
Cited by 8 | Viewed by 3554
Abstract
Selenium binding protein 1 (SELENBP1) has been known to be reduced in various types cancer, and epigenetic change is shown to be likely to account for the reduction of SELNEBP1 expression. With cDNA microarray comparative analysis, we found that SELENBP1 is markedly decreased [...] Read more.
Selenium binding protein 1 (SELENBP1) has been known to be reduced in various types cancer, and epigenetic change is shown to be likely to account for the reduction of SELNEBP1 expression. With cDNA microarray comparative analysis, we found that SELENBP1 is markedly decreased in hepatitis B virus-X (HBx)-expressing cells. To clarify the effect of HBx on SELENBP1 expression, we compared the expression levels of SELENBP1 mRNA and protein by semi-quantitative RT-PCR, Northern blot, and Western blot. As expected, SELENBP1 expression was shown to be reduced in cells expressing HBx, and reporter gene analysis showed that the SELENBP1 promoter is repressed by HBx. In addition, the stepwise deletion of 5′ flanking promoter sequences resulted in a gradual decrease in basal promoter activity and inhibition of SELENBP1 expression by HBx. Moreover, immunohistochemistry on tissue microarrays containing 60 pairs of human liver tissue showed decreased intensity of SELENBP1 in tumor tissues as compared with their matched non-tumor liver tissues. Taken together, our findings suggest that inhibition of SELENBP1 expression by HBx might act as one of the causes in the development of hepatocellular carcinoma caused by HBV infection. Full article
(This article belongs to the Special Issue Hepatitis B Virus: From Diagnostics to Treatments)
Show Figures

Figure 1

12 pages, 2186 KiB  
Article
Selenium-Binding Protein 1 Indicates Myocardial Stress and Risk for Adverse Outcome in Cardiac Surgery
by Ellen C. D. Kühn-Heid, Eike C. Kühn, Julia Ney, Sebastian Wendt, Julian Seelig, Christian Schwiebert, Waldemar B. Minich, Christian Stoppe and Lutz Schomburg
Nutrients 2019, 11(9), 2005; https://doi.org/10.3390/nu11092005 - 25 Aug 2019
Cited by 11 | Viewed by 3939
Abstract
Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1 concentrations in patients [...] Read more.
Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1 concentrations in patients (n = 75) necessitating cardioplegia and a cardiopulmonary bypass (CPB) during the course of the cardiac surgery. Serum samples were collected at seven time-points spanning the full surgical process. SELENBP1 was quantified by a highly sensitive newly developed immunological assay. Serum concentrations of SELENBP1 increased markedly during the intervention and showed a positive association with the duration of ischemia (ρ = 0.6, p < 0.0001). Elevated serum SELENBP1 concentrations at 1 h after arrival at the intensive care unit (post-surgery) were predictive to identify patients at risk of adverse outcome (death, bradycardia or cerebral ischemia, “endpoint 1”; OR 29.9, CI 3.3–268.8, p = 0.00027). Circulating SELENBP1 during intervention (2 min after reperfusion or 15 min after weaning from the CPB) correlated positively with an established marker of myocardial infarction (CK-MB) measured after the intervention (each with ρ = 0.5, p < 0.0001). We concluded that serum concentrations of SELENBP1 were strongly associated with cardiac arrest and the duration of myocardial ischemia already early during surgery, thereby constituting a novel and promising quantitative marker for myocardial hypoxia, with a high potential to improve diagnostics and prediction in combination with the established clinical parameters. Full article
(This article belongs to the Special Issue The Role of Selenium in Health and Disease)
Show Figures

Graphical abstract

14 pages, 8747 KiB  
Article
Cell-Type Specific Analysis of Selenium-Related Genes in Brain
by Alexandru R. Sasuclark, Vedbar S. Khadka and Matthew W. Pitts
Antioxidants 2019, 8(5), 120; https://doi.org/10.3390/antiox8050120 - 5 May 2019
Cited by 19 | Viewed by 4334
Abstract
Selenoproteins are a unique class of proteins that play key roles in redox signaling in the brain. This unique organ is comprised of a wide variety of cell types that includes excitatory neurons, inhibitory neurons, astrocytes, microglia, and oligodendrocytes. Whereas selenoproteins are known [...] Read more.
Selenoproteins are a unique class of proteins that play key roles in redox signaling in the brain. This unique organ is comprised of a wide variety of cell types that includes excitatory neurons, inhibitory neurons, astrocytes, microglia, and oligodendrocytes. Whereas selenoproteins are known to be required for neural development and function, the cell-type specific expression of selenoproteins and selenium-related machinery has yet to be systematically investigated. Due to advances in sequencing technology and investment from the National Institutes of Health (NIH)-sponsored BRAIN initiative, RNA sequencing (RNAseq) data from thousands of cortical neurons can now be freely accessed and searched using the online RNAseq data navigator at the Allen Brain Atlas. Hence, we utilized this newly developed tool to perform a comprehensive analysis of the cell-type specific expression of selenium-related genes in brain. Select proteins of interest were further verified by means of multi-label immunofluorescent labeling of mouse brain sections. Of potential significance to neural selenium homeostasis, we report co-expression of selenoprotein P (SELENOP) and selenium binding protein 1 (SELENBP1) within astrocytes. These findings raise the intriguing possibility that SELENBP1 may negatively regulate astrocytic SELENOP synthesis and thereby limit downstream Se supply to neurons. Full article
Show Figures

Figure 1

24 pages, 2486 KiB  
Article
Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)
by Marina Oaia Iridoy, Irene Zubiri, María Victoria Zelaya, Leyre Martinez, Karina Ausín, Mercedes Lachen-Montes, Enrique Santamaría, Joaquín Fernandez-Irigoyen and Ivonne Jericó
Int. J. Mol. Sci. 2019, 20(1), 4; https://doi.org/10.3390/ijms20010004 - 20 Dec 2018
Cited by 49 | Viewed by 7772
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping [...] Read more.
(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods: A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed. (3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while 52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins were shared between both syndromes. The resulting data was subjected to network-driven proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS and FTLD-U that could be validated through the confirmation of expression levels changes of the Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional alterations, although part of the proteostatic impairment is region- and disease-specific. We have confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3), Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown the involvement of proteins not previously described in the ALS context (Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)). Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis: Highlights of Its Complexity)
Show Figures

Graphical abstract

Back to TopTop