Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = SASP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2122 KiB  
Article
Inflammaging: Expansion of Molecular Phenotype and Role in Age-Associated Female Infertility
by Dmitry Ivanov, Anna Drobintseva, Valeriia Rodichkina, Ekaterina Mironova, Tatyana Zubareva, Yuliya Krylova, Svetlana Morozkina, Maria Greta Pia Marasco, Gianluigi Mazzoccoli, Ruslan Nasyrov and Igor Kvetnoy
Biomedicines 2024, 12(9), 1987; https://doi.org/10.3390/biomedicines12091987 - 2 Sep 2024
Viewed by 180
Abstract
Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) [...] Read more.
Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) in primary human endometrial cells obtained from female subjects of young reproductive age (<35 years of age). We assessed the expression levels of IL-6, IL-8, IL-1α, MMP3, SIRT-1, SIRT-6, TERF-1, and CALR at the mRNA level by RT-qPCR and at the protein level by immunofluorescence and confocal microscopy in primary human endometrial cells upon induction of genotoxic stress and compared them to untreated cells. Statistically significant differences were found for the expression of SIRT-1, SIRT-6, and TERF, which were found to be decreased upon induction of cell senescence through genotoxic stress, while IL-6, IL-8, IL-1α, MMP3, and p16 were found to be increased in senescent cells. We propose that these molecules, in addition to SAS-linked factors, could represent novel markers, and eventually potential therapeutic targets, for the aging-associated dysfunction of the female reproductive system. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 5200 KiB  
Article
Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation
by Mahesh Kumar Sivasubramanian, Raisa Monteiro, Manoj Jagadeesh, Priya Balasubramanian and Madhan Subramanian
Nutrients 2024, 16(17), 2852; https://doi.org/10.3390/nu16172852 - 26 Aug 2024
Viewed by 617
Abstract
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. [...] Read more.
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 μM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity. Full article
(This article belongs to the Special Issue Hot Topics in Nutrition and Obesity 2024)
Show Figures

Graphical abstract

17 pages, 3186 KiB  
Review
Cellular Senescence: The Driving Force of Musculoskeletal Diseases
by Angela Falvino, Beatrice Gasperini, Ida Cariati, Roberto Bonanni, Angela Chiavoghilefu, Elena Gasbarra, Annalisa Botta, Virginia Tancredi and Umberto Tarantino
Biomedicines 2024, 12(9), 1948; https://doi.org/10.3390/biomedicines12091948 - 26 Aug 2024
Viewed by 386
Abstract
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, [...] Read more.
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, resulting in an increased risk of fractures and reduced mobility. Importantly, a crucial role in the pathophysiology of these diseases has been proposed for cellular senescence, a state of irreversible cell cycle arrest induced by factors such as DNA damage, telomere shortening, and mitochondrial dysfunction. In addition, senescent cells secrete pro-inflammatory molecules, called senescence-associated secretory phenotype (SASP), which can alter tissue homeostasis and promote disease progression. Undoubtedly, targeting senescent cells and their secretory profiles could promote the development of integrated strategies, including regular exercise and a balanced diet or the use of senolytics and senomorphs, to improve the quality of life of the aging population. Therefore, our review aimed to highlight the role of cellular senescence in age-related musculoskeletal diseases, summarizing the main underlying mechanisms and potential anti-senescence strategies for the treatment of osteoporosis, sarcopenia, and osteoarthritis. Full article
Show Figures

Figure 1

23 pages, 1547 KiB  
Review
Mechanisms of Senescence and Anti-Senescence Strategies in the Skin
by Evangelia Konstantinou, Eliane Longange and Gürkan Kaya
Biology 2024, 13(9), 647; https://doi.org/10.3390/biology13090647 - 23 Aug 2024
Viewed by 855
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its [...] Read more.
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

24 pages, 6829 KiB  
Article
Regulatory Effects of Senescent Mesenchymal Stem Cells: Endotheliocyte Reaction
by Andrey Ratushnyy, Mariia Ezdakova, Diana Matveeva, Ekaterina Tyrina and Ludmila Buravkova
Cells 2024, 13(16), 1345; https://doi.org/10.3390/cells13161345 - 13 Aug 2024
Viewed by 501
Abstract
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal [...] Read more.
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the “senescent” secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical “senescent” cytokines and growth factors after 48 h suggests that the addition of the “senescent” secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the “senescent” secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism’s regulatory mechanisms are absent. Full article
(This article belongs to the Special Issue Stem Cell, Differentiation, Regeneration and Diseases)
Show Figures

Figure 1

23 pages, 3511 KiB  
Review
Drug Delivery Strategies for Age-Related Diseases
by Kenichi Yoshihara and Michiko Horiguchi
Int. J. Mol. Sci. 2024, 25(16), 8693; https://doi.org/10.3390/ijms25168693 - 9 Aug 2024
Viewed by 371
Abstract
Drug delivery systems (DDSs) enable the controlled release of drugs in the body. DDSs have attracted increasing attention for the treatment of various disorders, including cancer, inflammatory diseases, and age-related diseases. With recent advancements in our understanding of the molecular mechanisms of aging, [...] Read more.
Drug delivery systems (DDSs) enable the controlled release of drugs in the body. DDSs have attracted increasing attention for the treatment of various disorders, including cancer, inflammatory diseases, and age-related diseases. With recent advancements in our understanding of the molecular mechanisms of aging, new target molecules and drug delivery carriers for age-related diseases have been reported. In this review, we will summarize the recent research on DDSs for age-related diseases and identify DDS strategies in the treatment of age-related diseases. Full article
Show Figures

Figure 1

19 pages, 8205 KiB  
Review
Therapy-Induced Senescence: Novel Approaches for Markers Identification
by Francesco Pacifico, Fulvio Magni, Antonio Leonardi and Elvira Crescenzi
Int. J. Mol. Sci. 2024, 25(15), 8448; https://doi.org/10.3390/ijms25158448 - 2 Aug 2024
Viewed by 680
Abstract
Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. [...] Read more.
Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. The SASP also modulates anti-tumor immunity, although the immune populations involved and the final results appear to be context-dependent. In addition, senescent cancer cells are able to evade senescence growth arrest and to resume proliferation, likely contributing to relapse. So, research data suggest that TIS induction negatively affects therapy outcomes in cancer patients. In line with this, new interventions aimed at the removal of senescent cells or the reprogramming of their SASP, called senotherapy, have become attractive therapeutic options. To date, the lack of reliable, cost-effective, and easy-to-use TIS biomarkers hinders the application of recent anti-senescence therapeutic approaches in the clinic. Hence, the identification of biomarkers for the detection of TIS tumor cells and TIS non-neoplastic cells is a high priority in cancer research. In this review article, we describe the current knowledge about TIS, outline critical gaps in our knowledge, and address recent advances and novel approaches for the discovery of TIS biomarkers. Full article
Show Figures

Graphical abstract

17 pages, 4345 KiB  
Article
Insulin Resistance in Women Correlates with Chromatin Histone Lysine Acetylation, Inflammatory Signaling, and Accelerated Aging
by Christina M. Vidal, Jackelyn A. Alva-Ornelas, Nancy Zhuo Chen, Parijat Senapati, Jerneja Tomsic, Vanessa Myriam Robles, Cristal Resto, Nancy Sanchez, Angelica Sanchez, Terry Hyslop, Nour Emwas, Dana Aljaber, Nick Bachelder, Ernest Martinez, David Ann, Veronica Jones, Robert A. Winn, Lucio Miele, Augusto C. Ochoa, Eric C. Dietze, Rama Natarajan, Dustin Schones and Victoria L. Seewaldtadd Show full author list remove Hide full author list
Cancers 2024, 16(15), 2735; https://doi.org/10.3390/cancers16152735 - 1 Aug 2024
Viewed by 765
Abstract
Background: Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we [...] Read more.
Background: Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we performed a broad analysis of the link between hyperinsulinemia and chromatin acetylation; our top “hit” was chromatin opening at H3K9ac. Methods: Building on our published preclinical studies, here, we performed a detailed analysis of the link between insulin resistance, chromatin acetylation, and inflammation using an initial test set of 28 women and validation sets of 245, 22, and 53 women. Results: ChIP-seq identified chromatin acetylation and opening at the genes coding for TNFα and IL6 in insulin-resistant women. Pathway analysis identified inflammatory response genes, NFκB/TNFα-signaling, reactome cytokine signaling, innate immunity, and senescence. Consistent with this finding, flow cytometry identified increased senescent circulating peripheral T-cells. DNA methylation analysis identified evidence of accelerated aging in insulin-resistant vs. metabolically healthy women. Conclusions: This study shows that insulin-resistant women have increased chromatin acetylation/opening, inflammation, and, perhaps, accelerated aging. Given the role that inflammation plays in cancer initiation and progression, these studies provide a potential mechanistic link between insulin resistance and cancer. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

38 pages, 1881 KiB  
Review
Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence?
by Yue Liu, Isabelle Lomeli and Stephen J. Kron
Cells 2024, 13(15), 1281; https://doi.org/10.3390/cells13151281 - 30 Jul 2024
Viewed by 1094
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to [...] Read more.
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment. Full article
Show Figures

Figure 1

61 pages, 7498 KiB  
Review
Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity—A Narrative Review
by Yicong Liang, Devesh Kaushal and Robert Beaumont Wilson
Int. J. Mol. Sci. 2024, 25(14), 7943; https://doi.org/10.3390/ijms25147943 - 20 Jul 2024
Viewed by 1759
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased [...] Read more.
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging. Full article
Show Figures

Figure 1

25 pages, 1824 KiB  
Review
Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions
by Merin Lawrence, Abhishek Goyal, Shelly Pathak and Payal Ganguly
Int. J. Mol. Sci. 2024, 25(13), 7411; https://doi.org/10.3390/ijms25137411 - 5 Jul 2024
Cited by 1 | Viewed by 1024
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying [...] Read more.
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM). Full article
(This article belongs to the Special Issue Molecular Studies in Aging: New Advances)
Show Figures

Figure 1

14 pages, 1449 KiB  
Review
Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways
by Emanuele Marzetti, Riccardo Calvani, Francesco Landi, Helio José Coelho-Júnior and Anna Picca
Int. J. Mol. Sci. 2024, 25(13), 7305; https://doi.org/10.3390/ijms25137305 - 3 Jul 2024
Viewed by 925
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This [...] Read more.
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 285 KiB  
Review
Methods to Investigate the Secretome of Senescent Cells
by Afshin Samiminemati, Domenico Aprile, Dario Siniscalco and Giovanni Di Bernardo
Methods Protoc. 2024, 7(4), 52; https://doi.org/10.3390/mps7040052 - 2 Jul 2024
Viewed by 818
Abstract
The word “secretome” was first used to describe the proteins that cells secrete under different circumstances; however, recent studies have proven the existence of other molecules such as RNA and chemical compounds in the secretome. The study of secretome has significance for the [...] Read more.
The word “secretome” was first used to describe the proteins that cells secrete under different circumstances; however, recent studies have proven the existence of other molecules such as RNA and chemical compounds in the secretome. The study of secretome has significance for the diagnosis and treatment of disease as it provides insight into cellular functions, including immune responses, development, and homeostasis. By halting cell division, cellular senescence plays a role in both cancer defense and aging by secreting substances known as senescence-associated secretory phenotypes (SASP). A variety of techniques could be used to analyze the secretome: protein-based approaches like mass spectrometry and protein microarrays, nucleic acid-based methods like RNA sequencing, microarrays, and in silico prediction. Each method offers unique advantages and limitations in characterizing secreted molecules. Top-down and bottom-up strategies for thorough secretome analysis are became possible by mass spectrometry. Understanding cellular function, disease causes, and proper treatment targets is aided by these methodologies. Their approaches, benefits, and drawbacks will all be discussed in this review. Full article
(This article belongs to the Section Molecular and Cellular Biology)
21 pages, 8084 KiB  
Article
Stimuli-Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function
by Maria Camila Melo-Narváez, Nora Bramey, Fenja See, Katharina Heinzelmann, Beatriz Ballester, Carina Steinchen, Eshita Jain, Kathrin Federl, Qianjiang Hu, Deepesh Dhakad, Jürgen Behr, Oliver Eickelberg, Ali Önder Yildirim, Melanie Königshoff and Mareike Lehmann
Cells 2024, 13(13), 1129; https://doi.org/10.3390/cells13131129 - 29 Jun 2024
Viewed by 1214
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little [...] Read more.
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-β1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-β1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

14 pages, 3447 KiB  
Article
Addition of Polyphenols to Drugs: The Potential of Controlling “Inflammaging” and Fibrosis in Human Senescent Lung Fibroblasts In Vitro
by Maria Carolina Ximenes de Godoy, Gabriela Arruda Monteiro, Bárbara Hakim de Moraes, Juliana Alves Macedo, Gisele Mara Silva Gonçalves and Alessandra Gambero
Int. J. Mol. Sci. 2024, 25(13), 7163; https://doi.org/10.3390/ijms25137163 - 28 Jun 2024
Cited by 2 | Viewed by 972
Abstract
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to [...] Read more.
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or “inflammaging”, which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1β. The senescent-associated β-galactosidase (SA-β-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-β in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-β-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis. Full article
(This article belongs to the Special Issue Advances in Anti-aging Treatment Development, 2nd Edititon)
Show Figures

Figure 1

Back to TopTop