Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Maduo earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 26264 KiB  
Article
Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data
by Yang He, Zhen Tian, Lina Su, Hongwu Feng, Wenhua Yan and Yongqi Zhang
Appl. Sci. 2024, 14(15), 6771; https://doi.org/10.3390/app14156771 - 2 Aug 2024
Viewed by 512
Abstract
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic [...] Read more.
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic displacements in both the temporal and spatial domains, as well as the associated dynamic mechanisms of the 2021 Maduo earthquake. The interference fringes and coseismic deformation revealed that the primary feature of this event was the rupture along a left-lateral strike-slip fault. The released seismic moment was close to 1.88 × 1020 N·m, which is equivalent to an Mw 7.45 event. Simultaneously, the maximum coseismic slip reached approximately 4 m along the fault plane. The evolution of postseismic displacements in both the temporal and spatial domains over 450 days following the mainshock was further analyzed to explore the underlying physical mechanisms. Generally, the patterns of coseismic slip and afterslip were similar, although the postseismic displacements decayed rapidly over time. The modeled afterslip downdip of the coseismic rupture (at depths of 15–40 km) effectively explains the postseismic deformation, with a released moment estimated at 4.57 × 1019 N·m (corresponding to Mw 7.04). Additionally, we found that regions with high coseismic slip tend to exhibit weak seismicity, and that afterslip and aftershocks are likely driven by each other. Finally, we estimated the Coulomb Failure Stress changes (ΔCFS) triggered by both coseismic rupture and aseismic slip resulting from this event. The co- and postseismic ΔCFS show similar patterns, but the magnitude of the postseismic ΔCFS is much lower (0.01 MPa). We found that ΔCFS notably increased on the Yushu segment of the Garze-Yushu-Xianshuihe Fault (GYXF), as well as the Maqin–Maqu and Tuosuo Lake sections of the East Kunlun Fault (EKF). Therefore, we infer that these fault segments may have a higher potential seismic risk and should be carefully monitored in the future. Full article
(This article belongs to the Special Issue Novel Approaches for Earthquake and Land Subsidence Prediction)
Show Figures

Figure 1

22 pages, 18622 KiB  
Article
Spatio–Temporal Evolution of Electric Field, Magnetic Field and Thermal Infrared Remote Sensing Associated with the 2021 Mw7.3 Maduo Earthquake in China
by Muping Yang, Xuemin Zhang, Meijiao Zhong, Yufan Guo, Geng Qian, Jiang Liu, Chao Yuan, Zihao Li, Shuting Wang, Lina Zhai, Tongxia Li and Xuhui Shen
Atmosphere 2024, 15(7), 770; https://doi.org/10.3390/atmos15070770 - 27 Jun 2024
Viewed by 456
Abstract
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. [...] Read more.
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. Specifically, we analyzed the power spectrum density (PSD) data of the electric field in the extremely low frequency (ELF) band, the geomagnetic east–west vector data, and the temperature of brightness blackbody (TBB) data to investigate the spatio–temporal evolution characteristics under quiet space weather conditions (Dst > −30 nT and Kp < 3). Results showed that (1) the TBB radiation began to increase notably along the northern fault of the epicenter ~1.5 months prior to the occurrence of the earthquake. It achieved its maximum intensity on 17 May, and the earthquake occurred as the anomalies decreased. (2) The PSD in the 371 Hz–500 Hz and 700 Hz–871 Hz bands exhibited anomaly perturbations near the epicenter and its magnetic conjugate area on May 17, with particularly notable perturbations observed in the latter. The anomaly perturbations began to occur ~1 month before the earthquake, and the earthquake occurred as the anomalies decreased. (3) Both the magnetic –east–west component vector data and the ion velocity Vx data exhibited anomaly perturbations near the epicenter and the magnetic conjugate area on 11 May and 16 May. (4) The anomaly perturbations in the thermal infrared TBB data, CSES electric field, and magnetic field data all occurred within a consistent perturbation time period and spatial proximity. We also conducted an investigation into the timing, location, and potential causes of the anomaly perturbations using the Vx ion velocity data with magnetic field –east–west component vector data, as well as the horizontal –north–south and vertical component PSD data of the electric field with the magnetic field –east–west component vector data. There may be both chemical and electromagnetic wave propagation models for the “lithosphere—atmosphere—ionosphere” coupling (LAIC) mechanism of the Maduo earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

24 pages, 75890 KiB  
Article
Coseismic and Early Postseismic Deformation Mechanism Following the 2021 Mw 7.4 Maduo Earthquake: Insights from Satellite Radar Interferometry and GPS
by Chuanzeng Shu, Zhiguo Meng, Qiong Wu, Wei Xiong, Lijia He, Xiaoping Zhang and Dan Xu
Remote Sens. 2024, 16(8), 1399; https://doi.org/10.3390/rs16081399 - 16 Apr 2024
Cited by 1 | Viewed by 833
Abstract
Exploring the deformation mechanism of the 2021 Mw 7.4 Maduo Earthquake is crucial for better understanding the seismic hazard of the faults with low strain rates inside the Bayan Har block. This study leverages deformation information derived from Sentient-1 A/B images and GPS [...] Read more.
Exploring the deformation mechanism of the 2021 Mw 7.4 Maduo Earthquake is crucial for better understanding the seismic hazard of the faults with low strain rates inside the Bayan Har block. This study leverages deformation information derived from Sentient-1 A/B images and GPS data to investigate in detail the co- and postseismic deformation mechanisms using multiple methods. The main results are as follows. First, the postseismic InSAR time series robustly identified the reactivation of the Changmahe fault, indicating the impact of the Maduo event on surrounding active faults. Second, the joint inversion of Interferometric Synthetic Aperture Radar and GPS revealed that (1) there was a complementary and partially overlapping relationship between the coseismic slip and postseismic afterslip of the main rupture; and (2) the Changmahe fault exhibited thrust compression dislocation in the early stage and experienced a sustained compressive effect from afterslip in the one year after the mainshock. Third, modeling the processes of viscoelastic relaxation and poroelastic rebound revealed that the postseismic deformation was probably caused by a combination of afterslip (near-field) and viscoelastic relaxation (near and far field). Fourth, the stress changes driven by the Maduo event revealed that the seismic gaps inside the Maqin-Maqu segment and the Kunlun Pass-Jiangcuo fault will be potential seismic risks in the future. Full article
Show Figures

Figure 1

23 pages, 16794 KiB  
Article
Discontinuous Surface Ruptures and Slip Distributions in the Epicentral Region of the 2021 Mw7.4 Maduo Earthquake, China
by Longfei Han, Jing Liu-Zeng, Wenqian Yao, Wenxin Wang, Yanxiu Shao, Xiaoli Liu, Xianyang Zeng, Yunpeng Gao and Hongwei Tu
Remote Sens. 2024, 16(7), 1250; https://doi.org/10.3390/rs16071250 - 1 Apr 2024
Viewed by 1020
Abstract
Geometric complexities play an important role in the nucleation, propagation, and termination of strike-slip earthquake ruptures. The 2021 Mw7.4 Maduo earthquake rupture initiated at a large releasing stepover with a complex fault intersection. In the epicentral region, we conducted detailed mapping and [...] Read more.
Geometric complexities play an important role in the nucleation, propagation, and termination of strike-slip earthquake ruptures. The 2021 Mw7.4 Maduo earthquake rupture initiated at a large releasing stepover with a complex fault intersection. In the epicentral region, we conducted detailed mapping and classification of the surface ruptures and slip measurements associated with the earthquake, combining high-resolution uncrewed aerial vehicle (UAV) images and optical image correlation with field investigations. Our findings indicate that the coseismic ruptures present discontinuous patterns mixed with numerous lateral spreadings due to strong ground shaking. The discontinuous surface ruptures are uncharacteristic in slip to account for the large and clear displacements of offset landforms in the epicentral region. Within the releasing stepovers, the deformation zone revealed from the optical image correlation map indicates that a fault may cut diagonally across the pull-apart basin at depth. The left-lateral horizontal coseismic displacements from field measurements are typically ≤0.6 m, significantly lower than the 1–2.7 m measured from the optical image correlation map. Such a discrepancy indicates a significant proportion of off-fault deformation or the possibility that the rupture stopped at a shallow depth during its initiation phase instead of extending to the surface. The fault network and multi-fault junctions west and south of the epicenter suggest a possible complex path, which retarded the westward propagation at the initial phase of rupture growth. A hampered initiation might enhance the seismic ground motion and the complex ground deformation features at the surface, including widespread shaking-related fissures. Full article
Show Figures

Figure 1

20 pages, 14402 KiB  
Article
Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity
by Xiaoli Liu, Debeier Deng, Zhige Jia, Jing Liu-Zeng, Xinyu Mo, Yu Huang, Qiaozhe Ruan and Juntao Liu
Remote Sens. 2024, 16(4), 713; https://doi.org/10.3390/rs16040713 - 18 Feb 2024
Viewed by 982
Abstract
Geometric complexities of a fault system have a significant impact on the rupture behavior of the fault. The 2021 Mw7.4 Maduo earthquake occurred on a multi-segmented complex sinistral fault in the interior of the Bayan-Har block in the northern Tibetan Plateau. Here, we [...] Read more.
Geometric complexities of a fault system have a significant impact on the rupture behavior of the fault. The 2021 Mw7.4 Maduo earthquake occurred on a multi-segmented complex sinistral fault in the interior of the Bayan-Har block in the northern Tibetan Plateau. Here, we integrate centimeter-resolution surface rupture zones and Sentinel-2 optical displacement fields to accurately determine the geometric parameters of the causative fault in detail. An adaptive quadtree down-sampling method for interferograms was employed to enhance the reliability of the coseismic slip model inversion for interferograms. The optimal coseismic slip model indicated a complex non-planar structure with varying strike and dip angles. The largest slip of ~6 m, at a depth of ~7 km, occurred near a 6 km-wide stepover (a geometric complexity area) to the east of the epicenter, which occurred at the transition zone from sub-shear to super-shear rupture suggested by seismological studies. Optical and SAR displacement fields consistently indicated the local minimization of effective normal stress on releasing stepovers, which facilitated rupture through them. Moreover, connecting intermediate structures contributes to maintaining the rupture propagation through wide stepovers and may even facilitate the transition from subshear to supershear. Our study provides more evidence of the reactivation of a branched fault at the western end during the mainshock, which was previously under-appreciated. Furthermore, we found that a strong asymmetry in slip depth, stress drop, and rupture velocity east and west of the epicenter was coupled with variations in geometric and structural characteristics of fault segments along the strike. Our findings highlight the sensitivity of rupture behaviors to small-scale details of fault geometry. Full article
Show Figures

Figure 1

20 pages, 16055 KiB  
Article
Coseismic Deformation Obtained by Various Technical Methods and Its Constraint Ability to Slip Models of Maduo Earthquake
by Yujing Song, Chunyan Qu, Chao Ma, Xinjian Shan, Guohong Zhang, Han Chen and Donglin Wu
Remote Sens. 2024, 16(4), 615; https://doi.org/10.3390/rs16040615 - 7 Feb 2024
Viewed by 995
Abstract
The coseismic deformation field on both sides of the fault, especially the distribution and change characteristics of near-field deformation, not only provides important constraints for the fine inversion of the slip distribution model but also serves as an important basis for the anti-disruption [...] Read more.
The coseismic deformation field on both sides of the fault, especially the distribution and change characteristics of near-field deformation, not only provides important constraints for the fine inversion of the slip distribution model but also serves as an important basis for the anti-disruption defense of the cross-fault linear engineering facilities. In this paper, we used Sentinel-1 satellite data to obtain the coseismic deformation field of the Maduo earthquake by using InSAR and offset techniques. We quantitatively compared the coseismic displacement of the three types of data: InSAR, offset, and optical images. The results show that optical images and offset provided more robust near-fault (<2 km) deformation insights than InSAR, which exhibited irregular deformation patterns due to incoherence near the fault. The maximum relative displacements for InSAR and offset observations are ~2.8 m and 4 m, respectively. Then we tested various fault slip models with different data constraints, revealing that a combined inversion of GPS, InSAR, and offset data offers superior constraints on slip distribution. This integrative approach effectively captured both shallow and deep fault slip, particularly near the fault zone. The eastern branch fault model, jointly constrained by GPS, InSAR, and offset data, is the optimal coseismic slip distribution model for the Maduo earthquake, and the maximum slip is 5.55 m. Full article
Show Figures

Figure 1

20 pages, 36388 KiB  
Article
Source Parameter Inversion and Century-Scale Stress Triggering Analysis of the 2021 Maduo MW7.4 Earthquake Using GNSS and InSAR Displacement Fields
by Keke Xu, Shuaipeng Wang and Tongtong Wan
Remote Sens. 2023, 15(20), 5027; https://doi.org/10.3390/rs15205027 - 19 Oct 2023
Viewed by 1128
Abstract
To explore the degree of constraint by Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) data on the Maduo earthquake within a layered earth model structure and to gain an insight into the seismogenic mechanism and the seismic risk in [...] Read more.
To explore the degree of constraint by Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) data on the Maduo earthquake within a layered earth model structure and to gain an insight into the seismogenic mechanism and the seismic risk in the surrounding area, this study employs D-InSAR technology to acquire the InSAR co-seismic deformation field of the Maduo earthquake on 22 May 2021. Utilizing both GNSS and InSAR data, the inversions constrained by single and joint data are conducted and compared to determine the co-seismic slip model and fault plane stress distribution of the Maduo earthquake. Additionally, this paper calculates the Coulomb stress changes induced by 14 M ≥ 7 strong earthquakes, considering co-seismic effects, post-seismic viscoelastic relaxation, and inter-seismic tectonic stress loading, on 19 fault segments within the Bayan Har block research area (96°E~106°E, 29°N~36°N) since 1900. The findings are as follows: (1) The maximum line-of-sight (LOS) deformation was approximately 0.9 m. The joint inversion rupture was primarily located in the Dongcao Along Lake section (~98.6°E), aligning with previous research outcomes. (2) The cumulative Coulomb stress at the Maduo earthquake’s source location was −0.1333 MPa, while the inter-seismic stress loading amounted to 0.0745 MPa. The East Kunlun Fault, Maduo–Gande Fault, Ganzi–Yushu Fault, and Dari Fault C exhibited considerable stress loading, warranting attention due to heightened seismic risk. (3) Based on three different co-seismic slip models, the stress disturbance results caused by the Maduo earthquake to the surrounding area and fault did not differ significantly. After the earthquake, the seismogenic fault still has high seismic risk. Full article
(This article belongs to the Special Issue Earthquake Ground Motion Observation and Modelling)
Show Figures

Figure 1

16 pages, 17045 KiB  
Article
Vector Angular Continuity in the Fusion of Coseismic Deformations at Multiple Optical Correlation Scales
by Rui Guo, Qiming Zeng and Shangzong Lu
Sensors 2023, 23(15), 6677; https://doi.org/10.3390/s23156677 - 26 Jul 2023
Viewed by 883
Abstract
As one of the common techniques for measuring coseismic deformations, optical image correlation techniques are capable of overcoming the drawbacks of inadequate coherence and phase blurring which can occur in radar interferometry, as well as the problem of low spatial resolution in radar [...] Read more.
As one of the common techniques for measuring coseismic deformations, optical image correlation techniques are capable of overcoming the drawbacks of inadequate coherence and phase blurring which can occur in radar interferometry, as well as the problem of low spatial resolution in radar pixel offset tracking. However, the scales of the correlation window in optical image correlation techniques typically influence the results; the conventional SAR POT method faces a fundamental trade-off between the accuracy of matching and the preservation of details in the correlation window size. This study regards coseismic deformation as a two-dimensional vector, and develops a new post-processing workflow called VACI-OIC to reduce the dependence of shift estimation on the size of the correlation window. This paper takes the coseismic deformations in both the east–west and north–south directions into account at the same time, treating them as vectors, while also considering the similarity of displacement between adjacent points on the surface. Herein, the angular continuity index of the coseismic deformation vector was proposed as a more reasonable constraint condition to fuse the deformation field results obtained by optical image correlation across different correlation window. Taking the earthquake of 2021 in Maduo, China, as the study area, the deformation with the highest spatial resolution in the violent surface rupture area was determined (which could not be provided by SAR data). Compared to the results of single-scale optical correlation, the presented results were more uniform (i.e., more consistent with published results). At the same time, the proposed index also detected the strip fracture zone of the earthquake with impressive clarity. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 15845 KiB  
Article
The Crustal Dynamics and Its Geological Explanation of the Three-Dimensional Co-Seismic Deformation Field for the 2021 Maduo MS7.4 Earthquake Based on GNSS and InSAR
by Xiaobo Li, Yanling Chen, Xiaoya Wang and Renwei Xiong
Sensors 2023, 23(8), 3793; https://doi.org/10.3390/s23083793 - 7 Apr 2023
Viewed by 1532
Abstract
Three-dimensional deformation is an important input to explore seismic mechanisms and geodynamics. The GNSS and InSAR technologies are commonly used to obtain the co-seismic three-dimensional deformation field. This paper focused on the effect of calculation accuracy caused by the deformation correlation between the [...] Read more.
Three-dimensional deformation is an important input to explore seismic mechanisms and geodynamics. The GNSS and InSAR technologies are commonly used to obtain the co-seismic three-dimensional deformation field. This paper focused on the effect of calculation accuracy caused by the deformation correlation between the reference point and the points involved in the solution, to build a high-accuracy three-dimensional deformation field for a detailed geological explanation. Based on the variance component estimation (VCE) method, the InSAR LOS, azimuthal deformation, and the GNSS horizontal and vertical deformation were integrated to solve the three-dimensional displacement of the study area in combination with the elasticity theory. The accuracy of the three-dimensional co-seismic deformation field of the 2021 Maduo MS7.4 earthquake obtained by the method proposed in this paper, was compared with that obtained from the only InSAR measurements obtained using a multi-satellite and multi-technology approach. The results showed the difference in root-mean-square errors (RMSE) of the integration and GNSS displacement was 0.98 cm, 5.64 cm, and 1.37 cm in the east–west, north–south and vertical direction respectively, which was better than the RMSE of the method using only InSAR and GNSS displacement, which was 5.2 cm and 12.2 cm in the east–west, north–south, and no vertical direction. With the geological field survey and aftershocks relocation, the results showed good agreement with the strike and the position of the surface rupture. The maximum slip displacement was about 4 m, which was consistent with the result of the empirical statistical formula. It was firstly found that the pre-existing fault controlled the vertical deformation on the south side of the west end of the main surface rupture caused by the Maduo MS7.4 earthquake, which provided the direct evidence for the theoretical hypothesis that large earthquakes could not only produce surface rupture on seismogenic faults, but also trigger pre-existing faults or new faults to produce surface rupture or weak deformation in areas far from seismogenic faults. An adaptive method was proposed in GNSS and InSAR integration, which could take into account the correlation distance and the efficiency of homogeneous point selection. Meanwhile, deformation information of the decoherent region could be recovered without interpolation of the GNSS displacement. This series of findings formed an essential supplement to the field surface rupture survey and provided a novel idea for the combination of the various spatial measurement technologies to improve the seismic deformation monitoring. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 22918 KiB  
Article
Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology
by Wenxin Wang, Jing Liu-Zeng, Yanxiu Shao, Zijun Wang, Longfei Han, Xuwen Shen, Kexin Qin, Yunpeng Gao, Wenqian Yao, Guiming Hu, Xianyang Zeng, Xiaoli Liu, Wei Wang, Fengzhen Cui, Zhijun Liu, Jinyang Li and Hongwei Tu
Remote Sens. 2023, 15(4), 1032; https://doi.org/10.3390/rs15041032 - 14 Feb 2023
Cited by 2 | Viewed by 2779
Abstract
The 2021 Mw 7.4 Maduo (Madoi) earthquake that struck the northern Tibetan Plateau resulted in widespread coseismic deformation features, such as surface ruptures and soil liquefaction. By utilizing the unmanned aerial vehicle (UAV) photogrammetry technology, we accurately recognize and map 39,286 liquefaction sites [...] Read more.
The 2021 Mw 7.4 Maduo (Madoi) earthquake that struck the northern Tibetan Plateau resulted in widespread coseismic deformation features, such as surface ruptures and soil liquefaction. By utilizing the unmanned aerial vehicle (UAV) photogrammetry technology, we accurately recognize and map 39,286 liquefaction sites within a 1.5 km wide zone along the coseismic surface rupture. We then systematically analyze the coseismic liquefaction distribution characteristics and the possible influencing factors. The coseismic liquefaction density remains on a higher level within 250 m from the surface rupture and decreases in a power law with the increasing distance. The amplification of the seismic waves in the vicinity of the rupture zone enhances the liquefaction effects near it. More than 90% of coseismic liquefaction occurs in the peak ground acceleration (PGA) > 0.50 g, and the liquefaction density is significantly higher in the region with seismic intensity > VIII. Combined with the sedimentary distribution along-strike of the surface rupture, the mapped liquefaction sites indicate that the differences in the sedimentary environments could cause more intense liquefaction on the western side of the epicenter, where loose Quaternary deposits are widely spread. The stronger coseismic liquefaction sites correspond to the Eling Lake section, the Yellow River floodplain, and the Heihe River floodplain, where the soil is mostly saturated with loose fine-grained sand and the groundwater level is high. Our results show that the massive liquefaction caused by the strong ground shaking during the Maduo (Madoi) earthquake was distributed as the specific local sedimentary environment and the groundwater level changed. Full article
Show Figures

Figure 1

16 pages, 16211 KiB  
Article
Aerial Mapping of Coseismic Surface Rupture of 2021 Mw 7.3 Maduo Earthquake, China
by Jianming Guo
Appl. Sci. 2022, 12(24), 13005; https://doi.org/10.3390/app122413005 - 18 Dec 2022
Viewed by 1574
Abstract
The 2021 Mw 7.3 Maduo earthquake is one of the largest seismic events that has occurred in and around the Bayan Har block of Tibet. D-InSAR results and field surveys indicate that this earthquake resulted in more than 160 km of coseismic [...] Read more.
The 2021 Mw 7.3 Maduo earthquake is one of the largest seismic events that has occurred in and around the Bayan Har block of Tibet. D-InSAR results and field surveys indicate that this earthquake resulted in more than 160 km of coseismic surface rupture along pre-existing fault traces. Based on the branching of the surface rupture, the fault of the Maduo earthquake can be roughly divided into four sections. Through detailed drone mapping, the fracture pattern and offset of the fault were counted and measured. The development of the peaty meadow layer on the ground determines the different combination modes of the fractures. The horizontal offset observed on the surface of this earthquake is generally less than 2 m and the vertical offset is less than 1 m, and the fault shows a primarily left-lateral strike-slip movement. In the desert-covered areas, there are long gaps between continuous rupture. Full article
(This article belongs to the Special Issue Geographic Visualization: Evaluation and Monitoring of Geohazards)
Show Figures

Figure 1

20 pages, 12775 KiB  
Article
Source Model and Triggered Aseismic Faulting of the 2021 Mw 7.3 Maduo Earthquake Revealed by the UAV-Lidar/Photogrammetry, InSAR, and Field Investigation
by Ying-Hui Yang, Qiang Xu, Jyr-Ching Hu, Yun-Sheng Wang, Xiu-Jun Dong, Qiang Chen, Yi-Jun Zhang and Hao-Liang Li
Remote Sens. 2022, 14(22), 5859; https://doi.org/10.3390/rs14225859 - 18 Nov 2022
Cited by 7 | Viewed by 2558
Abstract
Multi-source datasets, including the UAV-Lidar/Photogrammetry, InSAR, and field investigation data, have been used for revealing the complex surface displacement pattern and focal mechanism of the 2021 Maduo Mw 7.3 earthquake. First, a co-seismic surface deformation field was extracted from the Synthetic Aperture Radar [...] Read more.
Multi-source datasets, including the UAV-Lidar/Photogrammetry, InSAR, and field investigation data, have been used for revealing the complex surface displacement pattern and focal mechanism of the 2021 Maduo Mw 7.3 earthquake. First, a co-seismic surface deformation field was extracted from the Synthetic Aperture Radar (SAR) images captured by ALOS-2 and Sentinel-1 satellites. Second, the SAR pixel offset tracking results were adopted to detect the initial location of the seismogenic fault. Then, the Lidar digital elevation model with high spatial resolution and field investigation were employed to refine and verify the location of the seismogenic fault. It was found that bifurcated strike-slip rupture should account for the 2021 Maduo earthquake. As indicated by the estimated faulting model based on the InSAR data, the maximal fault slip was ~6.2 m, occurring in the southeast of the main seismogenic fault, and five remarkable slip concentrations controlled the surface displacement of the 2021 Maduo earthquake. Furthermore, the co- and post-seismic InSAR deformation, dilatation, shear strain, Coulomb failure stress, and aftershock sequence suggest that the co-seismic rupture of the two main seismogenic faults have triggered the aseismic slip along the Changmahe fault. Lastly, according to the Coulomb failure stress change due to the historical earthquakes and the 2021 Maduo earthquake, the 1937 M 7.8 earthquake predominantly controlled the Coulomb failure stress change along the Kunlun fault, and the Xidatan-Alake Lake and Maqin segments had a higher risk of future earthquake than the other segments. Full article
(This article belongs to the Special Issue Earthquake Ground Motion Observation and Modelling)
Show Figures

Graphical abstract

14 pages, 6941 KiB  
Article
Recognition of Earthquake Surface Ruptures Using Deep Learning
by Xiaolin Chen, Guang Hu and Xiaoli Liu
Appl. Sci. 2022, 12(22), 11638; https://doi.org/10.3390/app122211638 - 16 Nov 2022
Cited by 4 | Viewed by 1474
Abstract
Investigating post-earthquake surface ruptures is important for understanding the tectonics of seismogenic faults. The use of unmanned aerial vehicle (UAV) images to identify post-earthquake surface ruptures has the advantages of low cost, fast data acquisition, and high data processing efficiency. With the rapid [...] Read more.
Investigating post-earthquake surface ruptures is important for understanding the tectonics of seismogenic faults. The use of unmanned aerial vehicle (UAV) images to identify post-earthquake surface ruptures has the advantages of low cost, fast data acquisition, and high data processing efficiency. With the rapid development of deep learning in recent years, researchers have begun using it for image crack detection. However, due to the complex background and diverse characteristics of the surface ruptures, it remains challenging to quickly train an effective automatic earthquake surface rupture recognition model on a limited number of samples. This study proposes a workflow that applies an image segmentation algorithm based on convolutional neural networks (CNNs) to extract cracks from post-earthquake UAV images. We selected the 16-layer visual geometry group (VGG16) network as the primary network architecture. Then, we improved the VGG16 network and deleted several convolutional layers to reduce computation and memory consumption. Moreover, we added dilated convolution and atrous spatial pyramid pooling (ASPP) to make the network perform well in the surface crack identification of post-earthquake UAV images. We trained the proposed method using the data of the MS 7.4 Maduo earthquake and obtained a model that could automatically identify and draw small and irregular surface ruptures from high-resolution UAV images. Full article
(This article belongs to the Special Issue Applications of Machine Learning on Earth Sciences)
Show Figures

Figure 1

19 pages, 8813 KiB  
Article
Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods
by Peng Liang, Yueren Xu, Wenqiao Li, Yanbo Zhang and Qinjian Tian
Remote Sens. 2022, 14(21), 5595; https://doi.org/10.3390/rs14215595 - 6 Nov 2022
Cited by 2 | Viewed by 1539
Abstract
Rapid extraction of liquefaction induced by strong earthquakes is helpful for earthquake intensity assessment and earthquake emergency response. Supervised classification methods are potentially more accurate and do not need pre-earthquake images. However, the current supervised classification methods depend on the precisely delineated polygons [...] Read more.
Rapid extraction of liquefaction induced by strong earthquakes is helpful for earthquake intensity assessment and earthquake emergency response. Supervised classification methods are potentially more accurate and do not need pre-earthquake images. However, the current supervised classification methods depend on the precisely delineated polygons of liquefaction by manual and landcover maps. To overcome these shortcomings, this study proposed two binary classification methods (i.e., random forest and gradient boosting decision tree) based on typical samples. The proposed methods trained the two machine learning methods with different numbers of typical samples, then used the trained binary classification methods to extract the spatial distribution of liquefaction. Finally, a morphological transformation method was used for the postprocessing of the extracted liquefaction. The recognition accuracies of liquefaction were estimated by four evaluation indices, which all showed a score of about 90%. The spatial distribution of liquefaction pits is also consistent with the formation principle of liquefaction. This study demonstrates that the proposed binary classification methods based on machine learning could efficiently and quickly provide the spatial distribution of liquefaction based on post-earthquake emergency satellite images. Full article
(This article belongs to the Special Issue Remote Sensing Perspectives of Geomorphology and Tectonic Processes)
Show Figures

Figure 1

13 pages, 7074 KiB  
Article
Analysis of Ionospheric Perturbations Possibly Related to Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes on 21 May 2021 in China Using GPS TEC and GIM TEC Data
by Lei Dong, Xuemin Zhang and Xiaohui Du
Atmosphere 2022, 13(10), 1725; https://doi.org/10.3390/atmos13101725 - 20 Oct 2022
Cited by 8 | Viewed by 1975
Abstract
On 21 May 2021 (UT), Yangbi Ms6.4 and Maduo Ms7.4 earthquakes occurred in mainland China. This paper analyzed the ionospheric perturbations possibly related to the earthquake, based on global positioning system (GPS) total electron content (TEC) and global ionosphere map (GIM) TEC data. [...] Read more.
On 21 May 2021 (UT), Yangbi Ms6.4 and Maduo Ms7.4 earthquakes occurred in mainland China. This paper analyzed the ionospheric perturbations possibly related to the earthquake, based on global positioning system (GPS) total electron content (TEC) and global ionosphere map (GIM) TEC data. We identified GPS TEC anomalies by the sliding quartile, based on statistical analysis. After eliminating the days with high solar activity levels and strong geomagnetic disturbances, the time series analysis of GPS TEC data showed that there were significant TEC anomalies from 5 to 10 May. TEC anomalies were mainly positive anomalies. We obtained the spatial and temporal distributions of TEC anomalies using natural neighbor interpolation (NNI). The results showed that the TEC anomalies were distributed in the seismogenic zone and surrounded the epicenters of the Maduo and Yangbi earthquakes, indicating that they may be related to the earthquakes. From the GIM TEC difference map, we found the TEC enhancement in the seismogenic zone and its magnetic conjugate area of the Maduo and Yangbi earthquakes at 10:00–12:00 (UT) on the 5 and 6 May. We discussed our results according to the lithosphere-atmosphere-ionosphere coupling mechanism. Finally, based our results, we suggested that the Yangbi and Maduo earthquakes may affect the ionosphere through seismogenic electric field and thermal anomalies generated during the process of lithosphere-atmosphere-ionosphere coupling. Full article
Show Figures

Figure 1

Back to TopTop