Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,638)

Search Parameters:
Keywords = CD63 cell receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4034 KiB  
Article
Comparison of Natural Killer Cells Differentiated from Various Pluripotent Stem Cells
by Jongsuk Han, Hyeongbin Son, Daun Jung, Ki-Yeon Kim, Chaeyeon Jin, Hyeonwook Hwang, Soon-Suk Kang, Shoukhrat Mitalipov, Hee-Jung An, Yeonmi Lee and Eunju Kang
Int. J. Mol. Sci. 2024, 25(15), 8209; https://doi.org/10.3390/ijms25158209 (registering DOI) - 27 Jul 2024
Viewed by 247
Abstract
Allogeneic natural killer (NK) cell therapy has been effective in treating cancer. Many studies have tested NK cell therapy using human pluripotent stem cells (hPSCs). However, the impacts of the origin of PSC-NK cells on competence are unclear. In this study, several types [...] Read more.
Allogeneic natural killer (NK) cell therapy has been effective in treating cancer. Many studies have tested NK cell therapy using human pluripotent stem cells (hPSCs). However, the impacts of the origin of PSC-NK cells on competence are unclear. In this study, several types of hPSCs, including human-induced PSCs (hiPSCs) generated from CD34+, CD3−CD56+, and CD56− cells in umbilical cord blood (UCB), three lines of human embryonic stem cells (hESCs, ES-1. ES-2 and ES-3) and MHC I knockout (B2M-KO)-ESCs were used to differentiate into NK cells and their capacities were analyzed. All PSC types could differentiate into NK cells. Among the iPSC-derived NK cells (iPSC-NKs) and ESC-derived NK cells (ES-NKs), 34+ iPSCs and ES-3 had a higher growth rate and cytotoxicity, respectively, ES-3 also showed better efficacy than 34+ iPSCs. B2M-KO was similar to the wild type. These results suggest that the screening for differentiation of PSCs into NK cells prior to selecting the PSC lines for the development of NK cell immunotherapy is an essential process for universal allotransplantation, including the chimeric antigen receptor (CAR). Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 2522 KiB  
Article
The Role of TIM-1 and CD300a in Zika Virus Infection Investigated with Cell-Based Electrical Impedance
by Merel Oeyen, Clément J. F. Heymann, Maarten Jacquemyn, Dirk Daelemans and Dominique Schols
Biosensors 2024, 14(8), 362; https://doi.org/10.3390/bios14080362 - 25 Jul 2024
Viewed by 232
Abstract
Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). [...] Read more.
Orthoflaviviruses cause a major threat to global public health, and no antiviral treatment is available yet. Zika virus (ZIKV) entry, together with many other viruses, is known to be enhanced by phosphatidylserine (PS) receptors such as T-cell immunoglobulin mucin domain protein 1 (TIM-1). In this study, we demonstrate for the first time, using cell-based electrical impedance (CEI) biosensing, that ZIKV entry is also enhanced by expression of CD300a, another PS receptor. Furthermore, inhibiting CD300a in immature monocyte-derived dendritic cells partially but significantly inhibits ZIKV replication. As we have previously demonstrated that CEI is a useful tool to study Orthoflavivirus infection in real time, we now use this technology to determine how these PS receptors influence the kinetics of in vitro ZIKV infection. Results show that ZIKV entry is highly sensitive to minor changes in TIM-1 expression, both after overexpression of TIM-1 in infection-resistant HEK293T cells, as well as after partial knockout of TIM-1 in susceptible A549 cells. These results are confirmed by quantification of viral copy number and viral infectivity, demonstrating that CEI is highly suited to study and compare virus-host interactions. Overall, the results presented here demonstrate the potential of targeting this universal viral entry pathway. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
Show Figures

Figure 1

25 pages, 5007 KiB  
Review
Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event
by Juan Bautista De Sanctis, Jenny Valentina Garmendia, Hana Duchová, Viktor Valentini, Alex Puskasu, Agáta Kubíčková and Marián Hajdúch
Cancers 2024, 16(15), 2630; https://doi.org/10.3390/cancers16152630 - 24 Jul 2024
Viewed by 351
Abstract
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to [...] Read more.
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

11 pages, 2757 KiB  
Article
Evaluation of Anti-CAR Linker mAbs for CAR T Monitoring after BiTEs/bsAbs and CAR T-Cell Pretreatment
by Anja Grahnert, Sabine Seiffert, Kerstin Wenk, Dominik Schmiedel, Andreas Boldt, Vladan Vucinic, Maximilian Merz, Uwe Platzbecker, Christian Klemann, Ulrike Koehl and Maik Friedrich
Biomedicines 2024, 12(8), 1641; https://doi.org/10.3390/biomedicines12081641 - 24 Jul 2024
Viewed by 297
Abstract
For the monitoring of chimeric antigen receptor (CAR) T-cell therapies, antigen-based CAR detection methods are usually applied. However, for each target-antigen, a separate detection system is required. Furthermore, when monitored CAR T-cells in the blood of patients treated with bispecific antibodies or T-cell [...] Read more.
For the monitoring of chimeric antigen receptor (CAR) T-cell therapies, antigen-based CAR detection methods are usually applied. However, for each target-antigen, a separate detection system is required. Furthermore, when monitored CAR T-cells in the blood of patients treated with bispecific antibodies or T-cell engagers (bsAbs/BiTEs) recognize the same antigen, these methods produce false-positive results in clinical diagnostics. Anti-CAR-linker monoclonal antibodies (mAbs) targeting the linker sequence between the variable domains of the antigen binding CAR fragment promise a universal and unbiased CAR detection. To test this, we analyzed clinical specimens of all BCMA- and CD19-targeting CAR T-cell products currently approved for clinical use. We found a highly specific and sensitive CAR detection using anti-CAR-linker mAb in blood cells from patients treated with Ide-cel, Tisa-cel, Axi-cel, Brexu-cel, and Liso-cel. For Ide-cel and Tisa-cel, the sensitivity was significantly lower compared to that for antigen-based CAR detection assays. Strikingly, the specificity of anti-CAR linker mAb was not affected by the simultaneous presence of bispecific blinatumomab or teclistamab for Axi-cel, Brexu-cel, Liso-cel, or Ide-cel, respectively. Cilta-cel (containing a monomeric G4S-CAR linker) could not be detected by anti-CAR linker mAb. In conclusion, anti-CAR-linker mAbs are highly specific and useful for CAR T-cell monitoring but are not universally applicable. Full article
(This article belongs to the Special Issue Roles of T Cells in Immunotherapy)
Show Figures

Figure 1

13 pages, 5977 KiB  
Article
Delta-9-Tetrahydrocannabinol Blocks Bone Marrow-Derived Macrophage Differentiation through Elimination of Reactive Oxygen Species
by Taylor H. Carter, Chloe E. Weyer-Nichols, Jeffrey I. Garcia-Sanchez, Kiesha Wilson, Prakash Nagarkatti and Mitzi Nagarkatti
Antioxidants 2024, 13(8), 887; https://doi.org/10.3390/antiox13080887 - 23 Jul 2024
Viewed by 599
Abstract
Macrophages are vital components of the immune system and serve as the first line of defense against pathogens. Macrophage colony-stimulating factor (M-CSF) induces macrophage differentiation from bone marrow-derived cells (BMDCs). Δ9-tetrahydrocannabiol (THC), a phytocannabinoid from the Cannabis plant, has profound anti-inflammatory properties with [...] Read more.
Macrophages are vital components of the immune system and serve as the first line of defense against pathogens. Macrophage colony-stimulating factor (M-CSF) induces macrophage differentiation from bone marrow-derived cells (BMDCs). Δ9-tetrahydrocannabiol (THC), a phytocannabinoid from the Cannabis plant, has profound anti-inflammatory properties with significant effects on myeloid cells. To investigate the effect of THC on macrophage differentiation, we cultured BMDCs with M-CSF in the presence of THC. Interestingly, THC markedly blocked the differentiation of BMDCs into CD45 + CD11b + F4/80+ macrophages. The effect of THC was independent of cannabinoid receptors CB1, and CB2, as well as other potential receptors such as GPR18, GPR55, and Adenosine 2A Receptor. RNA-seq analysis revealed that the THC-treated BMDCs displayed a significant increase in the expression of NRF2-ARE-related genes. KEGG pathway analysis revealed that the expression profiles of THC-treated cells correlated with ferroptosis and glutathione metabolism pathways. Fluorescence-based labile iron assays showed that the THC-treated BMDCs had significantly increased iron levels. Finally, THC-exposed BMDCs showed decreased levels of intracellular ROS. THC has the unique molecular property to block the Fenton Reaction, thus preventing the increase in intracellular ROS that is normally induced by high iron levels. Together, these studies demonstrated that THC blocks M-CSF-induced macrophage differentiation by inhibiting ROS production through both the induction of NRF2-ARE-related gene expression and the prevention of ROS formation via the Fenton Reaction. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 770 KiB  
Review
Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond
by Amber Afzal, Zobia Afzal, Sophia Bizink, Amanda Davis, Sara Makahleh, Yara Mohamed and Salvatore J. Coniglio
Curr. Issues Mol. Biol. 2024, 46(8), 7795-7811; https://doi.org/10.3390/cimb46080462 - 23 Jul 2024
Viewed by 274
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently [...] Read more.
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a “don’t eat me” signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

21 pages, 5582 KiB  
Article
HER2-CD3-Fc Bispecific Antibody-Encoding mRNA Delivered by Lipid Nanoparticles Suppresses HER2-Positive Tumor Growth
by Liang Hu, Shiming Zhang, John Sienkiewicz, Hua Zhou, Robert Berahovich, Jinying Sun, Michael Li, Adrian Ocampo, Xianghong Liu, Yanwei Huang, Hizkia Harto, Shirley Xu, Vita Golubovskaya and Lijun Wu
Vaccines 2024, 12(7), 808; https://doi.org/10.3390/vaccines12070808 - 21 Jul 2024
Viewed by 533
Abstract
The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor and tumor-associated antigen abnormally expressed in various types of cancer, including breast, ovarian, and gastric cancer. HER2 overexpression is highly correlated with increased tumor aggressiveness, poorer prognosis, and shorter [...] Read more.
The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor and tumor-associated antigen abnormally expressed in various types of cancer, including breast, ovarian, and gastric cancer. HER2 overexpression is highly correlated with increased tumor aggressiveness, poorer prognosis, and shorter overall survival. Consequently, multiple HER2-targeted therapies have been developed and approved; however, only a subset of patients benefit from these treatments, and relapses are common. More potent and durable HER2-targeted therapies are desperately needed for patients with HER2-positive cancers. In this study, we developed a lipid nanoparticle (LNP)-based therapy formulated with mRNA encoding a novel HER2-CD3-Fc bispecific antibody (bsAb) for HER2-positive cancers. The LNPs efficiently transfected various types of cells, such as HEK293S, SKOV-3, and A1847, leading to robust and sustained secretion of the HER2-CD3-Fc bsAb with high binding affinity to both HER2 and CD3. The bsAb induced potent T-cell-directed cytotoxicity, along with secretion of IFN-λ, TNF-α, and granzyme B, against various types of HER2-positive tumor cells in vitro, including A549, NCI-H460, SKOV-3, A1847, SKBR3, and MDA-MB-231. The bsAb-mediated antitumor effect is highly specific and strictly dependent on its binding to HER2, as evidenced by the gained resistance of A549 and A1847 her2 knockout cells and the acquired sensitivity of mouse 4T1 cells overexpressing the human HER2 extracellular domain (ECD) or epitope-containing subdomain IV to the bsAb-induced T cell cytotoxicity. The bsAb also relies on its binding to CD3 for T-cell recruitment, as ablation of CD3 binding abolished the bsAb’s ability to elicit antitumor activity. Importantly, intratumoral injection of the HER2-CD3-Fc mRNA-LNPs triggers a strong antitumor response and completely blocks HER2-positive tumor growth in a mouse xenograft model of human ovarian cancer. These results indicate that the novel HER2-CD3-Fc mRNA-LNP-based therapy has the potential to effectively treat HER2-positive cancer. Full article
(This article belongs to the Special Issue Immunotherapy for Cancers)
Show Figures

Figure 1

14 pages, 4223 KiB  
Article
The Central Conserved Peptides of Respiratory Syncytial Virus G Protein Enhance the Immune Response to the RSV F Protein in an Adenovirus Vector Vaccine Candidate
by Pengdi Chai, Yi Shi, Junjie Yu, Xiafei Liu, Dongwei Li, Jinsong Li, Lili Li, Dandi Li and Zhaojun Duan
Vaccines 2024, 12(7), 807; https://doi.org/10.3390/vaccines12070807 - 20 Jul 2024
Viewed by 526
Abstract
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen that commonly affects children, older adults, and immunocompromised individuals. At present, the design of licensed vaccines focuses on the incorporation of the pre-fusion protein (PreF protein) of RSV, as this protein has the [...] Read more.
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen that commonly affects children, older adults, and immunocompromised individuals. At present, the design of licensed vaccines focuses on the incorporation of the pre-fusion protein (PreF protein) of RSV, as this protein has the ability to induce antibodies that offer a high level of protection. Moreover, the G protein contains the CX3C motif that binds the chemokine receptor CX3CR1 in respiratory epithelial cells, which plays an essential role in viral infection. Therefore, incorporating the G antigen into vaccine design may prove more advantageous for RSV prevention. In this study, we developed a human adenoviral vector-based RSV vaccine containing highly neutralizing immunogens, a modified full-length PreF protein fused with the central conserved peptides of the G protein (Gcc) from both RSV subgroups trimerized via a C-terminal foldon, and evaluated its immune response in mice through intranasal (i.n.) immunization. Our results showed that immunization with Ad5-PreF-Qa-Gcc elicited a balanced Th1/Th2 immune response and robust mucosal immunity with higher neutralizing antibody titers against RSV Long and RSV B1. Importantly, immunization with Ad5-PreF-Qa-Gcc enhanced CD4+ CD25+ FoxP3+ Treg cell response and protected the mice against RSV infection. Our data demonstrate that the combination of Gcc and the PreF antigen is a viable strategy for developing effective RSV vaccines. Full article
(This article belongs to the Special Issue Recent Developments in Vaccines against Respiratory Pathogens)
Show Figures

Figure 1

12 pages, 1079 KiB  
Communication
NTB-A and 2B4 Natural Killer Cell Receptors Modulate the Capacity of a Cocktail of Non-Neutralizing Antibodies and a Small CD4-Mimetic to Eliminate HIV-1-Infected Cells by Antibody-Dependent Cellular Cytotoxicity
by Lorie Marchitto, Alexandra Tauzin, Mehdi Benlarbi, Guillaume Beaudoin-Bussières, Katrina Dionne, Étienne Bélanger, Debashree Chatterjee, Catherine Bourassa, Halima Medjahed, Derek Yang, Ta-Jung Chiu, Hung-Ching Chen, Amos B. Smith III, Jonathan Richard and Andrés Finzi
Viruses 2024, 16(7), 1167; https://doi.org/10.3390/v16071167 - 20 Jul 2024
Viewed by 437
Abstract
Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion [...] Read more.
Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a “closed” conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC. Full article
(This article belongs to the Special Issue Natural Killer Cell in Viral Infection)
Show Figures

Figure 1

12 pages, 1895 KiB  
Article
Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis
by Szabina Erdő-Bonyár, Judit Rapp, Rovéna Subicz, Kristóf Filipánits, Tünde Minier, Gábor Kumánovics, László Czirják, Tímea Berki and Diána Simon
Int. J. Mol. Sci. 2024, 25(14), 7933; https://doi.org/10.3390/ijms25147933 - 20 Jul 2024
Viewed by 378
Abstract
Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis (SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine production, all of which may be affected by IFN-I signaling, play an important role in the [...] Read more.
Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis (SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine production, all of which may be affected by IFN-I signaling, play an important role in the pathogenesis of the disease. We investigated the IFN-I signature in 71 patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and 33 healthy controls (HCs). Activation via Toll-like receptors (TLRs) can influence the IFN-I signaling cascade; thus, we analyzed the effects of the TLR homologue CD180 ligation on the IFN-I signature in B cells. CD180 stimulation augmented the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in dcSSc B cells (p = 0.0123). The expression of IFN-I receptor (IFNAR1) in non-switched memory B cells producing natural autoantibodies was elevated in dcSSc (p = 0.0109), which was enhanced following anti-CD180 antibody treatment (p = 0.0125). Autoantibodies to IFN-Is (IFN-alpha and omega) correlated (dcSSc p = 0.0003, HC p = 0.0192) and were present at similar levels in B cells from dcSSc and HC, suggesting their regulatory role as natural autoantibodies. It can be concluded that factors other than IFN-alpha may contribute to the elevated IFN-I signature of dcSSc B cells, and one possible candidate is B-cell activation via CD180. Full article
(This article belongs to the Special Issue Innate Immunity in Autoimmune Diseases)
Show Figures

Figure 1

12 pages, 1806 KiB  
Article
Baseline Blood CD8+ T Cell Activation Potency Discriminates Responders from Non-Responders to Immune Checkpoint Inhibition Combined with Stereotactic Radiotherapy in Non-Small-Cell Lung Cancer
by Hanneke Kievit, M. Benthe Muntinghe-Wagenaar, Wayel H. Abdulahad, Abraham Rutgers, Lucie B. M. Hijmering-Kappelle, Birgitta I. Hiddinga, J. Fred Ubbels, Robin Wijsman, Marcel J. van der Leij, Johan Bijzet, Harry J. M. Groen, Huib A. M. Kerstjens, Anthonie J. van der Wekken, Bart-Jan Kroesen and T. Jeroen N. Hiltermann
Cancers 2024, 16(14), 2592; https://doi.org/10.3390/cancers16142592 - 19 Jul 2024
Viewed by 349
Abstract
Background: Tumor-infiltrating immune cells have been correlated with prognosis for patients treated with immune checkpoint inhibitor (ICI) treatment of various cancers. However, no robust biomarker has been described to predict treatment response yet. We hypothesized that the activation potency of circulating T cells [...] Read more.
Background: Tumor-infiltrating immune cells have been correlated with prognosis for patients treated with immune checkpoint inhibitor (ICI) treatment of various cancers. However, no robust biomarker has been described to predict treatment response yet. We hypothesized that the activation potency of circulating T cells may predict response to ICI treatment. Methods: An exploratory analysis was conducted to investigate the association between the response to immune checkpoint inhibition (ICI) combined with stereotactic radiotherapy (SBRT) and the potency of circulating T cells to be activated. Blood-derived lymphocytes from 14 patients were stimulated ex vivo with, among others, Staphylococcal enterotoxin B (SEB) and compared to healthy controls (HCs). Patients were grouped into responders (>median progression free survival (PFS)) and non-responders (<median PFS). The expression of the T cell activation marker CD69 and intracellular cytokines (IL-2, IFNγ, TNFα) in both CD4+ and CD8+ T cells in response to stimulation was measured using flow cytometry. In addition, serum levels of BAFF, IFNγ, and IL-2 receptor (sIL-2R) were measured by Luminex. Results: At baseline, a higher percentage of activated CD8+ T cells (15.8% vs. 3.5% (p = <0.01)) and IL-2+CD69+CD8+ T cells (8.8% vs. 2.9% (p = 0.02)) was observed in responders compared to non-responders upon ex vivo stimulation with SEB. The concurrently measured serum cytokine levels were not different between responders and non-responders. Conclusion: Baseline blood CD8+ T cell activation potency, measured by intracellular cytokine production after ex vivo stimulation, is a potential biomarker to discriminate responders from non-responders to SBRT combined with ICI. Full article
(This article belongs to the Special Issue Novel Biomarkers in Non-small Cell Lung Cancer (NSCLC))
Show Figures

Figure 1

18 pages, 6837 KiB  
Article
Widespread Distribution of Luteinizing Hormone/Choriogonadotropin Receptor in Human Juvenile Angiofibroma: Implications for a Sex-Specific Nasal Tumor
by Silke Wemmert, Martina Pyrski, Lukas Pillong, Maximilian Linxweiler, Frank Zufall, Trese Leinders-Zufall and Bernhard Schick
Cells 2024, 13(14), 1217; https://doi.org/10.3390/cells13141217 - 19 Jul 2024
Viewed by 289
Abstract
Juvenile angiofibroma (JA) is a rare, sex-specific, and highly vascularized nasal tumor that almost exclusively affects male adolescents, but its etiology has been controversial. The G protein-coupled hormone receptor LHCGR [luteinizing hormone (LH)/choriogonadotropin (hCG) receptor] represents a promising new candidate for elucidating the [...] Read more.
Juvenile angiofibroma (JA) is a rare, sex-specific, and highly vascularized nasal tumor that almost exclusively affects male adolescents, but its etiology has been controversial. The G protein-coupled hormone receptor LHCGR [luteinizing hormone (LH)/choriogonadotropin (hCG) receptor] represents a promising new candidate for elucidating the underlying mechanisms of sex specificity, pubertal manifestation, and JA progression. We used highly sensitive RNAscope technology, together with immunohistochemistry, to investigate the cellular expression, localization, and distribution of LHCGR in tissue samples from JA patients. Our results provide evidence for LHCGR expression in subsets of cells throughout JA tissue sections, with the majority of LHCGR+ cells located in close vicinity to blood vessels, rendering them susceptible to endocrine LH/hCG signaling, but LHCGR+ cells were also detected in fibrocollagenous stroma. A majority of LHCGR+ cells located near the vascular lumen co-expressed the neural crest stem cell marker CD271. These results are intriguing as both LH and hCG are produced in a time- and sex-dependent manner, and are known to be capable of inducing cell proliferation and angiogenesis. Our results give rise to a new model that suggests endocrine mechanisms involving LHCGR and its ligands, together with autocrine and paracrine signaling, in JA vascularization and cell proliferation. Full article
Show Figures

Figure 1

11 pages, 2183 KiB  
Article
Glioma-Associated Sialoglycans Drive the Immune Suppressive Phenotype and Function of Myeloid Cells
by Lenneke A. M. Cornelissen, Kim C. M. Santegoets, Esther D. Kers-Rebel, Sandra A. J. F. H. Bossmann, Mark Ter Laan, Daniel Granado and Gosse J. Adema
Pharmaceutics 2024, 16(7), 953; https://doi.org/10.3390/pharmaceutics16070953 - 19 Jul 2024
Viewed by 426
Abstract
The tumor microenvironment of glioblastoma IDH-wildtype is highly immune suppressive and is characterized by a strong component of myeloid-derived suppressor cells (MDSCs). To interfere with the immune suppressive functions of MDSCs, a comprehensive understanding on how MDSCs acquire their suppressive phenotype is essential. [...] Read more.
The tumor microenvironment of glioblastoma IDH-wildtype is highly immune suppressive and is characterized by a strong component of myeloid-derived suppressor cells (MDSCs). To interfere with the immune suppressive functions of MDSCs, a comprehensive understanding on how MDSCs acquire their suppressive phenotype is essential. Previously, we and others have shown a distinct Sialic acid-binding immunoglobulin-like lectin (Siglec) receptor expression profile for MDSCs in glioblastoma. Siglec receptors can transmit inhibitory signals comparable to PD-1 and are suggested to act as glyco-immune checkpoints. Here, we investigated how glioma specific Siglec-sialic acid interactions influence myeloid immune suppressive functions. Co-culturing monocytes with glioblastoma cells induced CD163 expression on the monocytes. Upon desialylation of the glioblastoma cells, this induction of CD163 was hampered, and furthermore, the monocytes were now able to secrete higher amounts of IL-6 and TNFα compared to fully sialylated glioblastoma cells. Additionally, Siglec-specific triggering using anti-Siglec-7 or Siglec-9 antibodies displayed a decreased TNFα secretion by the monocytes, validating the role of the Siglec–Sialic axis in the co-culture experiments. Together, our results demonstrate that glioblastoma cells induce a myeloid immune-suppressive phenotype that could be partly rescued by lowering the glioblastoma-associated sialic acid levels. This manuscript supports further research of the Siglec–Sialic acid axis in the context of glioblastoma and its potential to improve clinical outcome. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Glioblastoma)
Show Figures

Figure 1

16 pages, 13837 KiB  
Article
Cordycepin Augments the Efficacy of Anti-PD1 against Colon Cancer
by Wen-Kuei Chang, Yen-Ting Chen, Chin-Ping Lin, Chia-Jung Wang, Hui-Ru Shieh, Chih-Wen Chi, Tung-Hu Tsai and Yu-Jen Chen
Biomedicines 2024, 12(7), 1568; https://doi.org/10.3390/biomedicines12071568 - 15 Jul 2024
Viewed by 341
Abstract
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of [...] Read more.
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of mRNA and protein were assessed. A syngeneic animal model was established by implanting CT26 cells into BALB/c mice for in vivo experiments. Multi-parameter flow cytometry was used to analyze the splenic cell lineages and tumor microenvironment (TME). The in vitro data revealed that cordycepin, but not adenosine, inhibited CT26 cell viability. The protein, but not mRNA, expression levels of A2AR and A2BR were suppressed by cordycepin but not by adenosine in CT26 cells. The combination of cordycepin, but not adenosine, with anti-PD1 exhibited a greater tumor-inhibitory effect than anti-PD1 alone as well as inhibited the expression of A2AR and A2BR in splenic macrophages. In the TME, the combination of cordycepin and anti-PD1 increased the number of CD3+ T cells and neutrophils and decreased the number of natural killer (NK) cells. Overall, cordycepin augmented the antitumor effects of anti-PD1 against mouse colon carcinoma cells and inhibited the expression of the adenosine receptors A2AR and A2BR in splenic macrophages and intratumoral NK cells. Full article
Show Figures

Figure 1

14 pages, 4845 KiB  
Article
Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain
by Zhenxing Zhang, Xiangying Chen, Yong Meng, Junming Jiang, Lili Wu, Taoyu Chen, Haoju Pan, Zizhuo Jiao, Li Du, Churiga Man, Si Chen, Fengyang Wang, Hongyan Gao and Qiaoling Chen
Animals 2024, 14(14), 2064; https://doi.org/10.3390/ani14142064 - 14 Jul 2024
Viewed by 292
Abstract
Mycoplasma capricolum subsp. capricolum (Mcc), a member of the Mycoplasma mycoides cluster, has a negative impact on the goat-breeding industry. However, little is known about the pathogenic mechanism of Mcc. This study infected mice using a previously isolated strain, Mcc HN-B. Hematoxylin and [...] Read more.
Mycoplasma capricolum subsp. capricolum (Mcc), a member of the Mycoplasma mycoides cluster, has a negative impact on the goat-breeding industry. However, little is known about the pathogenic mechanism of Mcc. This study infected mice using a previously isolated strain, Mcc HN-B. Hematoxylin and eosin staining, RNA sequencing, bioinformatic analyses, RT-qPCR, and immunohistochemistry were performed on mouse lung tissues. The results showed that 235 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses suggested that the DEGs were mainly associated with immune response, defensive response to bacteria, NF-kappa B signaling pathway, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. RT-qPCR verified the expression of Ccl5, Cd4, Cd28, Il2rb, Lck, Lat, Ptgs2, S100a8, S100a9, and Il-33. The up-regulation of S100A8 and S100A9 at the protein level was confirmed by immunohistochemistry. Moreover, RT-qPCR assays on Mcc HN-B-infected RAW264.7 cells also showed that the expression of S100a8 and S100a9 was elevated. S100A8 and S100A9 not only have diagnostic value in Mcc infection but also hold great significance in clarifying the pathogenic mechanism of Mcc. This study preliminarily elucidates the mechanism of Mcc HN-B-induced lung injury and provides a theoretical basis for further research on Mcc–host interactions. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

Back to TopTop