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Abstract: Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis
(SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine
production, all of which may be affected by IFN-I signaling, play an important role in the pathogenesis
of the disease. We investigated the IFN-I signature in 71 patients with the more severe form of the
disease, diffuse cutaneous SSc (dcSSc), and 33 healthy controls (HCs). Activation via Toll-like
receptors (TLRs) can influence the IFN-I signaling cascade; thus, we analyzed the effects of the
TLR homologue CD180 ligation on the IFN-I signature in B cells. CD180 stimulation augmented
the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in dcSSc B cells
(p = 0.0123). The expression of IFN-I receptor (IFNAR1) in non-switched memory B cells producing
natural autoantibodies was elevated in dcSSc (p = 0.0109), which was enhanced following anti-CD180
antibody treatment (p = 0.0125). Autoantibodies to IFN-Is (IFN-alpha and omega) correlated (dcSSc
p = 0.0003, HC p = 0.0192) and were present at similar levels in B cells from dcSSc and HC, suggesting
their regulatory role as natural autoantibodies. It can be concluded that factors other than IFN-alpha
may contribute to the elevated IFN-I signature of dcSSc B cells, and one possible candidate is B-cell
activation via CD180.

Keywords: CD180; Toll-like receptor; B cells; interferon (IFN); signal transducer and activator of
transcription 1; IFN-I receptor; anti-IFN-α autoantibodies; anti-IFN-ω autoantibodies; systemic sclerosis

1. Introduction

The dysregulation of type I interferons (IFN-I) has been observed in several pathologi-
cal conditions, including inflammatory and autoimmune diseases, chronic infections, and
cancer [1–4]. The contribution of IFN-alpha (IFN-α) in the pathogenesis of autoimmune
diseases was supported by the fact that IFN-α therapy of malignant tumors and hepatitis
induced an increase in the prevalence of pathological autoantibodies and the development
of various autoimmune diseases such as systemic lupus erythematosus (SLE), systemic
sclerosis (SSc), and rheumatoid arthritis (RA) [5,6]. Moreover, in a randomized, placebo-
controlled trial, a worsening of skin and lung involvement was described in early SSc
patients treated with IFN-α [7]. Overexpression of IFN-regulated genes (IRGs) in periph-
eral blood mononuclear cells (PBMCs) and affected tissues has been demonstrated in SLE
patients, which was associated with serological and clinical manifestations, disease activity,
and severity [8,9]. Anifrolumab, an anti-IFN-I receptor (IFNAR) monoclonal antibody, has
been already approved as treatment for SLE [9,10]. Increased expression of IRGs was also
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reported in SSc in PBMCs and in skin biopsies [11–14]. In addition, Brkic et al. [15] showed
that elevated IFN-I signature is present from the earliest stages of SSc, even before the onset
of fibrosis. Furthermore, expression levels of several IRGs correlated with the degree of
skin involvement [16,17], and plasma concentrations of IFN-inducible chemokines were
associated with skin, lung, and muscle involvement in SSc patients [18]. The IFN-Is include
IFN-α, IFN-beta (IFN-β), IFN-epsilon (IFN-ε), IFN-kappa (IFN-κ), and IFN-omega (IFN-ω)
in humans, which are pleiotropic cytokines, and, besides their antiviral, antiproliferative,
and antitumor effects, they are known for their essential function in modulating both innate
and adaptive immune responses [19,20]. They exert a specific influence on B-cell functions
including survival, proliferation, differentiation, activation, receptor expression, antigen
presentation, and cytokine and antibody production [21,22]. All IFN-I subtypes act through
the same IFNAR, which is composed of the IFNAR1 and IFNAR2 subunits, and initiate
a classical signaling cascade via the Janus kinase (JAK)/signal transducer and activator
of transcription (STAT) pathway. The ligation of IFNAR activates the receptor-associated
protein tyrosine kinase JAK1 and tyrosine kinase 2 (TYK2), which phosphorylate two
cytoplasmic transcription factors, the STAT1 and STAT2, resulting in the upregulation of
IRGs [1,23,24]. The presence of autoantibodies targeting several cytokines, including IFNs,
has been observed in healthy individuals and autoimmune patients, which may influence
the availability and activity of cytokines [25,26]. Signaling through Toll-like receptors
(TLRs) acts as an important regulator of IFN-I response. Activation through TLRs not
only induces IFN-I production but also influences the signaling cascade followed by IFN-I
binding affecting the phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein
kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
signaling pathways [1,23,27,28]. We have previously shown that the ligation of the TLR
homolog CD180 induces the phosphorylation of PI3K/Akt and NF-κB in the B cells of
patients with the more severe form of SSc, diffuse cutaneous SSc (dcSSc), to a significantly
lesser extent than in healthy controls (HCs) [29,30]. Stimulation via the CD180 molecule
can activate B cells and stimulate their cytokine production [31]. Previously, we found that
CD180 ligation had different effects on the activation and cytokine production of B cells in
dcSSc and HCs, activating memory B cells to a greater extent in dcSSc B cells, whereas it
could only stimulate IL-10 production by B cells in HCs but not in dcSSc B cells [30]. Based
on our previous results, we hypothesized that IFN-I signaling may be modulated by CD180
signaling, and therefore the aim of this study was to investigate the effect of CD180 ligation
on IFN-I signaling in dcSSc B cells.

2. Results
2.1. Patients’ Characteristics

Seventy-one patients with dcSSc were included in our studies; their detailed character-
istics are shown in Table 1. The mean (SD) disease duration was 8.2 (±6.9) years based on
the date of the first non-Raynaud’s symptom; the mean (SD) age at enrollment was 52.73
(±14.8) years; the mean (SD) modified Rodnan skin score (mRSS) was 15.12 (±9.8) points;
and the frequent internal organ involvements were interstitial lung disease (71.8%), cardiac
involvement (47.9%), and gastrointestinal involvement (32.4%).

Table 1. Patients’ characteristics.

Characteristics dcSSc Patients (n = 71)

Age (years), mean (SD) 52.73 (14.8)

Gender (female), n (%) 58/71 (81.7%)

Disease duration 1 (years), mean (SD) 8.2 (6.9)
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Table 1. Cont.

Characteristics dcSSc Patients (n = 71)

Organ involvement

MRSS mean (SD) 15.12 (9.8)
Lung fibrosis 2, n (%) 52/71 (71.8%)
Cardiac involvement 3, n (%) 34/71 (47.9%)
Gastrointestinal involvement 4, n (%) 23/71 (32.4%)
Antibodies

Anti-Scl-70+, n (%) 32/71 (45.1%)
Anti-RNA-polymerase III+, n (%) 10/71 (14.1%)

1 Onset of the disease was defined as the date of the first non-Raynaud’s symptom; 2 pulmonary fibrosis was
characterized by detection of fibrosis with high-resolution CT and/or decreased forced vital capacity (FVC < 80%);
3 cardiac involvement was defined by diastolic dysfunction or decreased left ventricular ejection fraction;
4 gastroesophageal involvement was established with barium swallow or esophago-gastroscopy.

2.2. Upregulated IRG Expression in dcSSc B Cells

The overexpression of IRGs including Myxovirus resistance protein 1 (MX-1) and
interferon-induced protein with tetratricopeptide repeats 1 (IFIT-1) has already been de-
scribed in PBMCs [32,33], monocytes, and CD4 lymphocytes from SSc patients [34] but has
not yet been investigated in B cells. Therefore, we analyzed the expression of two IRGs,
MX-1 and IFIT-1, in purified B cells from patients with dcSSc and HCs. The upregulation of
both IRGs, MX-1 and IFIT-1, was observed in dcSSc B cells compared to HCs (Figure 1).
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Figure 1. Analysis of IRGs MX-1 (A) and IFIT-1 (B) mRNA expression in purified B cells of diffuse
cutaneous systemic sclerosis (dcSSc) patients (n = 3) and healthy controls (HC) (n = 3). Gene
expression was normalized to HCs, and the horizontal line (value 1) represents the expression of
control samples. Changes in gene expression are shown as relative quantification (RQ) values. Data
are shown as mean ± standard error of the mean (SEM).

2.3. CD180 Ligation Enhances the Phosphorylation of STAT1 in dcSSc B Cells

The binding of IFN-I to IFNAR induces the phosphorylation of STAT1 via JAKs [1,23,24]
and the overexpression of the STAT1 gene in PBMCs from SSc patients [32]. However,
the elevated expression of STAT1 protein has only been reported in B cells from SLE
patients [35,36]. As the increased phosphorylation of STAT1 can be the element of enhanced
IFN-I signaling, we measured the phosphorylation of STAT1 in the B cells of the dcSSc
patients and HCs and found that the percentage of phosphorylated STAT1 (pY701)-positive
B cells was significantly higher in dcSSc B cells than in HCs (Figure 2). Since signals through
TLRs can affect the phosphorylation of STAT1 [37], we investigated the effect of stimulation
via TLR homologue CD180 on the activation of STAT1 in the B cells and showed that CD180
ligation significantly increased the proportion of phosphorylated STAT1 (pY701)-positive B
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cells only in the dcSSc patients, resulting in a significantly elevated ratio of phosphorylated
STAT1 (pY701)-positive B cells in the dcSSc patients compared to the HCs under stimulated
conditions (Figure 2).
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Figure 2. Effect of CD180 ligation on the phosphorylation of STAT1 by CD180 ligation. Changes
in the phosphorylation of STAT1 (pY701) molecule in B cells of dcSSc patients (n = 3) and HCs
(n = 3) after stimulation with anti-CD180 antibody (anti-CD180) or left unstimulated (ctrl) for 30 min
detected as percentage of STAT1 (pY701) positive B cells by flow cytometry. Data are presented as
means ± SEM. * p < 0.05.

2.4. Anti-CD180 Antibody Treatment Promotes the IFNAR1 Expression of B Cells Both in
dcSSc and HCs

The expression level of the IFNAR can also affect the IFN-I signature of cells [23];
therefore, we determined the expression of IFNAR1 in dcSSc and HC B cells. Significantly
higher basal IFNAR1 expression measured as mean fluorescence intensity (MFI) was
observed in the B cells of dcSSc patients compared to HCs (Figure 3). Next, to evaluate
the influence of CD180 on the expression of IFNAR1, we treated the B cells with anti-
CD180 antibody. The treatment significantly enhanced the expression of IFNAR1 in both
dcSSc and HC B cells. In the HCs, the expression reached the levels observed in dcSSc
under unstimulated conditions while it remained tendentiously higher in dcSSc than HCs
(Figure 3).
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Figure 3. Changes in the expression of IFNAR1 in anti-CD180 antibody stimulated (anti-CD180)
and unstimulated (ctrl) of total B cells from dcSSc patients (n = 4) and HCs (n = 4) measured as
mean fluorescence intensity (MFI) by flow cytometry. The solid lines show significant differences
(* p < 0.05), while the dashed line indicate tendencies (p < 0.1). Data are presented as means ± SEM.
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2.5. CD180 Stimulation Increases the IFNAR1 Expression of NS B Cells to a Greater Extent in
dcSSc Patients

Since we found differences in IFNAR1 expression in the total B cells between the dcSSc
patients and HCs, we examined the expression of IFNAR1 in the following B-cell subsets
defined by CD27 and IgD labeling: CD27+IgD+ non-switched memory (NS), CD27+IgD−
switched memory (S), CD27−IgD− double negative (DN), and CD27−IgD+ naive B cells.
We compared the expression of the IFNAR1 of the B-cell subgroups between the dcSSc
patients and HCs and found that the basal IFNAR1 expression was significantly higher
in all tested B-cell subsets of dcSSc than in HCs (Figure 4). Next, we investigated the
effect of stimulation with anti-CD180 antibody on the expression of IFNAR1. Ligation
through CD180 significantly increased IFNAR1 expression in NS and naive B-cell subsets
in dcSSc and in all examined B-cell subgroups in the HCs (Figure 4). Focusing on the
differences in the expression of the IFNAR1 of the B-cell subsets after the anti-CD180
antibody treatment between the dcSSc patients and HCs, we found that the IFNAR1
expression was significantly elevated in NS and S memory B cells and tended to be elevated
in the naive B cells of dcSSc patients compared to HC B-cell subsets. However, CD180
ligation enhanced the IFNAR1 expression of NS B cells to the greatest extent among the
investigated B-cell subsets in both the dcSSc patients and HCs (Figure 4).
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by flow cytometry in the four B-cell subsets defined by CD27 and IgD labeling; CD27+IgD+ non-
switched memory (NS), CD27+IgD− switched memory (S), CD27−IgD− double negative (DN),
and CD27−IgD+ naive B-cell subsets after anti-CD180 antibody stimulation (anti-CD180) or left
unstimulated (ctrl). The solid lines show significant differences (* p < 0.05), while the dashed line
indicate tendencies (p < 0.1). Data are presented as means ± SEM.

2.6. Autoantibodies against IFN-α and IFN-ω Are Correlated and Present at Similar Levels in
dcSSc and HCs

Anti-IFN autoantibodies are present in healthy individuals and have been described
in autoimmune disease including SLE [25,26,38,39]. Since anti-IFN autoantibodies may
also affect the utilization of IFN-Is [25,26], we investigated the MFI levels of autoantibodies
against three IFN-Is—IFN-α, IFN-β, and IFN-ω—in the serum samples of dcSSc patients
and HCs. Anti-IFN-β autoantibodies were only detectable in a small number of individuals,
so statistical analysis could not be performed. No significant difference was found between
the dcSSc and HC in anti-IFN-α (p = 0.6449, dcSSc median = 4.14, interquartile range
(IQR) = 3.31–5.88; HC median = 4.33, IQR = 3.44–5.73) and anti-IFN-ω autoantibody levels
(p = 0.782, dcSSc median = 71.06, IQR = 31.58–116; HC median = 64.72, IQR = 32.39–103.3).
No significant correlation was found in dcSSc between anti-IFN-I autoantibody levels
and pulmonary function test values or mRSS. Next, we examined the correlation between
anti-IFN-α and anti-IFN-ω autoantibody levels in the dcSSc patients and HCs and found
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that they significantly positively correlated with each other in both dcSSc (Figure 5A) and
HC (Figure 5B).
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Figure 5. Correlation between serum levels of autoantibodies against IFN-Is. Correlation between
anti-IFN-α and anti-IFN-ω autoantibody serum levels in dcSSc (n = 62) (A) and HC (n = 24) (B) measured
by Luminex MAGPIX.

3. Discussion

Impaired immune regulation is a hallmark of SSc [40–42]. Overactivation of type I
IFN signaling has been observed in SSc characterized by the overexpression of the IRGs
and elevated serum levels of IFN-induced chemokines [12,13,43] as in SLE [4,8,9]. IFN-I
signaling can be modulated by several epigenetic mechanisms, such as miRNAs [44], long
non-coding RNA (lncRNA) expression [45], DNA methylation [46–49], and histone modifi-
cation [50]. The hypomethylation of IRGs as a common characteristic in RA, SLE, and SSc
was identified [46–48]. Furthermore, the hypomethylation of IRGs was detected in B cells
in SLE [49]. The upregulation of IRGs has already been described in skin biopsies, PBMCs,
monocytes, and CD4-positive lymphocytes from SSc patients [17,32–34]. However, their
expression in B cells from SSc patients remains unexplored, while B cells are key players
in the pathogenesis of SSc, mainly through the production of pathogenic autoantibodies
and pro-inflammatory cytokines [51–53]. Moreover, IFN-Is are known to significantly
influence these B-cell functions [21,22]. We showed the upregulation of two IRGs, MX-1
and IFIT-1, in the B cells of the dcSSc patients compared to the HCs suggesting the elevated
activation of IFN-I signaling in the B cells of the dcSSc patients, which is consistent with the
finding in SLE B cells [54,55]. Since the phosphorylation of STAT1 plays a key role in IFN-I
signaling [23,56] and the increased gene expression of STAT1 has already been described in
the PBMCs of SSc and SLE patients [32,57], we examined the phosphorylation of STAT1 in
the B cells of dcSSc patients and HCs. The proportion of phosphorylated STAT1-positive
B cells was significantly higher in the dcSSc patients than in the HCs, also indicating an
activated IFN-I signaling in the dcSSc B cells. The established crosstalk between TLR and
IFN-I signaling not only involves the canonical JAK-STAT pathway as IFNAR activation can
trigger multiple signaling cascades, including PI3K/Akt, mammalian target of rapamycin
(mTOR), NF-κB, and MAPKs. These downstream pathways are also used by TLRs, high-
lighting a strong connection between IFN-I and TLR pathway signaling [1,23,28]. We have
previously shown that stimulation via CD180 affects the phosphorylation of PI3K/Akt and
NF-kB in B cells to different extents in dcSSc and HC [29,30], and it has also been described
previously that CD180 can utilize the p38 MAPK pathway [58]. The phosphorylation of
STAT1 has been observed upon stimulation with multiple TLRs [37,59,60]. In line with
this, we also found that stimulation with anti-CD180 antibody increased the percentage of
phosphorylated STAT1-positive B cells only in dcSSc, resulting in an even greater difference



Int. J. Mol. Sci. 2024, 25, 7933 7 of 12

in STAT1 phosphorylation between dcSSc and HC. This suggests that activation of B cells
via CD180 may contribute to increased IFN-I signaling in dcSSc.

Pogue et al. [61] demonstrated that all blood leukocytes in healthy individuals express
IFNAR1, with the highest levels in monocytes and B cells. An increased mRNA expression
of IFNAR1 in whole blood from SLE patients [62] and elevated IFNAR1 protein expression
in SLE B cells have been observed [63]. Similarly, we found significantly higher IFNAR1
expression in the B cells of dcSSc patients than in HCs. Treatment with anti-CD180 antibody
in HC B cells increased the expression of IFNAR1 to the levels observed in dcSSc B cells
in the basal state, while in dcSSc it increased to even higher levels. Interestingly, among
the investigated B-cell subsets, the NS B-cell subgroup showed the highest expression of
IFNAR1 in both the unstimulated and CD180-stimulated conditions in dcSSc and in HCs.
Moreover, treatment with the anti-CD180 antibody enhanced the expression of IFNAR1
to the greatest extent in NS B cells. NS B cells are similar to B1 B cells with innate-like
properties [64], suggesting that they are able to produce natural autoantibodies. Natural
autoantibodies are polyreactive autoantibodies directed against evolutionary conserved
cellular structures. They are detectable in healthy individuals having a protective role in
the maintenance of self-tolerance and are important in the regulation of inflammation and
autoimmune processes [65,66] but can become dysregulated in autoimmune diseases. We
have already shown that stimulation via CD180 induced natural autoantibody produc-
tion [67]. Autoantibodies against IFN-Is can also be considered as natural autoantibodies
since they are present in healthy individuals. Consequently, anti-IFN autoantibodies were
selected for investigation from the potential natural autoantibodies. Interestingly, the levels
of anti-IFN-α and anti-IFN-ω autoantibodies showed a positive correlation, which may
be explained by cross-reactive antibodies due to the structural similarities between IFN-α
and IFN-ω [19,20]. Anti-cytokine autoantibodies have been theorized to increase in order
to compensate excessive levels of target cytokines, since the binding of autoantibodies to
their target cytokines can influence their availability and activity [25,68]. In agreement with
this, only the neutralizing effect of high levels of anti-IFN-α autoantibodies has recently
been described in SLE [38]. We found similar levels of autoantibodies against IFN-α and
IFN-ω in dcSSc and HCs. A comparable level of anti-IFN-α autoantibodies to those found
in HCs was not neutralizing in SLE but rather was thought to slow the elimination of cy-
tokines from the circulation by keeping them in immune complexes, which could indicate
the regulatory function of these autoantibodies [38]. The similar levels of autoantibodies
against IFN-α and IFN-ω that we found in the dcSSc patients and HCs may indicate their
regulatory role as natural autoantibodies.

Several lines of evidence indicate that factors other than IFN-α may contribute to
the increased IFN-I signature. We have previously reported that the decreased CD180
expression in B cells in dcSSc may be the result of their activation via CD180 [29]; therefore,
we can conclude that this activation could result in the upregulation of IFN-I signaling in
dcSSc B cells at the level of IRG expression, STAT1 phosphorylation, and IFNAR1 expression.
Furthermore, NS memory B cell activation via CD180 may contribute to the production
of regulatory natural autoantibodies against IFN-I. In addition, additional stimulation
through CD180 may enhance the already increased IFN-I signaling in dcSSc B cells.

4. Materials and Methods
4.1. Patients Cohort

Seventy-one patients with dcSSc were included in the study. They all fulfilled the
2013 ACR/EULAR SSc classification criteria [69] and were considered to be suffering
from the diffuse form of the disease according to the classification system proposed by
LeRoy et al. [70]. A complete medical history was taken for each patient, and physical
examinations and laboratory tests were performed. Patients with overlap syndrome,
tumors, and current infections were excluded from the study. The duration of the disease
was determined from the appearance of the first non-Raynaud’s symptom. Skin thickness
was assessed by mRSS [71]. Pulmonary fibrosis was characterized by the detection of
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fibrosis with high-resolution CT and/or decreased forced vital capacity (FVC < 80%).
Cardiac involvement was defined by diastolic dysfunction or decreased left ventricular
ejection fraction. Gastroesophageal involvement was established with barium swallow or
esophago-gastroscopy. Controls (n = 33) were age and sex-matched HCs. All participants
gave written informed consent to the study, after approval by the Hungarian National
Ethics Committee (ETT TUKEB 47861-6/2018/EKU).

4.2. Peripheral Blood Mononuclear Cell Isolation and B-Cell Separation

PBMCs were isolated by Ficoll-Paque Plus (GE Healthcare, Chicago, IL, USA) density
gradient centrifugation of peripheral blood samples from dcSSc patients (n = 9) and HCs
(n = 9). The negative selection of B cells was carried out using the MACS B cell isolation
kit II (Miltenyi Biotech, Bergisch Gladbach, Germany), according to the manufacturer’s
instructions. The purity of the B cells was over 95%.

4.3. RNA Isolation, cDNA Synthesis, and qPCR for the Evaluation of MX-1, IFIT-1 Expression

To determine the MX-1 and IFIT-1 mRNA expression of total B cells in the dcSSc
patients (n = 3) and HCs (n = 3), a NucleoSpin RNA XS kit (Macherey-Nagel Inc., Bethlehem,
PA, USA) was used to extract the total RNA from the isolated B cells. Following the cDNA
generation (High-Capacity cDNA Reverse Transcription Kit, Thermo Fisher Scientific,
Waltham, MA, USA), the mRNA expression of MX-1 and IFIT-1 was determined in the
total B cells of dcSSc and HCs using the SensiFAST SYBR Lo-ROX Kit (Bioline, London,
UK). An Applied Biosystems 7500 RT-PCR System (Thermo Fisher Scientific, Waltham, MA,
USA) was used to perform the amplifications. Gene expression was analyzed with 7500
Software v2.0.6 (Thermo Fisher Scientific, Waltham, MA, USA) and normalized to GAPDH
(a “housekeeping” gene) as a reference. Fold changes (RQ) were calculated according to
the 2−∆∆CT method.

4.4. Evaluation of the Phosphorylation of STAT1

For Phosflow assay in dcSSc patients (n = 3) and HCs (n = 3), 5 × 105 PBMCs per
condition were added onto a 96-well plate in RPMI culture medium without FBS for 1 h.
Cells were then stimulated with Ultra-LEAF purified anti-human CD180 (RP105) antibody
(Clone: MHR73-11) (Bio-Legend, San Diego, CA, USA) at 10 µg/mL (anti-CD180) or left un-
stimulated for 30 min at 37 ◦C. For the analysis of the STAT1 phosphorylation in the B cells
of dcSSc and HC, we used anti-human CD19-FITC (HIB19, BD Biosciences, Franklin Lakes,
NJ, USA) and anti-human STAT1 (pY701)–Alexa Fluor647 (4a, BD Biosciences, Franklin
Lakes, NJ, USA) antibodies. Phosflow assay was performed in PBMCs according to the BD
Phosflow Protocol, using BD Cytofix Fixation Buffer and BD Perm III Buffer (BD Biosciences,
Franklin Lakes, NJ, USA). Briefly, after stimulation, the cells were immediately fixed with
pre-warmed Cytofix Fixation buffer for 10 min at 37 ◦C. Following washing, the cells were
permeabilized using pre-cooled Perm Buffer III for 30 min on ice. The cells were then
washed three times, stained, and incubated for 30 min at room temperature. Afterwards,
the cells were washed and immediately measured without fixation using a DxFlex flow
cytometer (Beckman Coulter, Brea, CA, USA) and analyzed by CytExpertsoftware v2.2
(Beckman Coulter, Brea, CA, USA).

4.5. Flow Cytometric Analysis of IFNAR1 Expression

To examine the expression of the IFNAR1 of the total B cells and B-cell subsets in
the dcSSc patients (n = 4) and HCs (n = 4), 5 × 105 PBMCs were stimulated with anti-
CD180 antibody or left unstimulated for 24 h at 37 ◦C. Next, PBMCs were labeled using
a combination of the following monoclonal antibodies: anti-human CD19-Alexa Fluor
700 (SJ25C1, BioLegend, San Diego, CA, USA), anti-human IgD-PerCP (IA6-2, BioLegend,
San Diego, CA, USA), anti-human CD27-FITC (L128, BD Biosciences, Franklin Lakes, NJ,
USA), and anti-human IFNAR1-PE (85228, Invitrogen, Waltham, MA, USA), following the
manufacturer’s protocols. Briefly, PBMCs were incubated with the appropriate antibodies
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for 30 min on ice, washed twice in phosphate-buffered saline (PBS) and fixed with FACSFix
(0.5% PFA in PBS). The fluorescence of the labeled cells was measured using a DxFlex flow
cytometer (Beckman Coulter, Brea, CA, USA) and analyzed by CytExpert software v2.2
(Beckman Coulter, Brea, CA, USA).

4.6. Measurement of Anti-IFN-I Autoantibodies

The MFI levels of autoantibodies against IFN-α, IFN-β, and IFN-ω in the serum
samples of the dcSSc (n = 62) patients and HCs (n = 24) were determined using a MILLIPLEX
Map Human Cytokine Autoantibody Expanded IgG Kit (HCYTABG-17K, Merck KGaA,
Darmstadt, Germany) according to the manufacturer’s recommendations. A Luminex
MAGPIX instrument (Luminex Corporation, Austin, TX, USA) was used to perform the
assay, and Belysa software v1.1 (Merck KGaA, Darmstadt, Germany) was used to analyze
the data.

4.7. Statistical Analysis

An SPSS v. 27.0 statistics package (IBM, Armonk, NY, USA) was used for statistical
assessment using Student t-tests and Mann–Whitney U-test and Spearman’s correlation,
where p values < 0.05 were considered significant and p values < 0.1 regarded as a tendency.
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