Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,768)

Search Parameters:
Keywords = Bacillus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2939 KiB  
Data Descriptor
Genomic Insights into Bacillus thuringiensis V-CO3.3: Unveiling Its Genetic Potential against Nematodes
by Leopoldo Palma, Yolanda Bel and Baltasar Escriche
Data 2024, 9(8), 97; https://doi.org/10.3390/data9080097 (registering DOI) - 29 Jul 2024
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, and ubiquitous bacterium harboring plasmids encoding a variety of proteins with insecticidal activity, but also with activity against nematodes. The aim of this work was to perform the genome sequencing and analysis of a native Bt [...] Read more.
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, and ubiquitous bacterium harboring plasmids encoding a variety of proteins with insecticidal activity, but also with activity against nematodes. The aim of this work was to perform the genome sequencing and analysis of a native Bt strain showing bipyramidal parasporal crystals and designated V-CO3.3, which was isolated from the dust of a grain storehouse in Córdoba (Spain). Its genome comprised 99 high-quality assembled contigs accounting for a total size of 5.2 Mb and 35.1% G + C. Phylogenetic analyses suggested that this strain should be renamed as Bacillus cereus s.s. biovar Thuringiensis. Gene annotation revealed a total of 5495 genes, among which, 1 was identified as encoding a Cry5Ba homolog protein with well-documented toxicity against nematodes. These results suggest that this Bt strain has interesting potential for nematode biocontrol. Full article
15 pages, 2731 KiB  
Article
Proteomic Analysis of the Characteristic Flavor Components in Bacillus subtilis BSNK-5-Fermented Soymilk
by Miao Hu, Jiao Wang, Yaxin Gao, Bei Fan, Fengzhong Wang and Shuying Li
Foods 2024, 13(15), 2399; https://doi.org/10.3390/foods13152399 - 29 Jul 2024
Abstract
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using [...] Read more.
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using tandem mass tag (TMT) proteomics. The results showed that a total of 765 differentially expressed proteins were identified. Seventy differentially expressed proteins related to characteristic flavor were screened through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After integrating metabolomics data, fifteen key proteases of characteristic flavor components in BSNK-5-fermented soymilk were further identified, and free ammonia was added. In addition, there were five main formation mechanisms, including the decomposition of urea to produce ammonia; the degradation of glutamate by glutamate dehydrogenase to produce ammonia; the degradation of threonine and non-enzymatic changes to form the derivative 2,5-dimethylpyrazine; the degradation of valine, leucine, and isoleucine to synthesize isovalerate and 2-methylbutyrate; and the metabolism of pyruvate and lactate to synthesize acetate. These results provide a theoretical foundation for the improvement of undesirable flavor in B. subtilis BSNK-5-fermented soy foods. Full article
Show Figures

Figure 1

15 pages, 8577 KiB  
Article
Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1
by Wenya Li, Hua Chen, Jianhu Cheng, Min Zhang, Yan Xu, Lihua Wang, Xueqiao Zhao, Jinyao Zhang, Bangdi Liu and Jing Sun
Metabolites 2024, 14(8), 417; https://doi.org/10.3390/metabo14080417 - 29 Jul 2024
Abstract
This study aimed to explore the effects of Bacillus amyloliquefaciens GSBa-1 treatment on anthracnose disease resistance and the metabolism of reactive oxygen species (ROS) and phenylpropanoids in mangoes during storage. Mangoes were soaked in a solution containing 1 × 108 CFU/mL of [...] Read more.
This study aimed to explore the effects of Bacillus amyloliquefaciens GSBa-1 treatment on anthracnose disease resistance and the metabolism of reactive oxygen species (ROS) and phenylpropanoids in mangoes during storage. Mangoes were soaked in a solution containing 1 × 108 CFU/mL of B. amyloliquefaciens GSBa-1. The anthracnose disease incidence, disease index, respiration intensity, ethylene release, reactive oxygen species content, and the activities of related metabolic enzymes, phenylpropanoid-related metabolic enzymes, and phenolic acids in the skin and pulp of mangoes were investigated under normal temperature storage conditions. The results showed that the antagonistic bacterial treatment (ABT) did not significantly inhibit the growth of Colletotrichum gloeosporioides in vitro. However, it significantly reduced the incidence of mango anthracnose disease when applied to the mango peel. ABT enhanced the latent resistance of mango to anthracnose disease by activating its reactive oxygen and phenylpropanoid metabolism. It maintained higher levels of ROS production and elimination in the peel. Moreover, it rapidly activated manganese superoxide dismutase, induced the accumulation of H2O2, and enhanced the activity of manganese superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase in the mango peel. Furthermore, ABT activated phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, 4-coumaroyl-CoA ligase, and cinnamyl alcohol dehydrogenase in the mango peel and pulp, promoting the accumulation of antifungal phenolic acids such as gallic acid, catechins, and ellagic acid. Bacillus amyloliquefaciens GSBa-1 may be a potent inhibitor of mango anthracnose, primarily enhancing the resistance of mangoes to anthracnose by synergistically activating ROS in the peel and phenylpropanoid metabolism in the pulp, thereby reducing the incidence of anthracnose effectively. Full article
Show Figures

Figure 1

20 pages, 1721 KiB  
Article
Microbial Biostimulants and Seaweed Extract Synergistically Influence Seedling Growth and Morphology of Three Onion Cultivars
by Qianwen Zhang, Joseph Masabni and Genhua Niu
Horticulturae 2024, 10(8), 800; https://doi.org/10.3390/horticulturae10080800 (registering DOI) - 29 Jul 2024
Abstract
Onion (Allium cepa L.), a globally cultivated vegetable crop, possesses a shallow root system, making it vulnerable to abiotic stresses. The increasing frequency of extreme weather events in recent years necessitates sustainable solutions to enhance onion growth. Biostimulants offer a promising and [...] Read more.
Onion (Allium cepa L.), a globally cultivated vegetable crop, possesses a shallow root system, making it vulnerable to abiotic stresses. The increasing frequency of extreme weather events in recent years necessitates sustainable solutions to enhance onion growth. Biostimulants offer a promising and accessible approach to promote onion growth and quality in an environmentally friendly and sustainable manner. This study investigated the effects of nine commercial microbial biostimulants (LALRISE Mycorrhizae, LALRISE Bacillus, Mighty Mycorrhizae, MycoApply, Spectrum DS, Spectrum Myco, Spectrum, Tribus Original, and Tribus Continuum) and one non-microbial commercial biostimulant (Kelpak—seaweed extract) on the seedling growth of three onion cultivars: Carta Blanca (white), Don Victoro (yellow), and Sofire (red). The results indicated that biostimulants did not significantly affect onion seed germination, but germination rates did vary among the onion cultivars. These cultivars also exhibited significant morphological and biomass differences, with principal component analysis revealing a more obvious effect on root growth compared to shoot growth. Kelpak seaweed extract increased the plant height, leaf area, and shoot fresh weight and dry weight of onion seedlings but decreased the root-to-shoot dry-weight ratio. The effects of microbial biostimulants on onion seedling growth depended on both the onion cultivar and Kelpak seaweed extract. In general, LALRISE Mycorrhizae, Mighty Mycorrhizae, Spectrum Myco, Spectrum DS, and Tribus Continuum exhibited positive effects on seedling growth in certain onion cultivars. Furthermore, the benefits of microbial biostimulants were amplified when combined with Kelpak seaweed extract application. These findings suggest a synergistic interaction between microbial and non-microbial biostimulants, leading to enhanced onion seedling growth. Further research is required to evaluate the long-term effects of these biostimulants on onion plant growth after transplanting to fields. Full article
(This article belongs to the Special Issue Application of Plant Biostimulants in Horticultural Crops)
Show Figures

Figure 1

18 pages, 3081 KiB  
Article
A Synergistic Indole-3-Acetic Acid-Producing Synthetic Bacterial Consortium Benefits Walnut Seedling Growth
by Qi Cheng, Shanshan Sun, Xin Ning, Minhang Qiao, Wenxuan Chen, Pengrui Zhang, Kai Liu and Yanqin Ding
Agronomy 2024, 14(8), 1657; https://doi.org/10.3390/agronomy14081657 - 28 Jul 2024
Viewed by 327
Abstract
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on [...] Read more.
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on the biocompatibility among strains and indole-3-acetic acid (IAA) production. The consortium containing Bacillus safensis 5-49, Bacillus stratosphericus 5-54, and Bacillus halotolerans 6-30 possessed a synergistic effect on IAA production and biofilm formation. Genetic analysis suggested that IAA was synthesized through tryptophan-dependent pathways in the strains. The consortium outperformed the plant growth-promoting effect observed with single strains, showing an increase in walnut (Juglans regia) seedling dry weight by 92.3% over the non-inoculated plants after 60 days of cultivation. This effect was underpinned by the synergistic interactions of the consortium, which was evidenced by the significantly increased relative abundance of Bacillus and tryptophan metabolism-associated genes in the rhizosphere of consortium-inoculated plants. Meanwhile, the consortium increased the relative abundance of indigenous Pseudomonas in rhizosphere soil, providing a synergistic effect on improving soil enzyme activities and thus available nutrients. The available N, P, and K contents in the consortium-inoculated plant rhizosphere were 3.77–28.4% higher than those in non-inoculated samples. This work provided an efficient bacterial consortium and proposed the mode of action by which this consortium improved plant growth and soil fertility. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
13 pages, 1405 KiB  
Article
Antioxidant and Emulsifying Activity of the Exopolymer Produced by Bacillus licheniformis
by Sánchez-León Enrique, Amils Ricardo and Abrusci Concepción
Int. J. Mol. Sci. 2024, 25(15), 8249; https://doi.org/10.3390/ijms25158249 (registering DOI) - 28 Jul 2024
Viewed by 260
Abstract
The exopolymer (ESPp) was obtained from Bacillus licheniformis IDN-EC, composed of a polyglutamic acid and polyglycerol phosphate chain O-substituted with αGal moieties (αGal/αGlcNH2 3:1 molar ratio) and with a 5000 Da molecular weight. The cytotoxicity activity of EPSp was determined by reducing [...] Read more.
The exopolymer (ESPp) was obtained from Bacillus licheniformis IDN-EC, composed of a polyglutamic acid and polyglycerol phosphate chain O-substituted with αGal moieties (αGal/αGlcNH2 3:1 molar ratio) and with a 5000 Da molecular weight. The cytotoxicity activity of EPSp was determined by reducing the MTT (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide) to formazan on HeLa cells. This EPS did not show cytotoxicity against the tested cell line. The ESPp presented great advantages as an antioxidant with free radical scavenging activities (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH),hydroxyl radical (OH), and superoxide anion (O2−)) (65 ± 1.2%, 98.7 ± 1.9%, and 97 ± 1.7%), respectively. Moreover, EPSp increased the enzyme activity for catalase (CAT) and glutathione peroxidase (GSH-Px) in HeLa cells (CAT, 2.6 ± 0.24 U/mL; and GSH-Px, 0.75 ± 0.3 U/L). The presence of ESPp showed a significant protective effect against H2O2 in the cell line studied, showing great viability (91.8 ± 2.8, 89.9 ± 2.9, and 93.5 ± 3.6%). The EPSp presented good emulsifying activity, only for vegetable oils, olive oil (50 ± 2.1%) and sesame (72 ± 3%). Sesame was effective compared to commercials products, Triton X-100 (52.38 ± 1.6%), Tween 20 (14.29 ± 1.1%), and sodium dodecyl sulphate (SDS) (52.63 ± 1.6%). Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification whilst resulting in positive health effects such as antioxidant activity and non-toxicity. EPSp is presented as a good exopolysaccharide for various applications. Full article
(This article belongs to the Special Issue Biological Polysaccharides: Advances and Challenges)
27 pages, 4531 KiB  
Article
Exploring Gut Microbiota in Red Palm Weevil (Rhynchophorus ferrugineus): Effects on Pest Management, Pesticide Resistance, and Thermal Stress Tolerance
by Omnia Abdullah Elkraly, Tahany Abd Elrahman, Mona Awad, Hassan Mohamed El-Saadany, Mohamed A. M. Atia, Noura S. Dosoky, El-Desoky S. Ibrahim and Sherif M. Elnagdy
Microbiol. Res. 2024, 15(3), 1359-1385; https://doi.org/10.3390/microbiolres15030092 (registering DOI) - 28 Jul 2024
Viewed by 229
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial [...] Read more.
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial community consisting of seven genera and eight species from Proteobacteria, Firmicutes, and Actinobacteria. The stability of gut bacteria across different life stages was observed, with notable impacts on larval metabolism attributed to shifts in bacterial composition. Bacillus subtilis emerged as a key player, producing a spectrum of metabolic enzymes. Furthermore, the gut bacteria exhibited remarkable pesticide degradation capabilities, suggesting a potential role in the host’s resistance to pesticides. The Arthrobacter sp. was identified as a promising candidate for eco-friendly pest biocontrol and biodegradation strategies. Investigating the influence of thermal stress on two groups of RPW larvae (conventional-fed and antibiotic-fed) at varying temperatures (15, 27, and 35 °C) unveiled potential survival implications. This study highlights the pivotal role of bacterial symbionts in enabling larvae adaptation and thermal stress tolerance. In essence, this research contributes crucial insights into the diversity and functions of RPW gut bacteria, emphasizing their prospective applications in pest control strategies. Full article
Show Figures

Figure 1

15 pages, 677 KiB  
Article
Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L
by Linjie Feng, Fan Xu, Shu Qiu, Chengqi Sun and Pengxiang Lai
Molecules 2024, 29(15), 3552; https://doi.org/10.3390/molecules29153552 - 28 Jul 2024
Viewed by 189
Abstract
The objective of this study was to analyze the chemical composition and evaluate the biological capabilities of the essential oils (EOs) extracted from leaves and stems of wild Aeschynomene indica L. plants by the hydrodistillation method. By using GC-FID/MS, fifty-six and fifty-five compounds, [...] Read more.
The objective of this study was to analyze the chemical composition and evaluate the biological capabilities of the essential oils (EOs) extracted from leaves and stems of wild Aeschynomene indica L. plants by the hydrodistillation method. By using GC-FID/MS, fifty-six and fifty-five compounds, representing 95.1 and 97.6% of the essential oils in the leaves and stems, respectively, were characterized. The predominant constituents of A. indica EOs were (E)-caryophyllene, linalool, viridiflorol, phytol, hexadecanoic acid, trans-verbenol, and α-guaiene. The antibacterial and synergistic activities of the EOs were assessed by microdilution and checkerboard assays. The results revealed a potent inhibition and bactericidal activity against Staphylococcus aureus and Bacillus subtilis with MICs of 0.312–0.625 mg/mL. When combined with traditional antibiotics, the essential oils of A. indica possessed excellent synergistic effects against all tested bacteria. Additionally, the EOs of A. indica leaves showed higher antioxidant activity (IC50 = 0.11 ± 0.01 µg/mL) compared to the stem oil (IC50 = 0.19 ± 0.01 µg/mL) using the ABTS radical scavenging assay. The in vitro cytotoxicity of EOs against human cancer cell lines HepG2, MCF-7, A-549, and HCT-116 was examined, and MTT assays showed that the EOs possessed a significant cytotoxic potential against MCF-7 breast cancer cells, with IC50 values of 10.04 ± 1.82 and 15.89 ± 1.66 μg/mL, and a moderate cytotoxic activity against other tested cells. In conclusion, the A. indica EOs could be considered a potential source of pharmacologically active compounds. Full article
15 pages, 9084 KiB  
Article
Biological Control of Stem Rot of Groundnut Induced by Sclerotium rolfsii sacc.
by Prabhu Narayan Meena, Ashok Kumar Meena, Rahul Kumar Tiwari, Milan Kumar Lal and Ravinder Kumar
Pathogens 2024, 13(8), 632; https://doi.org/10.3390/pathogens13080632 - 28 Jul 2024
Viewed by 158
Abstract
Stem rot of groundnut (Arachis hypogaea L.) caused by Scelrotium rolfsii is the main threat to groundnut production, causing significant economic losses. The present study aims to provide an overview of the potentiality of Trichoderma viride (Tv), Trichoderma harzianum (Th), Pseudomonas fluorescens [...] Read more.
Stem rot of groundnut (Arachis hypogaea L.) caused by Scelrotium rolfsii is the main threat to groundnut production, causing significant economic losses. The present study aims to provide an overview of the potentiality of Trichoderma viride (Tv), Trichoderma harzianum (Th), Pseudomonas fluorescens (Pf), and Bacillus subtilis (Bs), applied either individually or in mixed combination, against Sclerotium rolfsii (isolate SrBKN). The treatment with T. harzianum and P. fluorescens resulted in the highest mycelial growth inhibition (79.61, 83.51, and 86.77%), followed by T. viride and P. fluorescens (75.74, 79.63, and 83.14%). Under in vitro conditions, the combination of bio-agents at 5% culture filtrate proved to be superior against the test pathogen. Seed treatment and soil application of T. harzianum and Pf at 10 (5 + 5) g kg−1 + 10 (5 + 5) kg ha−1, followed by seed treatment and soil application of T. viride and Pf at 10 (5 + 5) g kg−1 + 10 (5 + 5) kg ha−1, resulted in the lowest disease incidence (7.40 and 8.0%), highest disease control (69.37 and 66.88%), maximum dry weight (151 and 147 g plant−1), highest increase in dry weight (75.58 and 70.93), highest pod yield (2665 and 2498 kg ha−1), and highest increase in pod yield (96.38 and 84.08%) under in vivo conditions. We present an effective bio-control-based management module from the lab to the field for the successful control of groundnut stem rot caused by S. rolfsii. Based on the results, it is concluded that the dual formulation of T. harzianum and P. fluorescens, followed by T. viride and P. fluorescens, were the most effective BCAs in suppressing the S. rolfsii. Therefore, an integrated disease management module with these BCAs needs to be developed and validated with a farmers’ participatory mode under field conditions. Full article
(This article belongs to the Special Issue Soil Borne Pathogens)
Show Figures

Figure 1

22 pages, 588 KiB  
Review
Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil
by Natalia Caetano Vasques, Marco Antonio Nogueira and Mariangela Hungria
Agronomy 2024, 14(8), 1654; https://doi.org/10.3390/agronomy14081654 - 27 Jul 2024
Viewed by 652
Abstract
The microbial genus Bacillus inhabits a diverse range of environments and is widespread across all global biomes, with a significant presence in soil habitats. In agriculture, Bacillus strains play multifaceted roles, serving as biocontrol agents against pests and diseases, and promoting plant growth [...] Read more.
The microbial genus Bacillus inhabits a diverse range of environments and is widespread across all global biomes, with a significant presence in soil habitats. In agriculture, Bacillus strains play multifaceted roles, serving as biocontrol agents against pests and diseases, and promoting plant growth by facilitating nutrient availability and enhancing stress tolerance. Through mechanisms such as phosphate solubilization, ACC-deaminase activity, and synthesis of phytohormones and siderophores, Bacillus spp. contribute to soil health and crop productivity, in a new approach of regenerative agriculture. The ability of Bacillus spp. to solubilize phosphate makes essential nutrients more accessible to plants, while ACC-deaminase activity helps plants withstand environmental stresses. Additionally, the synthesis of phytohormones can stimulate plant growth and development, and siderophores may facilitate the uptake of nutrients such as iron by plants. As the agricultural industry embraces Bacillus-based formulations for pest management and crop enhancement, future research holds promising prospects for optimizing their applications and harnessing their full potential in agroecosystems. Continued exploration of Bacillus spp. diversity and their interactions with plants and soil microbiota will further advance sustainable agricultural practices. This review contributes to understanding how Bacillus strains can revolutionize agriculture by enhancing soil health, increasing crop productivity, and providing effective biological solutions against pests and diseases. The successful application of Bacillus-based technologies in millions of hectares in Brazilian agriculture demonstrates the synergy between the need for more sustainable agricultural practices and the use of bio-inputs. Full article
21 pages, 3323 KiB  
Article
Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea
by Chuanzhu Bai, Qifang Wang, Jinyan Xu, Han Zhang, Yuxin Huang, Ling Cai, Xinqing Zheng and Ming Yang
Microorganisms 2024, 12(8), 1540; https://doi.org/10.3390/microorganisms12081540 - 27 Jul 2024
Viewed by 368
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated [...] Read more.
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22–56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms’ relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments. Full article
(This article belongs to the Special Issue Marine Microbial Diversity: Focus on Corals)
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Dietary Triple-Strain Bacillus-Based Probiotic Supplementation Improves Performance, Immune Function, Intestinal Morphology, and Microbial Community in Weaned Pigs
by Lei Xue, Shenfei Long, Bo Cheng, Qian Song, Can Zhang, Lea Hübertz Birch Hansen, Yongshuai Sheng, Jianjun Zang and Xiangshu Piao
Microorganisms 2024, 12(8), 1536; https://doi.org/10.3390/microorganisms12081536 - 27 Jul 2024
Viewed by 299
Abstract
Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based [...] Read more.
Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based probiotic. In this study, we investigate the effects of SLV on performance, immunity, intestinal morphology, and microbial community in piglets. A total of 480 weaned pigs [initial body weight (BW) of 8.13 ± 0.08 kg and 28 days of age] were assigned to three treatments in a randomized complete block design: P0: basal diet (CON); P200: CON + 200 mg SLV per kg feed (6.5 × 108 CFU/kg feed); and P400: CON + 400 mg SLV per kg feed (1.3 × 109 CFU/kg feed). Each treatment had 20 replicated pens with eight pigs (four male/four female) per pen. During the 31 d feeding period (Phase 1 = wean to d 14, Phase 2 = d 15 to 31 after weaning), all pigs were housed in a temperature-controlled nursery room (23 to 25 °C). Feed and water were available ad libitum. The results showed that the pigs in the P400 group increased (p < 0.05) average daily gain (ADG) in phase 2 and tended (p = 0.10) to increase ADG overall. The pigs in the P200 and P400 groups tended (p = 0.10) to show improved feed conversion ratios overall in comparison with control pigs. The pigs in the P200 and P400 groups increased (p < 0.05) serum immunoglobulin A, immunoglobulin G, and haptoglobin on d 14, and serum C-reactive protein on d 31. The pigs in the P200 group showed an increased (p < 0.01) villus height at the jejunum, decreased (p < 0.05) crypt depth at the ileum compared with other treatments, and tended (p = 0.09) to have an increased villus–crypt ratio at the jejunum compared with control pigs. The pigs in the P200 and P400 groups showed increased (p < 0.05) goblet cells in the small intestine. Moreover, the pigs in the P400 group showed down-regulated (p < 0.05) interleukin-4 and tumor necrosis factor-α gene expressions, whereas the pigs in the P400 group showed up-regulated occludin gene expression in the ileum. These findings suggest that SLV alleviates immunological reactions, improves intestinal microbiota balance, and reduces weaning stress in piglets. Therefore, SOLVENS has the potential to improve health and performance for piglets. Full article
(This article belongs to the Section Veterinary Microbiology)
13 pages, 2362 KiB  
Brief Report
Examining the Diversity of Rhizosphere Soil Bacterial Communities and Screening of Growth-Promoting Bacteria from the Rhizosphere Soil of Haloxylon ammodendron in Xinjiang
by Xuejing Wang, Yong Chen, Zeyu Wang, Wenfang Luo, Junhui Zhou, Xiaoyan Xin, Rui Guo, Qingyue Zhu, Lili Wang and Suqin Song
Microbiol. Res. 2024, 15(3), 1346-1358; https://doi.org/10.3390/microbiolres15030091 (registering DOI) - 27 Jul 2024
Viewed by 205
Abstract
The bacterial communities in rhizosphere soil interact with the roots of plants. This interaction is beneficial for both the bacteria and the plants, which makes it very important to identify the structure of these bacterial communities for plant growth and development. However, the [...] Read more.
The bacterial communities in rhizosphere soil interact with the roots of plants. This interaction is beneficial for both the bacteria and the plants, which makes it very important to identify the structure of these bacterial communities for plant growth and development. However, the composition characteristics of bacterial communities in rhizosphere soil of 2-year and 5-year Haloxylon ammodendron have not been clearly defined. The purpose of this study was to identify the diverse composition of 2-year and 5-year Haloxylon ammodendron in Turpan, Xinjiang. Thus, rhizosphere soil bacteria were analyzed by isolating, purifying, and identifying the species through high-throughput sequencing technology. The bacterial strains in the rhizosphere soil of Haloxylon ammodendron were isolated with the dilution coating method, resulting in 37 isolated strains. The selective media were used to screen the growth-promoting characteristics of the rhizosphere soil isolates of Haloxylon ammodendron. The results of high-throughput amplification sequencing showed that the rhizosphere bacteria in the 2-year rhizosphere soil belonged to 45 phyla, 109 classes, 288 orders, 451 families, 826 genera, and 404 species, and those in the 5-year rhizosphere soil belonged to 56 phyla, 148 classes, 369 orders, 601 families, 1062 genera, and 671 species. Among them, Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Crenarchaeota, and so on are the dominant bacteria. There were 12206 and 14,053 OTUs in the 2-year-old and 5-year-old rhizosphere soil bacteria, respectively, and 3329 OTUs in the 2-year- and 5-year-old rhizosphere soil, accounting for 16.98% of the total number of OTUs. The results showed that three strains, sg16, sg21, and ss4, had the highest inorganic phosphorus solubility index (1.58). The isolated strain did not have the ability to dissolve organophosphorus and potassium, while the screened strain sg16 had the ability to fix nitrogen. Two strains with a good iron-bearing capacity, Sg9F and Sg1, were screened, among which Sg9F had the highest D/d value and Sg9F had the strongest iron-bearing capacity. The results showed that 37 strains of rhizosphere soil bacteria belonged to six genera. They are Bacillus, Corynebacterium, Phyllobacterium, Lysinibacillus, Sinorhizobium meliloti, and Streptomyces levis. Among them are sg21 (Bacillus sp.), sg1 (Bacillus sp.), sg9F (Streptomyces levis), sg16 (Phyllobacterium phragmitis), and ss4 (Sinorhizobium meliloti). This study provides a particular research basis for the influence of Haloxylon ammodendron rhizosphere bacteria on soil nutrient release and depicts a solution for improving the yield and quality of cistanche deserticola indirectly through isolating, screening, and identifying rhizosphere soil bacteria, including screening strains with growth-promoting functions and analyzing the population structure of rhizosphere bacteria in 2- and 5-year soil in combination with high-throughput sequencing technology. Full article
Show Figures

Figure 1

20 pages, 5249 KiB  
Article
Whole Genome Sequencing of Bacillus velezensis AMR25, an Effective Antagonist Strain against Plant Pathogens
by Alexey A. Ananev, Zlata V. Ogneva, Nikolay N. Nityagovsky, Andrey R. Suprun, Konstantin V. Kiselev and Olga A. Aleynova
Microorganisms 2024, 12(8), 1533; https://doi.org/10.3390/microorganisms12081533 - 26 Jul 2024
Viewed by 230
Abstract
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is “gray mold”, caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus [...] Read more.
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is “gray mold”, caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus halotolerans, Bacillus amyloliquefaciens, and Bacillus velezensis, are known to be active against major post-harvest plant rots. In this study, we showed that the endophytic bacteria B. velezensis strain AMR25 isolated from the leaves of wild grapes Vitis amurensis Rupr. exhibited antimicrobial activity against grape pathogens, including B. cinerea. The genome of B. velezensis AMR25 has one circular chromosome with a length of 3,909,646 bp. with 3689 open reading frames. Genomic analysis identified ten gene clusters involved in the nonribosomal synthesis of polyketides (macrolactin, bacillene, and difficidin), lipopeptides (surfactin, fengycin, and bacillizin), and bacteriocins (difficidin). Also, the genome under study contains a number of genes involved in root colonization, biofilm formation, and biosynthesis of phytohormones. Thus, the endophytic bacteria B. velezensis strain AMR25 shows great promise in developing innovative biological products for enhancing plant resistance against various pathogens. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

17 pages, 5153 KiB  
Article
Development of Broad-Range Microbial Minimal Culture Medium for Lanthanide Studies
by Gianmaria Oliva, Giovanni Vigliotta, Luca Di Stasio, Ermanno Vasca and Stefano Castiglione
Microorganisms 2024, 12(8), 1531; https://doi.org/10.3390/microorganisms12081531 - 26 Jul 2024
Viewed by 206
Abstract
Rare Earth Elements (REE), also known as Lanthanides (Ln3+), are a group of 17 elements showing peculiar physical and chemical properties. Unlike technological applications, very little is known about the physiological role and toxicity of Ln3+ on biological systems, in [...] Read more.
Rare Earth Elements (REE), also known as Lanthanides (Ln3+), are a group of 17 elements showing peculiar physical and chemical properties. Unlike technological applications, very little is known about the physiological role and toxicity of Ln3+ on biological systems, in particular on microorganisms (e.g., bacteria), which represent the most abundant domains on our planet. Up to now, very limited studies have been conducted due to Ln3+ precipitation with some anions commonly present in the culture media. Therefore, the development of a minimal medium is essential to allow the study of Ln3+-microbial interactions, limiting considerably the precipitation of insoluble salts. In this regard, a new minimal culture medium capable of solubilizing large amounts of Ln3+ and allowing the growth of different microbial taxa was successfully developed. Assays have shown that the medium is capable of solubilizing Ln3+ up to 100 times more than other common culture media and allowing the growth of 63 bacteria and 5 fungi. The kinetic growth of one yeast and one Gram-positive bacterium has been defined, proving to support superior growth and biomass compared to other commonly used minimal media. Moreover, the sensitivity and uptake/absorption of a Bacillus stratosphericus strain were tested, highlighting its capability to tolerate concentrations up to 10 mM of either Cerium, Gadolinium or Lanthanum and accumulate different quantities of the three. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop