Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil
Abstract
:1. Introduction
2. Applications of Bacillus spp. in Agriculture as Biocontrol
2.1. Antimicrobial Metabolites
2.2. Hydrolytic Enzymes
2.3. Quorum Quenching
2.4. Competition for Nutrients and Space
2.5. Production of Siderophores
2.6. Induction of Systemic Resistance
3. Importance of Bacillus spp. in Agriculture as Plant Inoculants or Biofertilizers
3.1. Phosphate Solubilization
3.2. ACC-Deaminase Activity
3.3. Production of Phytohormones
3.4. Production of Siderophores
4. Bacillus spp. in Brazil: A Successful Case in Agriculture
5. Future Perspectives and Biosafety Measures for the Use of Bacillus in Agriculture
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estradaalvarado, M.I.; Parra-Cota, F.I.; Santos-Villalobos, S.D. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Rev. Mex. Fitopatol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Beskrovnaya, P.; Sexton, D.L.; Golmohammadzadeh, M.; Hashimi, A.; Tocheva, E.I. Structural, metabolic and evolutionary comparison of bacterial endospore and exospore formation. Front. Microbiol. 2021, 12, 630573. [Google Scholar] [CrossRef]
- Khanna, K.; Lopez-Garrido, J.; Pogliano, K. Shaping an endospore: Architectural transformations during Bacillus subtilis sporulation. Annu. Rev. Microbiol. 2020, 74, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Green, L.H.; Goldman, E. The Genus Bacillus. In Practical Handbook of Microbiology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 249–278. [Google Scholar]
- Bhunia, A.K. Bacillus cereus and Bacillus anthracis. In Foodborne Microbial Pathogens; Food Science Text Series; Springer: New York, NY, USA, 2018; pp. 135–148. [Google Scholar]
- Koch, R. Zur Aetiologie des Milzbrandes. Mitt Kais Gesundheitsamte 1881, 1, 174–206. [Google Scholar]
- Pasteur, L. Del’attenuation des virus et de leur retour a la virulence. Compt. Rend. Acad. Sci. 1881, 92, 429–435. [Google Scholar]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Prashar, P.; Kapoor, N.; Sachdeva, S. Rhizosphere: Its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 2014, 13, 63–77. [Google Scholar] [CrossRef]
- Borriss, R. Bacillus. In Beneficial Microbes in AgroEcology; Amaresan, N., Senthil Kumar, M., Annapurna, K., Krishna Kumar, A., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 108–129. [Google Scholar]
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [PubMed]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar]
- Dobrzyński, J.; Wróbel, B.; Górska, E.B. Taxonomy, Ecology, and Cellulolytic Properties of the Genus Bacillus and Related Gen-era. Agriculture 2023, 13, 1979. [Google Scholar] [CrossRef]
- Adiguzel, A.; Ay, H.; Baltaci, M.O.; Akbulut, S.; Albayrak, S.; Omeroglu, M.A. Genome-based classification of Calidifontibacillus erzurumensis gen. nov., sp. nov., isolated from a hot spring in Turkey, with reclassification of Bacillus azotoformans as Calidifontibacillus azotoformans comb. nov. and Bacillus oryziterrae as Calidifontibacillus oryziterrae comb. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 6418–6427. [Google Scholar] [PubMed]
- Verma, A.; Ojha, A.K.; Pal, Y.; Kumari, P.; Schumann, P.; Gruber-Vodicka, H.; Dastager, S.G.; Natarajan, R.K.; Mayilraj, S.; Krishnamurthi, S. An investigation into the taxonomy of “Bacillus aminovorans” and its reclassification to the genus Domibacillus as Domibacillus aminovorans sp. nov. Syst. Appl. Microbiol. 2017, 40, 458–467. [Google Scholar] [CrossRef]
- Krishnamurthi, S.; Chakrabarti, T.; Stackebrandt, E. Re-examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov. as Solibacillus silvestris comb. nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 1054–1058. [Google Scholar]
- Zimina, M.I.; Sukhih, S.A.; Babich, O.O.; Noskova, S.Y.; Abrashina, A.A.; Prosekov, A.Y. Investigating antibiotic activity of the genus Bacillus strains and properties of their bacteriocins in order to develop next-generation pharmaceuticals. Foods Raw Mater. 2016, 4, 92–100. [Google Scholar] [CrossRef]
- Farhat-Khemakhem, A.; Blibech, M.; Boukhris, I.; Makni, M.; Chouayekh, H. Assessment of the potential of the multi-enzyme producer Bacillus amyloliquefaciens US573 as alternative feed additive. J. Sci. Food Agric. 2018, 98, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; González-Andrés, F. Bacillus as a source of phytohormones for use in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 8629–8645. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.C.; de Freitas Bueno, A.; Mazaro, S.M.; da Silva, J.C. Controle de qualidade de produtos microbiológicos. In Bioinsumos na Cultura da Soja; Meyer, M.C., Bueno, A.F., Mazaro, S.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 507–534. [Google Scholar]
- Nunes, P.S.; Junior, G.V.L.; Mascarin, G.M.; Guimarães, R.A.; Medeiros, F.H.; Arthurs, S.; Bettiol, W. Microbial consortium of biological products: Do they have a future? Biol. Control 2024, 188, 105439. [Google Scholar]
- Sansinenea, E. Bacillus spp.: As plant growth-promoting bacteria. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications; Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C., Eds.; Springer: Singapore, 2019; pp. 23–43. [Google Scholar]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 4, 618230. [Google Scholar] [CrossRef]
- Ali, M.A.; Naveed, M.; Mustafa, A.; Abbas, A. The good, the bad, and the ugly of rhizosphere microbiome. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 207–226. [Google Scholar]
- Rondina, A.B.L.; Dos Santos Sanzovo, A.W.; Guimarães, G.S.; Wendling, J.R.; Nogueira, M.A.; Hungria, M. Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol. Fertil. Soils 2020, 56, 537–549. [Google Scholar] [CrossRef]
- Haling, R.E.; Brown, L.K.; Bengough, A.G.; Young, I.M.; Hallett, P.D.; White, P.J.; George, T.S. Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. J. Exp. Bot. 2013, 64, 3711–3721. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Anckaert, A.; Arguelles-Arias, A.; Hoff, G.; Calonne-Salmon, M.; Declerck, S.; Ongena, M. The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In Bacillus spp. as Biocontrol Agents; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 1–54. [Google Scholar]
- Janisiewicz, W.J. Biocontrol of postharvest diseases of temperate fruits: Challenges and opportunities. In Plant-Microbe Interactions and Biological Control; Boland, G.J., Kuykendall, L.D., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 171–198. [Google Scholar]
- Ab Rahman, S.F.S.; Singh, E.; Pieterse, C.M.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. 2021, 67, 65–72. [Google Scholar] [CrossRef]
- Carzoli, A.K.; Aboobucker, S.I.; Sandall, L.L.; Lübberstedt, T.T.; Suza, W.P. Risks and opportunities of GM crops: Bt maize example. Glob. Food Secur. 2018, 19, 84–91. [Google Scholar] [CrossRef]
- Bettiol, W.; Saito, M.L.; Brandão, M.S.B. Controle da ferrugem do cafeeiro com produtos à base de Bacillus subtilis. Summa Phytopathol. 1994, 20, 119–122. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/148029/1/1994AP002-Wagner-ControleFerrugemv20n2-art07.pdf (accessed on 5 January 2024).
- Seralini, G.E. Update on long-term toxicity of agricultural GMOs tolerant to Roundup. Environ. Sci. Eur. 2020, 32, 18. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Hartmann, A.; Gao, X.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front. Microbiol. 2015, 6, 780. [Google Scholar] [CrossRef] [PubMed]
- Priest, F.G. Systematics and ecology of Bacillus. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics; Abraham, L.S., James, A.H., Richard, L., Eds.; American Society for Microbiology: Washington, DC, USA, 1993. [Google Scholar]
- Liu, D.; Li, K.; Hu, J.; Wang, W.; Liu, X.; Gao, Z. Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean phytophthora blight. Int. J. Mol. Sci. 2019, 20, 2908. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, J.; Zhu, X.; Wang, Y.; Liu, X.; Fan, H.; Duan, Y.; Chen, L. Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode (Heterodera glycines) in soybean. Pest Manag. Sci. 2021, 77, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, D.C.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C.; Brandan, C.P. Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biol. Control 2020, 141, 104131. [Google Scholar] [CrossRef]
- Li, S.; Xu, J.; Fu, L.; Xu, G.; Lin, X.; Qiao, J.; Xia, Y. Biocontrol of wheat crown rot using Bacillus halotolerans QTH8. Pathogens 2022, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, L.; Zhang, W.; Chi, F.; Hao, X.; Bian, J.; Li, Y. Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egypt. J. Biol. Pest Control 2020, 30, 9. [Google Scholar] [CrossRef]
- Koné, Y.; Alves, E.; da Silveira, P.R.; Cruz-Magalhães, V.; Botelho, F.B.S.; Ferreira, A.N.; Guimarães, S.S.C.; De Medeiros, F.H.V. Microscopic and molecular studies in the biological control of rice blast caused by Pyricularia oryzae with Bacillus sp. BMH under greenhouse conditions. Biol. Control 2022, 172, 104983. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Liu, B.; Zhu, Y.; Xiao, R.; Yang, W.; Ge, C.; Chen, Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 2020, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Ezrari, S.; Mhidra, O.; Radouane, N.; Tahiri, A.; Polizzi, G.; Lazraq, A.; Lahlali, R. Potential role of rhizobacteria isolated from citrus rhizosphere for biological control of citrus dry root rot. Plants 2021, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Kareem, F.; Elshahawy, I.E.; Abd-Elgawad, M.M. Application of Bacillus pumilus isolates for management of black rot disease in strawberry. Egypt. J. Biol. Pest Control 2021, 31, 25. [Google Scholar] [CrossRef]
- Ali, S.A.M.; Sayyed, R.Z.; Mir, M.I.; Khan, M.Y.; Hameeda, B.; Alkhanani, M.F.; Haque, S.; Al Tawaha, A.R.M.; Poczai, P. Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20. Front. Microbiol. 2022, 13, 879739. [Google Scholar] [CrossRef]
- Khiyami, M.A.; Omar, M.R.; Abd-Elsalam, K.A.; Aly, A.E.H. Bacillus-based biological control of cotton seedling disease complex. J. Plant Prot. Res. 2014, 54, 340–348. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, L.; Chen, W.; Dong, Y.; Yang, C.; Li, C.; Xu, H.; Gao, X.; Chen, R.; Li, L.; et al. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. Biotechnol. Biotechnol. Equip. 2020, 34, 714–724. [Google Scholar] [CrossRef]
- Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 2011, 33, 1523–1538. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Omar, N.B.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [PubMed]
- Cherif, A.; Ouzari, H.; Daffonchio, D.; Cherif, H.; Ben Slama, K.; Hassen, A.; Jaoua, S.; Boudabous, A. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1. 7, a new strain isolated from soil. Lett. Appl. Microbiol. 2001, 32, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Puan, S.L.; Erriah, P.; Baharudin, M.M.A.A.; Yahaya, N.M.; Kamil, W.N.I.W.A.; Ali, M.S.M.; Ahmad, S.A.; Oslan, S.N.; Lim, S.; Sabri, S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl. Microbiol. Biotechnol. 2023, 107, 5569–5593. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.F.; Henning, A.A.; Hungria, M. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 2005, 21, 1637–1642. [Google Scholar] [CrossRef]
- Yu, C.; Chen, H.; Zhu, L.; Song, Y.; Jiang, Q.; Zhang, Y.; Ali, Q.; Gu, Q.; Gao, X.; Borriss, R.; et al. Profiling of antimicrobial metabolites synthesized by the endophytic and genetically amenable biocontrol strain Bacillus velezensis DMW1. Microbiol. Spectr 2023, 11, e00038-23. [Google Scholar] [CrossRef] [PubMed]
- Boller, T. Antimicrobial functions of the plant hydrolases, chitinase and ß-1,3-glucanase. In Mechanisms of Plant Defense Responses; Fritig, B., Legrand, M., Eds.; Developments in Plant Pathology; Springer: Dordrecht, The Netherlands, 1993; Volume 2. [Google Scholar]
- Veliz, E.A.; Martínez-Hidalgo, P.; Hirsch, A.M. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol. 2017, 3, 689. [Google Scholar] [CrossRef] [PubMed]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, F.; Wang, J.; Jin, P.; Zheng, Y. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem. 2013, 136, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyński, J.; Jakubowska, Z.; Kulkova, I.; Kowalczyk, P.; Kramkowski, K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Front. Microbiol. 2023, 14, 1194606. [Google Scholar] [CrossRef] [PubMed]
- Pfeilmeier, S.; Caly, D.L.; Malone, J.G. Bacterial pathogenesis of plants: Future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology. Mol. Plant Pathol. 2016, 17, 1298–1313. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.E.; Triplett, L.R.; Argueso, C.T.; Trivedi, P. Communication in the phytobiome. Cell 2017, 169, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, J.C.; Villamizar, S.; Ferro, M.I.T.; Kupper, K.C.; Ferro, J.A. Bacteria from the citrus phylloplane can disrupt cell–cell signalling in Xanthomonas citri and reduce citrus canker disease severity. Plant Pathol. 2016, 65, 782–791. [Google Scholar] [CrossRef]
- Newman, K.L.; Chatterjee, S.; Ho, K.A.; Lindow, S.E. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol. Plant-Microbe Interact. 2008, 21, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Roca, A.; Cabeo, M.; Enguidanos, C.; Martínez-Checa, F.; Sampedro, I.; Llamas, I. Potential of the quorum-quenching and plant-growth promoting halotolerant Bacillus toyonensis AA1EC1 as biocontrol agent. Microb. Biotechnol. 2024, 17, e14420. [Google Scholar] [CrossRef] [PubMed]
- Ghoul, M.; Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 2016, 24, 833–845. [Google Scholar] [CrossRef]
- Mercier, J.; Lindow, S.E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 2000, 66, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, S.; Zhang, J.; Zhang, X.; Mu, G.; Wang, Z. Characterization of Bacillus strains screened via nutritional competition for biocontrol of soybean root rot disease. Acta Phytopathol. Sin. 2010, 40, 307–314. [Google Scholar]
- Mates, A.D.P.K.; de Carvalho Pontes, N.; de Almeida Halfeld-Vieira, B. Bacillus velezensis GF267 as a multi-site antagonist for the control of tomato bacterial spot. Biol. Control 2019, 137, 104013. [Google Scholar]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Yu, X.; Ai, C.; Xin, L.; Zhou, G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 2011, 47, 138–145. [Google Scholar] [CrossRef]
- Deb, C.R.; Tatung, M. Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. S. Afr. J. Bot. 2024, 165, 153–162. [Google Scholar] [CrossRef]
- Ghazy, N.; El-Nahrawy, S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch. Microbiol. 2021, 203, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Chandwani, S.; Dewala, S.; Chavan, S.M.; Paul, D.; Pachaiappan, R.; Gopi, M.; Amaresan, N. Complete genome sequencing of Bacillus subtilis (CWTS 5), a siderophore-producing bacterium triggers antagonistic potential against Ralstonia solanacearum. J. Appl. Microbiol. 2023, 134, lxad066. [Google Scholar] [CrossRef] [PubMed]
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): Role and mechanism of action against phytopathogens. In Fungal Biotechnology and Bioengineering; Hesham, A.L., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2020; pp. 457–470. [Google Scholar]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Akram, W.; Anjum, T.; Ali, B. Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. BioControl 2015, 60, 271–280. [Google Scholar] [CrossRef]
- Yadav, U.; Anand, V.; Kumar, S.; Verma, I.; Anshu, A.; Pandey, I.A.; Kumar, M.; Behera, S.K.; Srivastava, S.; Singh, P.C. Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. J. Appl. Microbiol. 2024, 135, lxae013. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Zhou, G.; Yang, J.; Munir, S.; Ahmed, A.; Liu, Q.; Zhao, Z.; Ji, G. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco. Egypt. J. Biol. Pest Control 2022, 32, 25. [Google Scholar] [CrossRef]
- Ahmed, W.; Dai, Z.; Zhang, J.; Li, S.; Ahmed, A.; Munir, S.; Liu, Q.; Tan, Y.; Ji, G.; Zhao, Z. Plant-Microbe Interaction: Mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities. Microbiol. Spectr. 2022, 10, e01471-22. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.F.D.; Hungria, M. Nodulação e rendimento de soja co-infectada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhizobium elkanii. Pesqui. Agropecu. Bras. 1999, 34, 1633–1643. [Google Scholar] [CrossRef]
- Chagas, L.F.B.; Martins, A.L.L.; de Carvalho Filho, M.R.; de Oliveira Miller, L.; de Oliveira, J.C.; Junior, A.F.C. Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Agri-Environ. Sci. 2017, 3, 10–18. [Google Scholar] [CrossRef]
- Nain, L.; Yadav, R.C.; Saxena, J. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Appl. Soil Ecol. 2012, 59, 124–135. [Google Scholar]
- Afzal, A.; Bahader, S.; Ul Hassan, T.; Naz, I.; Din, A. Rock phosphate solubilization by plant growth-promoting Bacillus velezensis and its impact on wheat growth and yield. GeoMicrobiol. J. 2022, 40, 131–142. [Google Scholar] [CrossRef]
- Bharti, C.; Fatima, T.; Mishra, P.; Verma, P. Salt-tolerant endophytic Bacillus altitudinis NKA32 with ACC deaminase activity modulates physiochemical mechanisms in rice for adaptation in saline ecosystem. Environ. Sustain. 2024, 7, 231–249. [Google Scholar] [CrossRef]
- Ullah, I.; Anwar, Y.; Siddiqui, M.F.; Alsulami, N.; Ullah, R. Phytoremediation of Arsenic (As) in rice plants, mediated by Bacillus subtilis strain IU31 through antioxidant responses and phytohormones synthesis. Environ. Pollut. 2024, 355, 124207. [Google Scholar] [CrossRef] [PubMed]
- Sreeramulu, R.K.K.V.; Suresh, M.; Subburamu, K.; Durairaj, J. Siderophore producing Bacillus spp. and Ochrobactrum grignonense enhance the iron content and yield of groundnut genotypes (Arachis hypogaea L.) in calcareous soils. Arab. J. GeoSci. 2023, 16, 624. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Wu, G.; Veronican-Njeri, K.; Shen, Q.; Zhang, N.; Zhang, R. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant 2016, 158, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.G.; Mun, B.G.; Kang, S.M.; Hussain, A.; Shahzad, R.; Seo, C.W.; Kim, A.-Y.; Lee, S.-U.; Oh, K.Y.; Lee, D.Y.; et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 2017, 12, e0173203. [Google Scholar] [CrossRef] [PubMed]
- Mena-Violante, H.G.; Olalde-Portugal, V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 2007, 113, 103–106. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Shi, Q.; Liu, X.; Yang, Z.; Han, P.; Li, J.; Wei, Z.; Hu, T.; Liu, F. The interactive effects of deficit irrigation and Bacillus pumilus inoculation on growth and physiology of tomato plant. Plants 2023, 12, 670. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, F.; Mickan, B.; Wang, D. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. Plant Cell Rep. 2023, 42, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, Y.; Yue, T.; Huang, Y.; He, C.; Jiang, W.; Liu, H.; Zeng, H.; Wang, J. Plant growth-promoting rhizobacteria Bacillus velezensis JB0319 promotes lettuce growth under salt stress by modulating plant physiology and changing the rhizosphere bacterial community. Environ. Exp. Bot. 2023, 213, 105451. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Waqas, M.; Kang, S.M.; Lee, I.J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ. Exp. Bot. 2017, 136, 68–77. [Google Scholar] [CrossRef]
- Bahadir, P.S.; Liaqat, F.; Eltem, R. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk. J. Bot. 2018, 42, 183–196. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, N.; Liang, X.; Huang, T.; Li, B. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. J. Sci. Food Agric. 2022, 102, 6650–6657. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.; Xu, G.; Tian, X.; Xie, H.; Yang, X.; Cao, C. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE 2018, 13, e0200181. [Google Scholar]
- Meza, C.; Valenzuela, F.; Echeverría-Vega, A.; Gomez, A.; Sarkar, S.; Cabeza, R.A.; Arencibia, A.D.; Quiroz, K.; Carrasco, B.; Banerjee, A. Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype (Phaseolus vulgaris L.) supporting seed germination and growth against salinity stress. Front. Plant Sci. 2022, 13, 1052263. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Yao, T.; Li, M.; Lan, X.; Wang, Z. Plant growth–promoting Rhizobacteria enhance salt tolerance in oat by upregulating the antioxidant system and promoting root growth. J. Plant Growth Regul. 2023, 42, 3568–3581. [Google Scholar] [CrossRef]
- Larsen, S. Soil phosphorus. Adv. Agron. 1967, 19, 151–210. [Google Scholar]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Salih, H.M.; Yahya, A.I.; Abdul-Rahem, A.M.; Munam, B.H. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant Soil 1989, 120, 181–185. [Google Scholar] [CrossRef]
- Young, L.S.; Hameed, A.; Peng, S.Y.; Shan, Y.H.; Wu, S.P. Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl. Soil Ecol. 2013, 66, 40–47. [Google Scholar]
- Yadav, A.N. Phosphate-solubilizing microorganisms for agricultural sustainability. J. Appl. Biol. Biotechnol. 2022, 10, 1–6. [Google Scholar] [CrossRef]
- Zaidi, A.; Khan, M.S.; Ahemad, M.; Oves, M.; Wani, P.A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement; Khan, M., Zaidi, A., Musarrat, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–50. [Google Scholar]
- Omar, S.A. The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 1997, 14, 211–218. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, X.; Wen, X. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2. Curr. Microbiol. 2016, 72, 198–206. [Google Scholar] [CrossRef]
- Li, X.L.; Zhao, X.Q.; Dong, X.Y.; Ma, J.F.; Shen, R.F. Secretion of gluconic acid from Nguyenibacter sp. L1 is responsible for solubilization of aluminum phosphate. Front. Microbiol. 2021, 12, 784025. [Google Scholar] [CrossRef]
- Kim, K.Y.; McDonald, G.A.; Jordan, D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils 1997, 24, 347–352. [Google Scholar] [CrossRef]
- Swetha, S.; Padmavathi, T. Study of acid phosphatase in solubilization of inorganic phosphates by Piriformospora indica. Pol. J. Microbiol. 2016, 65, 407–412. [Google Scholar] [CrossRef]
- Prabhu, N.; Borkar, S.; Garg, S. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. In Advances in Biological Science Research; Meena, S.N., Naik, M.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 161–176. [Google Scholar]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef]
- Shrivastava, M.; Srivastava, P.C.; D’souza, S.F. Phosphate-solubilizing microbes: Diversity and phosphate solubilization mechanism. In Role of Rhizospheric Microbes in Soil; Meena, V., Ed.; Springer: Singapore, 2018; pp. 81–97. [Google Scholar]
- Cataldi, M.P.; Heuer, S.; Mauchline, T.H.; Wilkinson, M.D.; Masters-Clark, E.; Di Benedetto, N.A.; Corbo, M.R.; Flagella, Z. Effect of plant growth promoting bacteria on the growth of wheat seedlings subjected to phosphate starvation. Agron 2020, 10, 978. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Yadav, R.S.; Meena, S.C. Comparative efficiency of acid phosphatase originated from plant and fungal sources. J. Plant Nutr. Soil Sci. 2001, 164, 279–282. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed Editora: Porto Alegre, Brazil, 2017. [Google Scholar]
- Moon, Y.S.; Ali, S. Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Appl. Microbiol. Biotechnol. 2022, 106, 877–887. [Google Scholar] [CrossRef]
- Ali, S.; Kim, W.C. Plant growth promotion under water: Decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front. Microbiol. 2018, 25, 1096. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. In New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research; Bakker, P.A.H.M., Raaijmakers, J.M., Bloemberg, G., Höfte, M., Lemanceau, P., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 329–339. [Google Scholar]
- Van De Poel, B.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene. Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Penrose, D.M.; Moffatt, B.A.; Glick, B.R. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can. J. Microbiol. 2001, 47, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Barnawal, D.; Bharti, N.; Maji, D.; Chanotiya, C.S.; Kalra, A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 2012, 58, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Gowtham, H.G.; Singh, B.; Murali, M.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Niranjana, S.R. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol. Res. 2020, 234, 126422. [Google Scholar] [CrossRef]
- Din, B.U.; Sarfraz, S.; Xia, Y.; Kamran, M.A.; Javed, M.T.; Sultan, T.; Munis, M.F.H.; Chaudhary, H.J. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol. Environ. Saf. 2019, 183, 109466. [Google Scholar]
- Naing, A.H.; Maung, T.T.; Kim, C.K. The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol. Plant 2021, 173, 1992–2012. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, X.; Ouyang, W.; Yang, E.; Cao, Y.; Sun, R. Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria Achromobacter sp. J. Hazard. Mater. 2022, 423, 127036. [Google Scholar] [CrossRef] [PubMed]
- Barnawal, D.; Pandey, S.S.; Bharti, N.; Pandey, A.; Ray, T.; Singh, S.; Chanotiya, C.S.; Kalra, A. ACC deaminase-containing plant growth-promoting rhizobacteria protect Papaver somniferum from downy mildew. J. Appl. Microbiol. 2017, 122, 1286–1298. [Google Scholar]
- Lim, J.H.; Kim, S.D. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol. J. 2013, 29, 201. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef]
- Aloni, R.; Aloni, E.; Langhans, M.; Ullrich, C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006, 97, 883–893. [Google Scholar] [CrossRef]
- Robinson, A.P.; Davis, V.M.; Simpson, D.M.; Johnson, W.G. Response of soybean yield components to 2, 4-D. Weed Sci. 2013, 61, 68–76. [Google Scholar] [CrossRef]
- Silva, J.R.O.; Marques, J.N.R.; Godoy, C.V.C.; Batista, L.B.; Silva, A.A.; Ronchi, C.P. 2, 4-D hormesis effect on soybean. Planta Daninh 2019, 37, e019216022. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis and its role in plant development. Annu Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, S.; Haznedar, A.; Cakmakci, R. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cutting. Biol. Res. 2010, 43, 91–98. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Chizhevskaya, E.P.; Vorobyov, N.I.; Bobkova, V.V.; Pomyaksheva, L.V.; Khomyakov, Y.V.; Konovalov, S.N. The quality and productivity of strawberry (Fragaria × ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments. Agronomy 2022, 12, 2600. [Google Scholar]
- Römheld, V. Different strategies for iron acquisition in higher plants. Physiol. Plant 1987, 70, 231–234. [Google Scholar] [CrossRef]
- Schalk, I.J.; Mislin, G.L.A.; Brillet, K. Structure, function and binding selectivity and stereoselectivity of siderophore–iron outer membrane transporters. Curr. Top. Membr. 2012, 69, 37–66. [Google Scholar]
- Garg, G.; Kumar, S.; Bhati, S. Siderophore in plant nutritional management: Role of endophytic bacteria. In Endophytes: Mineral Nutrient Management; Maheshwari, D.K., Dheeman, S., Eds.; Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2021; Volume 26. [Google Scholar]
- Cui, K.; Xu, T.; Chen, J.; Yang, H.; Liu, X.; Zhuo, R.; Peng, Y.; Tang, W.; Wang, R.; Chen, L.; et al. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J. Clean. Prod. 2022, 367, 133110. [Google Scholar]
- Yue, Z.; Chen, Y.; Hao, Y.; Wang, C.; Zhang, Z.; Chen, C.; Liu, H.; Liu, Y.; Li, L.; Sun, Z. Bacillus sp. WR12 alleviates iron deficiency in wheat via enhancing siderophore-and phenol-mediated iron acquisition in roots. Plant Soil 2022, 147, 247–260. [Google Scholar]
- Bettiol, W. Pesquisa, desenvolvimento e inovação com bioinsumos. In Bioinsumos na Cultura da Soja; Meyer, M.C., Bueno, A.F., Mazaro, S.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 21–38. [Google Scholar]
- Hungria, M.; Nogueira, M.A. Fixação biológica do nitrogênio. In Bioinsumos na Cultura da Soja; Meyer, M.C., Bueno, A.F., Mazaro, S.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 141–162. [Google Scholar]
- Goulet, F. Characterizing alignments in socio-technical transitions. Lessons from agricultural bio-inputs in Brazil. Technol. Soc. 2021, 65, 101580. [Google Scholar]
- Probanza, A.; Garcia, J.L.; Palomino, M.R.; Ramos, B.; Mañero, F.G. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil Ecol. 2002, 20, 75–84. [Google Scholar]
- Velloso, C.C.V.; Camargo, B.C.P.; Sousa, M.D.B.; Buffo, M.M.; de Oliveira Paiva, C.A.; Farinas, C.S.; Badino, A.C. High yield of heat-resistant spores of Bacillus megaterium in bioreactors. Biochem. Eng. J. 2023, 198, 109030. [Google Scholar] [CrossRef]
- Barriuso, J.; Solano, B.R.; Lucas, J.A.; Lobo, A.P.; Villaraco, A.G.; Mañero, F.J.G. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In Plant-Bacteria Interactions: Strategies and Techniques to Promote Plant Growth; Ahmad, I., Pichtel, J., Haya, S., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 1–17. [Google Scholar]
- Seixas, C.; Mazaro, S.; Diniz, L.; Godoy, C.; Meyer, M. Bioinsumos para o manejo de doenças foliares na cultura da soja. In Bioinsumos na Cultura da Soja; Meyer, M.C., Bueno, A.F., Mazaro, S.M., Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2022; pp. 331–344. [Google Scholar]
- Soave, J.M. Bacillus spp. e a Promoção de Crescimento Vegetal: Um Enfoque na Solubilização e Mineralização de Fosfato Durante Interação com Cana-de-Açúcar. Doctoral Dissertation, Universidade de São Paulo, Piracicaba, Brazil, 2023. [Google Scholar]
- Castelo Sousa, H.; Gomes de Sousa, G.; de Araújo Viana, T.V.; Prudêncio de Araújo Pereira, A.; Nojosa Lessa, C.I.; Pires de Souza, M.V.; da Silva Guilherme, J.M.; Goes, G.F.; da Silveira Alves, F.G.; Gomes, S.P. Bacillus aryabhattai mitigates the effects of salt and water stress on the agronomic performance of maize under an agroecological system. Agriculture 2023, 13, 1150. [Google Scholar] [CrossRef]
- Viana, T.F.C.; Galeano, R.M.S.; Paggi, G.M.; da Silva, V.A.O.; de Lima, S.F.; Zanoelo, F.F.; da Silva Brasil, M. High potential of cotton (Gossypium hirsutum L.) Bacillus isolates to promote plant growth. Res. Sq. 2024. PREPRINT (1). [Google Scholar] [CrossRef]
- Milléo, M.V.R.; Pandolfo, M.; dos Santos, D.S.; Soares, C.R.F.S.; Moscardi, M.L. Agronomic efficiency of an inoculant based on Bacillus amyloliquefaciens FZB45 for corn and soybean crops. Braz. J. Agric. Sci. 2023, 18, e2844. [Google Scholar] [CrossRef]
- De Abreu, C.S.; Figueiredo, J.E.F.; Oliveira-Paiva, C.A.; Dos Santos, V.L.; Gomes, E.A.; Ribeiro, V.P.; Barros, B.d.A.; Lana, U.G.D.P.; Marriel, I.E. Maize endophytic bacteria as mineral phosphate solubilizers. Genet. Mol. Res. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Oliveira-Paiva, C.A.; Bini, D.; de Sousa, S.M.; Ribeiro, V.P.; dos Santos, F.C.; de Paula Lana, U.G.; de Souza, F.F.; Gomes, E.A.; Marriel, I.E. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front. Microbiol. 2024, 15, 1426166. [Google Scholar] [CrossRef]
- Souza, A.E.S.D.; Filla, V.A.; Silva, J.P.M.D.; Barbosa Júnior, M.R.; Oliveira-Paiva, C.A.D.; Coelho, A.P.; Lemos, L.B. Application of Bacillus spp. phosphate-solubilizing bacteria improves common bean production compared to conventional fertilization. Plants 2023, 12, 3827. [Google Scholar]
- De Sousa, S.M.; de Oliveira, C.A.; Andrade, D.L.; de Carvalho, C.G.; Ribeiro, V.P.; Pastina, M.M.; Marriel, I.E.; de Paula, U.G.; Lana Gomes, E.A. Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J. Plant Growth Regul. 2021, 40, 867–877. [Google Scholar] [CrossRef]
- Oliveira-Paiva, C.A.; Cota, L.; Marriel, I.; Alves, V.; Gomes, E.; De Sousa, S.M.; Lana, U.D.P. Validação da recomendação para o uso do inoculante BiomaPhos® (Bacillus subtilis CNPMS B2084 e Bacillus megaterium CNPMS B119) na cultura da soja. In Embrapa Milho e Sorgo; Embrapa: Sete Lagoas, Brazil, 2021; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1135679/1/CIRC-TEC-279-Validacao-recomendacao-BiomaPhos-cultura-soja.pdf (accessed on 1 May 2024).
- Oliveira, C.A.; Cota, L.V.; Marriel, I.E.; Gomes, E.A.; Sousa, S.M.; Lana, U.G.P.; Pinto Junior, A.S.; Alves, V.M.C. Viabilidade técnica e econômica do Biomaphos® (Bacillus subtilis CNPMS B2084 e Bacillus megaterium CNPMS B110) nas culturas do milho e da soja. In Embrapa Milho e Sorgo; Embrapa: Sete Lagoas, Brazil, 2020; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1126348/1/Bol-210.pdf (accessed on 1 May 2024).
- Cardoso, A.F.; da Costa, S.D.A.; Ferreira, W.X.; de Castro, G.L.S.; Lins, P.M.P.; Dos Santos, M.A.S.; da Silva, G.B. Cost reduction in the production of green dwarf coconut palm seedlings biostimulated with Bacillus cereus. Indian J. Microbiol. 2024, 1, 8. [Google Scholar] [CrossRef]
- Fuga, C.A.G.; Caixeta, G.A.N.; Caixeta, C.F.; de Melo, I.S. Growth promotion in maize (Zea mays L.) by Bacillus aryabhattai strain CMAA 1363. Rev. Bras. Cienc. Agrar. 2023, 18, e3340. [Google Scholar]
- Langa-Lomba, N.; González-García, V.; Venturini-Crespo, M.E.; Casanova-Gascón, J.; Barriuso-Vargas, J.J.; Martín-Ramos, P. Comparison of the efficacy of Trichoderma and Bacillus strains and commercial biocontrol products against grapevine Botryosphaeria dieback pathogens. Agronomy 2023, 13, 533. [Google Scholar] [CrossRef]
- Karačić, V.; Miljaković, D.; Ivanović, M. Rhizospheric Bacillus spp. as an alternative to chemical control of Botrytis cinerea on tomato. In Book of Abstracts and Conference Proceedings, Proceedings of the International Conference Antimicrobial Resistance–Current State and Perspectives, Novi Sad, Serbia, 16–18 May 2024, 3rd ed.; Faculty of Agriculture, University of Novi Sad: Novi Sad, Serbia, 2024; pp. 249–252. [Google Scholar]
- Herrmann, L.W.; Letti, L.A.J.; de Oliveira Penha, R.; Soccol, V.T.; Rodrigues, C.; Soccol, C.R. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnol. Adv. 2023, 70, 108300. [Google Scholar] [CrossRef]
- Nihorimbere, G.; Korangi Alleluya, V.; Nimbeshaho, F.; Nihorimbere, V.; Legrève, A.; Ongena, M. Bacillus-based biocontrol beyond chemical control in central Africa: The challenge of turning myth into reality. Front. Plant Sci. 2024, 15, 1349357. [Google Scholar] [CrossRef]
Species of Bacillus | Crop | Mechanism | Pathogen | Study |
---|---|---|---|---|
Bacillus amyloliquefaciens JDF3; Bacillus subtilis RSS-1 | Glycine max | Inhibition of ribosomal activity | Fungi Phytophthora sojae | [38] |
Bacillus (Priestia)megaterium Sneb207 | Glycine max | Induction of systemic resistance | Nematode Heterodera glycines | [39] |
Bacillus sp. P12 | Phaseolus vulgaris | Synthesis of lipopeptide isoforms: kurstakin, surfactin, iturin, polymyxin, and fengycin | Fungi Macrophomina phaseolina | [40] |
Bacillus halotolerans QTH8 | Triticum aestivum | Synthesis of lipopeptides: iturin, surfactin, and fengycin | Fungi Fusarium pseudograminearum | [41] |
Bacillus velezensis BM21 | Zea mays | Cytoplasmic necrosis and disintegration of pathogen organelles | Fungi Fusarium verticillioides; Thanatephorus cucumeris; Typhula incarnata; Fusarium oxysporum; Pythium graminicola; Rhizoctonia solani | [42] |
Bacillus sp. BMH | Oryza sativa | Induction of systemic resistance | Fungi Pyricularia oryzae | [43] |
Bacillus velezensis FJAT-46737 | Solanum lycopersicum | Secretion of lipopeptides: iturins, fengycins, and surfactins | Fungi Ralstonia solanacearum | [44] |
Bacillus subtilis K4-4; Bacillus subtilis GH3-8 | Citrus sinensis | Production of HCN, siderophores, bacillomycin, iturin, fengycin | Fungi Fusarium solani | [45] |
Bacillus pumilus | Fragaria × ananassa Duchesne | Systemic induction of resistance | Fungi Rhizoctonia solani; Fusarium solani; Pythium sp. | [46] |
Bacillus velezensis MS20 | Zea mays | Synthesis of surfactin | Fungi Rhizoctonia solani | [47] |
Bacillus (Weizmannia) coagulans; Bacillus globisporus; Bacillus pumilus; Bacillus subtilis; Bacillus (Niallia) circulans; Bacillus cereus; Bacillus (Weizmannia) coagulans; Bacillus cereus | Gossypium barbadense | Systemic resistance induction and/or antibiosis | Fungi Rhizoctonia solani; Macrophomina faseolina; Sclerotium rolfsii; Pythium sp.; Fusarium oxysporum; Fusarium solani; Fusarium moniliforme | [48] |
Bacillus velezensis ZW-10 | Oryza sativa | Synthesis of peroxidase, protease, and cellulase | Fungi Magnaporthe oryzae | [49] |
Species of Bacillus | Crop | Mechanism | Effect | Study |
---|---|---|---|---|
Bacillus amyloliquefaciens SQR9 | Zea mays | Increase in soluble sugar content; efficiency of peroxidase/catalase activity and glutathione content; reduction in Na+ levels in the plant | Tolerance to saline stress | [88] |
Bacillus (Priestia) aryabhattai SRB02 | Glycine max | Production of abscisic acid, indole acetic acid, cytokinin, and different gibberellic acids | Tolerance to thermal, oxidative, and nitrosative stress | [89] |
Bacillus subtilis BEB-lSbs | Lycopersicon esculentum | Not identified | Increase in fruit productivity and quality | [90] |
Bacillus pumilus | Lycopersicon. esculentum cv Jinpeng 10 | Adaptation of leaf gas exchange rates, stomatal density, and endogenous levels of ABA | Efficiency of water use under water deficiency | [91] |
Bacillus sp. wp-6 | Triticum aestivum | Alteration of alpha-linolenic acid metabolism, amino acids, and flavonoid synthesis | Increase in fresh weight of shoot and root | [92] |
Bacillus velezensis JB0319 | Lactuca sativa | Superoxide dismutase and lactoperoxidase activity; decrease in malondialdehyde accumulation and increase in osmotic regulator substance accumulation of proline | Increase in lettuce shoot biomass, root length, and alteration of rhizosphere bacterial community | [93] |
Bacillus amyloliquefaciens RWL-1 | Oryza sativa | Production of abscisic acid, glutamic acid, and proline | Increase in productivity and saline stress tolerance | [94] |
Bacillus (Priestia) megaterium EGE-B-1.4.a; Bacillus (Peribacillus) simplex EGE-B-1.2.k; Bacillus subtilis EGE-B.24.4i; Bacillus subtilis EGE-B.26.1; Bacillus (Priestia) megaterium EGE-B.10.3.F; Bacillus subtilis EGE-B.3.P.5 | Lycopersicon lycopersicum cv. Target F1; Capsicum annuum var. cv. Kekova F1; Solanum melongena cv. Faselis F1 | P solubilization, IAA production; improvement in radicle and hypocotyl development; increase in plant growth, enhancing root and stem growth | Promotion of seed germination and vegetative development | [95] |
Bacillus (Priestia) aryabhattai LAD | Zea mays | P solubilization | Increase in shoot length, total root length, and main root thickness | [96] |
Bacillus cereus YL6 | Glycine max; Triticum aestivum; Brassica rapa (Chinensis Group) | Solubilization of inorganic and organic P; production of indole-3-acetic acid (IAA) and gibberellin (GA) | Increase in soybean and wheat biomass in pot experiments; increased growth and yield of Chinese cabbage | [97] |
Bacillus proteolyticus Cyn1; Bacillus safensis Cyn2 | Phaseolus vulgaris | Production of NH3, ACC deaminase, biofilm; P solubilization; secretion of catalase enzyme and siderophores; | Tolerance to abiotic stresses | [98] |
Bacillus sp. LrM2 | Avena sativa | Production of ACC deaminase and antioxidant enzymes | Tolerance to saline stress, shoot growth, and root system development | [99] |
Species of Bacillus | Commercial Name | Mechanism | Crop | Marketed by |
---|---|---|---|---|
Bacillus subtilis CNPMS B2084 (=BRM034840) Bacillus (Priestia) megaterium CNPMS B119 (=BRM033112) | Biomaphos | Phosphate solubilizer | Zea mays; Glycine max | Bioma |
Bacillus subtilis BRM 2084 Bacillus (Priestia) megaterium BRM 119 | Solubphos | Phosphate solubilizer | Zea mays; Glycine max | Simbiose |
Bacillus subtilis CNPMS B2084 (=BRMO34840) Bacillus (Priestia) megaterium CNPMS B119 (=BRMO33112) | Omsugo P | Phosphate solubilizer | Glycine max | Corteva |
Bacillus subtilis CNPMS B2084 (-BRMO34840) Bacillus (Priestia) megaterium CNPMS B119 (=BRMO33112) | Omsugo Eco | Phosphate solubilizer | Saccharum officinarum | Corteva |
Bacillus licheniformis CCTB07 | Bioprince | Growth promoter | Zea mays | Biotrop |
Bacillus pumilus CCTB05 Bacillus subtilis CCTB04 Bacillus amyloliquefaciens CCTB09 | Biotrio | Growth promoter | Zea mays Glycine max Lactuca sativa | Biotrop |
Bacillus subtilis BV09 | Biobaci | Microbiological nematicide | Any crop with the following targets: Meloidogyne incognita, Meloidogyne javanica, Meloidogyne exígua, Meloidogyne paranaenses, Pratylenchus zeae, and Fusarium oxysporum | Vittia |
Bacillus amyloliquefaciens UMAF6614 | Veraneio | Microbiological nematicide | Any crop with the following targets: Meloidogyne incognita, Meloidogyne javanica, and Pratylenchus zeae | Koppert |
Bacillus amyloliquefaciens SIMBI BS 10 CCT 7600 | Nemacontrol | Microbiological nematicide | Any crop with the following targets: Heterodera glycines, Meloidogyne exigua, Meloidogyne incógnita, Pratylenchus brachyurus, and Sclerotinia sclerotiorum | Simbiose |
Bacillus pumilus CNPSo 3203 | Caravan | Microbiological fungicide | Any crop with the following targets: Septoria glycines, Corynespora cassiicola, and Cercospora kikuchii | Koppert |
Bacillus amyloliquefaciens FZB45 | Phosbac | Phosphate solubilizer | Zea mays; Glycine max | Andermatt |
Bacillus (Priestia) aryabhattai CMAA 1363 | Auras | Growth promoter (tolerance to drought) | Zea mays; Glycine max | NOOA Ciência e Tecnologia Agrícola |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasques, N.C.; Nogueira, M.A.; Hungria, M. Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil. Agronomy 2024, 14, 1654. https://doi.org/10.3390/agronomy14081654
Vasques NC, Nogueira MA, Hungria M. Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil. Agronomy. 2024; 14(8):1654. https://doi.org/10.3390/agronomy14081654
Chicago/Turabian StyleVasques, Natalia Caetano, Marco Antonio Nogueira, and Mariangela Hungria. 2024. "Increasing Application of Multifunctional Bacillus for Biocontrol of Pests and Diseases and Plant Growth Promotion: Lessons from Brazil" Agronomy 14, no. 8: 1654. https://doi.org/10.3390/agronomy14081654