Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = BAF complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1386 KiB  
Review
Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies—Therapeutic Vulnerabilities in Treatment-Resistant Subtypes
by Yue Ma, Natisha R. Field, Tao Xie, Sarina Briscas, Emily G. Kokinogoulis, Tali S. Skipper, Amani Alghalayini, Farhana A. Sarker, Nham Tran, Nikola A. Bowden, Kristie-Ann Dickson and Deborah J. Marsh
Cancers 2024, 16(17), 3068; https://doi.org/10.3390/cancers16173068 - 3 Sep 2024
Cited by 1 | Viewed by 1156
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations [...] Read more.
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42–67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69–100% of SCCOHT cases and SMARCA2 silencing seen 86–100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade. Full article
(This article belongs to the Special Issue Rare Gynecological Cancers)
Show Figures

Graphical abstract

21 pages, 4095 KiB  
Article
Genome-Wide CRISPR Screen Identifies KEAP1 Perturbation as a Vulnerability of ARID1A-Deficient Cells
by Louis-Alexandre Fournier, Forouh Kalantari, James P. Wells, Joon Seon Lee, Genny Trigo-Gonzalez, Michelle M. Moksa, Theodore Smith, Justin White, Alynn Shanks, Siyun L. Wang, Edmund Su, Yemin Wang, David G. Huntsman, Martin Hirst and Peter C. Stirling
Cancers 2024, 16(17), 2949; https://doi.org/10.3390/cancers16172949 - 24 Aug 2024
Viewed by 864
Abstract
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% [...] Read more.
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells. Full article
(This article belongs to the Special Issue Exploiting Liabilities in Mechanism of DNA Repair for Cancer Therapy)
Show Figures

Figure 1

21 pages, 4224 KiB  
Article
Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma
by Kaniz Fatema, Yanliang Wang, Adriene Pavek, Zachary Larson, Christopher Nartker, Shawn Plyler, Amanda Jeppesen, Breanna Mehling, Mario R. Capecchi, Kevin B. Jones and Jared J. Barrott
Cancers 2024, 16(15), 2725; https://doi.org/10.3390/cancers16152725 - 31 Jul 2024
Viewed by 1009
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations [...] Read more.
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care. Full article
(This article belongs to the Special Issue Multimodality Management of Sarcomas)
Show Figures

Figure 1

10 pages, 2715 KiB  
Communication
Squamous Cell Carcinoma in Never Smokers: An Insight into SMARCB1 Loss
by Akshay J. Patel, Hanan Hemead, Hannah Jesani, Andrea Bille, Philippe Taniere and Gary Middleton
Int. J. Mol. Sci. 2024, 25(15), 8165; https://doi.org/10.3390/ijms25158165 - 26 Jul 2024
Viewed by 797
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Among NSCLCs, squamous cell carcinoma (SqCC) is strongly associated with smoking. However, lung cancer in never smokers (LCINS) represents approximately 25% of lung [...] Read more.
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Among NSCLCs, squamous cell carcinoma (SqCC) is strongly associated with smoking. However, lung cancer in never smokers (LCINS) represents approximately 25% of lung cancer cases globally and shows increasing incidence, particularly in East Asia. LCINS-SqCC is less well-characterized, especially regarding its genomic alterations and their impact on clinical outcomes. We conducted a retrospective analysis over a 20-year period (July 2003–July 2023) at two major tertiary centers in the UK. The cohort included 59 patients with LCINS-SqCC who underwent radical surgical resection. Data collected included demographic information, comorbidities, histopathological details, and outcome metrics such as disease-free and overall survival. Molecular sequencing of tumor specimens was performed to identify genomic aberrations. The cohort had a median age of 71 years (IQR 62–77) and a median BMI of 25.4 (IQR 22.8–27.8), with a slight male predominance (53%). The majority of patients (93%) had a preoperative MRC of 1–2. Recurrent disease was observed in 23 patients (39%), and 32 patients (54%) had died at a median follow-up of 3 years. Median disease-free survival was 545 days (IQR 132–1496), and overall survival was 888 days (IQR 443–2071). Preoperative creatinine levels were higher in patients who experienced recurrence (p = 0.037). Molecular analysis identified biallelic SMARCB1 loss in two younger patients, associated with rapid disease progression despite R0 resection. These patients’ tumors were PDL1-negative, TTF-1-negative, and positive for cytokeratin, CD56, and p40. SMARCB1-deficient SqCC in never smokers represents a highly aggressive variant with poor disease-free survival, highlighting the importance of integrating advanced molecular diagnostics in clinical practice. This study underscores the necessity for personalized treatment strategies, including targeted therapies such as EZH2 inhibitors and immune checkpoint blockade, to address the unique molecular pathways in SMARCB1-deficient cancers. Further clinical trials are essential to optimize therapeutic approaches for this challenging subgroup of lung cancer. Full article
Show Figures

Figure 1

14 pages, 1194 KiB  
Review
ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation
by Giuseppe Angelico, Giulio Attanasio, Lorenzo Colarossi, Cristina Colarossi, Matteo Montalbano, Eleonora Aiello, Federica Di Vendra, Marzia Mare, Nicolas Orsi and Lorenzo Memeo
Cancers 2024, 16(11), 2062; https://doi.org/10.3390/cancers16112062 - 30 May 2024
Viewed by 1564
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental [...] Read more.
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors. Full article
(This article belongs to the Special Issue Relevant Prognostic Factors in Gastric Cancer)
Show Figures

Figure 1

31 pages, 5627 KiB  
Review
Identification and Development of BRD9 Chemical Probes
by Ester Colarusso, Maria Giovanna Chini, Giuseppe Bifulco, Gianluigi Lauro and Assunta Giordano
Pharmaceuticals 2024, 17(3), 392; https://doi.org/10.3390/ph17030392 - 19 Mar 2024
Cited by 2 | Viewed by 1507
Abstract
The development of BRD9 inhibitors involves the design and synthesis of molecules that can specifically bind the BRD9 protein, interfering with the function of the chromatin-remodeling complex ncBAF, with the main advantage of modulating gene expression and controlling cellular processes. Here, we summarize [...] Read more.
The development of BRD9 inhibitors involves the design and synthesis of molecules that can specifically bind the BRD9 protein, interfering with the function of the chromatin-remodeling complex ncBAF, with the main advantage of modulating gene expression and controlling cellular processes. Here, we summarize the work conducted over the past 10 years to find new BRD9 binders, with an emphasis on their structure–activity relationships, efficacies, and selectivities in preliminary studies. BRD9 is expressed in a variety of cancer forms, hence, its inhibition holds particular significance in cancer research. However, it is crucial to note that the expanding research in the field, particularly in the development of new degraders, may uncover new therapeutic potentials. Full article
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Identification of SWI/SNF Subcomplex GBAF Presence, Intra-Complex Interactions, and Transcriptional Dynamics during Early Porcine Development
by Sarah Innis, Aktan Alpsoy, Jennifer Crodian, Yu-Chun Tseng, Emily Dykhuizen, Birgit Cabot and Ryan Cabot
Animals 2024, 14(5), 773; https://doi.org/10.3390/ani14050773 - 29 Feb 2024
Viewed by 1243
Abstract
Understanding the complex interplay between genetics and environmental factors is vital for enhancing livestock production efficiency while safeguarding animal health. Despite extensive studies on production-specific genes in livestock, exploring how epigenetic mechanisms and heritable modifications govern animal growth and development remains an under-explored [...] Read more.
Understanding the complex interplay between genetics and environmental factors is vital for enhancing livestock production efficiency while safeguarding animal health. Despite extensive studies on production-specific genes in livestock, exploring how epigenetic mechanisms and heritable modifications govern animal growth and development remains an under-explored frontier with potential implications across all life stages. This study focuses on the GBAF chromatin remodeling complex and evaluates its presence during embryonic and fetal development in swine. Immunocytochemistry and co-immunoprecipitation techniques were employed to investigate the presence and interactions of GBAF subunits BRD9 and GLTSCR1 in porcine oocytes, preimplantation embryos, and cell lines, and transcriptional dynamics of GBAF subunits across these key developmental stages were analyzed using existing RNA-seq datasets. BRD9 and GLTSCR1 were identified across all represented stages, and an interaction between GLTSCR1 and BAF170 was shown in PTr2 and PFF cells. Our findings highlight the ubiquitous presence of GBAF in porcine early development and the potentially novel association between GLTSCR1 and BAF170 in swine. The transcriptional dynamics findings may suggest GBAF-specific contributions during key developmental events. This study contributes to the growing understanding of epigenetic regulators in both swine and mammalian development, emphasizing the implications of GBAF as a modulator of key developmental events. Full article
(This article belongs to the Special Issue Early Embryo Development in Agricultural Animals)
Show Figures

Figure 1

22 pages, 1039 KiB  
Review
Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications
by Megan R. Dreier, Jasmine Walia and Ivana L. de la Serna
Cited by 2 | Viewed by 6847
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations [...] Read more.
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions. Full article
Show Figures

Figure 1

25 pages, 4607 KiB  
Article
HIV-1 Transcription Inhibition Using Small RNA-Binding Molecules
by Pooja Khatkar, Gifty Mensah, Shangbo Ning, Maria Cowen, Yuriy Kim, Anastasia Williams, Fardokht A. Abulwerdi, Yunjie Zhao, Chen Zeng, Stuart F. J. Le Grice and Fatah Kashanchi
Pharmaceuticals 2024, 17(1), 33; https://doi.org/10.3390/ph17010033 - 25 Dec 2023
Viewed by 1775
Abstract
The HIV-1 transactivator protein Tat interacts with the transactivation response element (TAR) at the three-nucleotide UCU bulge to facilitate the recruitment of transcription elongation factor-b (P-TEFb) and induce the transcription of the integrated proviral genome. Therefore, the Tat–TAR interaction, unique to the virus, [...] Read more.
The HIV-1 transactivator protein Tat interacts with the transactivation response element (TAR) at the three-nucleotide UCU bulge to facilitate the recruitment of transcription elongation factor-b (P-TEFb) and induce the transcription of the integrated proviral genome. Therefore, the Tat–TAR interaction, unique to the virus, is a promising target for developing antiviral therapeutics. Currently, there are no FDA-approved drugs against HIV-1 transcription, suggesting the need to develop novel inhibitors that specifically target HIV-1 transcription. We have identified potential candidates that effectively inhibit viral transcription in myeloid and T cells without apparent toxicity. Among these candidates, two molecules showed inhibition of viral protein expression. A molecular docking and simulation approach was used to determine the binding dynamics of these small molecules on TAR RNA in the presence of the P-TEFb complex, which was further validated by a biotinylated RNA pulldown assay. Furthermore, we examined the effect of these molecules on transcription factors, including the SWI/SNF complex (BAF or PBAF), which plays an important role in chromatin remodeling near the transcription start site and hence regulates virus transcription. The top candidates showed significant viral transcription inhibition in primary cells infected with HIV-1 (98.6). Collectively, our study identified potential transcription inhibitors that can potentially complement existing cART drugs to address the current therapeutic gap in current regimens. Additionally, shifting of the TAR RNA loop towards Cyclin T1 upon molecule binding during molecular simulation studies suggested that targeting the TAR loop and Tat-binding UCU bulge together should be an essential feature of TAR-binding molecules/inhibitors to achieve complete viral transcription inhibition. Full article
(This article belongs to the Special Issue HIV and Viral Hepatitis: Prevention, Treatment and Coinfection)
Show Figures

Figure 1

28 pages, 38808 KiB  
Article
Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule
by Dmitry S. Bogolyubov, Sergey V. Shabelnikov, Alexandra O. Travina, Maksim I. Sulatsky and Irina O. Bogolyubova
J. Dev. Biol. 2023, 11(4), 44; https://doi.org/10.3390/jdb11040044 - 12 Dec 2023
Viewed by 1902
Abstract
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external [...] Read more.
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus—germinal vesicle (GV)—at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog’s KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners—LEMD2, an inner nuclear membrane protein—are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures—the so-called annuli, very similar in ultrastructure to the nuclear pore complexes—do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

14 pages, 1380 KiB  
Article
On the Construct of Functional Psychology’s Developmental Theory: Basic Experiences of the Self (BEsS)
by Filippo Dipasquale, Marta Blandini, Raffaele Gueli, Paola Fecarotta and Paola Magnano
Eur. J. Investig. Health Psychol. Educ. 2023, 13(12), 2863-2876; https://doi.org/10.3390/ejihpe13120198 - 4 Dec 2023
Viewed by 1274
Abstract
According to the neo-functional developmental theory, newborns and infants exhibit complex psycho-bodily functioning. The Basic Experiences of the Self (BEsS) refer to how they fulfil their essential life needs by organising their psycho-bodily functions in a typical configuration. As part of our research [...] Read more.
According to the neo-functional developmental theory, newborns and infants exhibit complex psycho-bodily functioning. The Basic Experiences of the Self (BEsS) refer to how they fulfil their essential life needs by organising their psycho-bodily functions in a typical configuration. As part of our research study, we developed a prototype psychometric tool called the BEsS Assessment Form (BAF) to assess the BEsS in infants aged zero to three years. We collected video recordings of their spontaneous behaviour and used the BAF to evaluate function polarity. In the BAF, thirty pairs of words represent functions in their dyadic polarity. To estimate the level of function polarity, we used the Osgood semantic differential scale, which ranges from seven to one. The study’s results confirm that functions can be assessed by grading along the opposite polarity spectrum. Moreover, in accordance with the theory, the functions can be grouped into four domains: the emotional, postural motor, physiological, and cognitive-symbolic planes. Our findings suggest that the characteristics of BEsS are significantly influenced by the activation of the physiological and postural motor functions, which are related to the early regulation of the autonomic nervous system and can be used to evaluate infant arousal. Full article
Show Figures

Figure 1

29 pages, 8077 KiB  
Review
Radiation Synthesis of High-Temperature Wide-Bandgap Ceramics
by Victor Lisitsyn, Aida Tulegenova, Mikhail Golkovski, Elena Polisadova, Liudmila Lisitsyna, Dossymkhan Mussakhanov and Gulnur Alpyssova
Micromachines 2023, 14(12), 2193; https://doi.org/10.3390/mi14122193 - 30 Nov 2023
Cited by 4 | Viewed by 1067
Abstract
This paper presents the results of ceramic synthesis in the field of a powerful flux of high-energy electrons on powder mixtures. The synthesis is carried out via the direct exposure of the radiation flux to a mixture with high speed (up to 10 [...] Read more.
This paper presents the results of ceramic synthesis in the field of a powerful flux of high-energy electrons on powder mixtures. The synthesis is carried out via the direct exposure of the radiation flux to a mixture with high speed (up to 10 g/s) and efficiency without the use of any methods or means for stimulation. These synthesis qualities provide the opportunity to optimize compositions and conditions in a short time while maintaining the purity of the ceramics. The possibility of synthesizing ceramics from powders of metal oxides and fluorides (MgF2, BaF2, WO3, Ga2O3, Al2O3, Y2O3, ZrO2, MgO) and complex compounds from their stoichiometric mixtures (Y3Al3O12, Y3AlxGa(5-x) O12, MgAl2O4, ZnAl2O4, MgWO4, ZnWO4, BaxMg(2-x) F4), including activators, is demonstrated. The ceramics synthesized in the field of high-energy electron flux have a structure and luminescence properties similar to those obtained by other methods, such as thermal methods. The results of studying the processes of energy transfer of the electron beam mixture, quantitative assessments of the distribution of absorbed energy, and the dissipation of this energy are presented. The optimal conditions for beam treatment of the mixture during synthesis are determined. It is shown that the efficiency of radiation synthesis of ceramics depends on the particle dispersion of the initial powders. Powders with particle sizes of 1–10 µm, uniform for the synthesis of ceramics of complex compositions, are optimal. A hypothesis is put forward that ionization processes, resulting in the radiolysis of particles and the exchange of elements in the ion–electron plasma, dominate in the formation of new structural phases during radiation synthesis. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

18 pages, 2218 KiB  
Article
Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for the Quantification of ARID1A in Tissue Lysates
by Manuel Hinsberger, Julia Becker-Kettern, Wiebke M. Jürgens-Wemheuer, Joachim Oertel and Walter J. Schulz-Schaeffer
Cancers 2023, 15(16), 4096; https://doi.org/10.3390/cancers15164096 - 14 Aug 2023
Cited by 1 | Viewed by 1544
Abstract
ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may [...] Read more.
ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a ‘goodness of fit’ of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Graphical abstract

20 pages, 1181 KiB  
Review
Innovative Breakthroughs for the Treatment of Advanced and Metastatic Synovial Sarcoma
by Lorena Landuzzi, Maria Cristina Manara, Laura Pazzaglia, Pier-Luigi Lollini and Katia Scotlandi
Cancers 2023, 15(15), 3887; https://doi.org/10.3390/cancers15153887 - 30 Jul 2023
Cited by 4 | Viewed by 2283
Abstract
Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic [...] Read more.
Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70–80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement. Full article
(This article belongs to the Special Issue Targeted Treatment for Soft Tissue Sarcoma and Bone Sarcoma)
Show Figures

Figure 1

18 pages, 4617 KiB  
Article
Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation
by Teresita Padilla-Benavides, Monserrat Olea-Flores, Tapan Sharma, Sabriya A. Syed, Hanna Witwicka, Miriam D. Zuñiga-Eulogio, Kexin Zhang, Napoleon Navarro-Tito and Anthony N. Imbalzano
Int. J. Mol. Sci. 2023, 24(14), 11256; https://doi.org/10.3390/ijms241411256 - 9 Jul 2023
Cited by 4 | Viewed by 1961
Abstract
Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and [...] Read more.
Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and polybromo-associated BAF (PBAF). The biological roles for the different enzyme sub-families are poorly described. We knocked down the expression of genes encoding unique subunit proteins for each sub-family, Baf250A, Brd9, and Baf180, which mark the BAF, ncBAF, and PBAF sub-families, respectively, and examined the requirement for each in myoblast differentiation. We found that Baf250A and the BAF complex were required to drive lineage-specific gene expression. KD of Brd9 delayed differentiation. However, while the Baf250A-dependent gene expression profile included myogenic genes, the Brd9-dependent gene expression profile did not, suggesting Brd9 and the ncBAF complex indirectly contributed to differentiation. Baf180 was dispensable for myoblast differentiation. The results distinguish between the roles of the mSWI/SNF enzyme sub-families during myoblast differentiation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop