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Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-
small cell lung cancer (NSCLC) constituting 85% of cases. Among NSCLCs, squamous cell carcinoma
(SqCC) is strongly associated with smoking. However, lung cancer in never smokers (LCINS) repre-
sents approximately 25% of lung cancer cases globally and shows increasing incidence, particularly
in East Asia. LCINS-SqCC is less well-characterized, especially regarding its genomic alterations
and their impact on clinical outcomes. We conducted a retrospective analysis over a 20-year period
(July 2003–July 2023) at two major tertiary centers in the UK. The cohort included 59 patients with
LCINS-SqCC who underwent radical surgical resection. Data collected included demographic infor-
mation, comorbidities, histopathological details, and outcome metrics such as disease-free and overall
survival. Molecular sequencing of tumor specimens was performed to identify genomic aberrations.
The cohort had a median age of 71 years (IQR 62–77) and a median BMI of 25.4 (IQR 22.8–27.8), with
a slight male predominance (53%). The majority of patients (93%) had a preoperative MRC of 1–2.
Recurrent disease was observed in 23 patients (39%), and 32 patients (54%) had died at a median
follow-up of 3 years. Median disease-free survival was 545 days (IQR 132–1496), and overall survival
was 888 days (IQR 443–2071). Preoperative creatinine levels were higher in patients who experienced
recurrence (p = 0.037). Molecular analysis identified biallelic SMARCB1 loss in two younger patients,
associated with rapid disease progression despite R0 resection. These patients’ tumors were PDL1-
negative, TTF-1-negative, and positive for cytokeratin, CD56, and p40. SMARCB1-deficient SqCC
in never smokers represents a highly aggressive variant with poor disease-free survival, highlight-
ing the importance of integrating advanced molecular diagnostics in clinical practice. This study
underscores the necessity for personalized treatment strategies, including targeted therapies such as
EZH2 inhibitors and immune checkpoint blockade, to address the unique molecular pathways in
SMARCB1-deficient cancers. Further clinical trials are essential to optimize therapeutic approaches
for this challenging subgroup of lung cancer.

Keywords: squamous cell carcinoma (SqCC); non-small cell lung cancer (NSCLC); lung cancer in
never smokers (LCINS); SMARCB1; SWF/INI complex; BAF complex

1. Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide, account-
ing for greater than 1 million deaths [1]. Non-small cell lung cancer (NSCLC) accounts for
85% of all lung cancers and comprises two major subtypes; adenocarcinoma and squamous
cell carcinoma (SqCC) [2]. Tobacco smoke is considered the single greatest risk factor in
the etiopathogenesis of lung cancers, and this association is much stronger in the SqCC
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subtype [3]. Lung cancer in never smokers (LCINS), however, still accounts for roughly 25%
of all lung cancer worldwide [4], and epidemiological data [5] have shown an increasing
trend in the incidence of LCINS over the last two decades. There is a geographic disparity
in that the prevalence of LCINS is much higher in the east Asian subcontinent [6].

LCINS is a heterogeneous entity with several risk factors having been identified in
the etiopathogenesis; namely high-risk occupations, low BMI, indoor biomass use with-
out proper ventilation, air pollution (PM2.5), and positive family history with germline
mutations [7,8]. The majority of these data emerge from the adenocarcinoma subtype,
which is the predominant histology seen in never smokers. Biologically, these adenocarci-
nomas differ greatly from adenocarcinomas seen in ever smokers, with differences in the
proportion of oncogenic driver mutations such as EGFR, KRAS, and BRAF [9–11]; these
seem to predominate in never smokers, females, and those of east Asian descent [10,12].
A lot of these oncogenic driver mutations are clinically actionable, and analysis of RNA-
sequencing data has shown these never-smoker adenocarcinomas to possess distinct im-
mune transcriptional subtypes that vary in their expression of clinically relevant immune
checkpoint molecules and immune cell composition [13].

These mutations have also been described in SqCC, however to a much lesser extent,
particularly in the western world. There is a paucity of data closely examining the clinico-
pathological and genetic features of this subgroup [14]. LCINS do possess distinct genomic
alterations that impact survival [15] and data from Huang et al. [14] have shown that SqCC
in never smokers is more poorly differentiated with a higher number of genomic aberra-
tions that are potentially targetable. With the advent of lung cancer screening [16,17], there
is likely to be an increased detection of lung cancers in never smokers, and understanding
the clinical relevance of genomic alterations in less understood subtypes such as SqCC is
likely to be hugely impactful.

In this study, we aim to explore the natural history of our cohort of SqCC in never
smokers and understand the clinical relevance of any specific genomic aberrations.

2. Results

Between July 2003 and July 2023, we identified 59 patients with no significant smoking
history who had undergone radical lung resection for SqCC. The median age of the cohort
was 71 (IQR 62–77), with a median BMI of 25.4 (IQR 22.8–27.8). There was a slight male
preponderance (53%, n = 31). The cohort was quite functionally robust, with 93% of cohort
having a preoperative MRC of 1–2 (n = 55). The presence of COPD, ischemic heart disease,
and diabetes was found in 11, 5, and 9 patients, respectively. At median follow-up of
3 years, 23 patients (39%) had developed recurrent disease, and 32 patients (54%) had
died. Median disease-free and overall survival were 545 (132–1496) and 888 (443–2071)
days, respectively.

We compared baseline characteristics between those who recurred and those who did
not and found no significant differences in age, sex, BMI or co-morbidities. Pre-operative
creatinine was significantly higher in those who recurred (80 versus 60, p = 0.037). There
were no differences in any pre-operative or histopathological criteria between those who
died and those who are alive at long-term follow-up.

We undertook molecular sequencing analysis of the tumor cells on the post-operative
specimen blocks to ascertain if any driver mutations could be found particularly in those
patients who recurred early post-operatively and indeed those who were diagnosed at
a young age. In two patients, aged 32 and 39 at the time of resection, we found biallelic loss
of SMARCB1. Both these patients were previously fit and well, presented with incidental
findings of limited stage I node negative lung cancer, and, following resection, succumbed
to relapse within 56 and 148 days, respectively, despite R0 resections. Both cancers were
PDL1 < 0%, without any other actionable driver mutations, cytokeratin, CD56- and p40-
positive, and TTF-1 negative.

SMARCB1 loss had no impact on overall survival, which is unsurprising given the
small sample size, but significantly impacted disease-free survival (HR 16.67 95% CI
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3.03–100; p = 0.01). Figure 1 illustrates the difference in disease-free survival between
preservation and loss of SMARCB1 with significantly reduced disease-free survival with
loss of function of this gene by log-rank testing.
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Figure 1. Kaplan–Meier curve demonstrating disease-free survival between SMARCB1 loss and
preservation.

Table 1 below highlights the clinical pathway for the two young patients who were
found to have SMARCB1-deficient carcinomas. Despite the highlighted stark differences in
the staging and presentation of these two cases, the commonality of the SMARCB1 loss
resulted in high propensity for aggression and early recurrence.

Table 1. Schema of clinical pathway for two SMARCB1 loss patients.

Patient 1 Patient 2

36-year-old male. Never smoker. BMI 31.1. No significant
co-morbidities. No history of cancer.

39-year-old male. Never smoker. BMI 27.4.
No significant co-morbidities. No history of cancer.

Presented with dull left sided chest pain in September 2022. Incidental finding of lung mass in right upper lobe after
investigation for abdominal pain.

Stage 2b NSCLC. Stage 1B NSCLC.

Lung resection November 2022—Left lower lobectomy + lymph
node dissection: pT3pN0 R0 resection. SMARCB1-deficient,
PDL1-negative, TTF-1 negative, CD56-positive, cytokeratin

positive. Pre-operative CT axial and coronal slices are shown in
Figures 2A and 2B, respectively.

Lung resection January 2022—right upper lobectomy + lymph
node dissection: pT1cpN0 R0 resection. SMARCB1-deficient,

PDL1 negative, TTF-1 negative, CD56-positive,
cytokeratin-positive. Pre-operative axial PET slice shown

in Figure 3A.

Histopathological Features: 58 mm size tumor, lymphovascular
and perineural invasion seen, no spread through airways

(STAS), no breach of visceral pleura.

Histopathological Features: 21 mm size tumor, no
lymphovascular and perineural invasion seen, no spread

through airways (STAS), no breach of visceral pleura.
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Table 1. Cont.

Patient 1 Patient 2

Recurrence December 2022—started 4 cycles of
Gemcitabine/Cisplatin. Post-operative recurrence

demonstrated in PET slices (Figure 2C,D)

Recurrence June 2022—progressive disease noted on CTPA
(performed for SOB, pyrexia) at the right hilum, with soft tissue

thickening at resection margins. Commenced on
Pembrolizumab/Paclitaxel/Cisplatin with systemic intent.

Recurrence shown in station 4R (Figure 3B), at the right hilum
(Figure 3C) and in the right posterior bony skeleton in ribs

6–9 (Figure 3D).

Progressive disease in pleura and mediastinum April
2023—compassionate release form to administer Tazemetostat.

Chemotherapy stopped due to severe allergic reaction to
drugs—November 2022. Resolution of soft tissue thickening on

PET but with new pleural metastases and bulky
paraoesophageal lymphadenopathy. Further maintenance

Pembrolizumab only.

Increased burden of disease in left hemithorax August
2023—compassionate release of combination checkpoint

blockade: Nivolumab/Ipilimumab, Tazemetostat stopped.

Slight progression on CT January 2023. Patient opted for
surgical resection of metastatic sites abroad.

November 2023—three cycles of checkpoint blockade but
developed severe rib pain due to a medial 4th destroying lesion

(pure progressive disease), given 20 Gy in 5# of
palliative radiotherapy.

Further lung resection March 2023—multiple wedge resections
of RUL and RML. Radical lymphadenectomy and resection of

tumor deposits in the chest wall, pericardium, and mediastinum
and sheath of the SVC.

December 2023—all treatment stopped in light of progression
and episode of viral pneumonia.

Referred to hospice for palliation. Patient currently under strict surveillance and has
relocated abroad.

February 2024—Under palliative care team with good
symptom control.
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3. Discussion

Lung cancer accounts for the highest number of cancer-related deaths worldwide [1].
For both males and females, breast, lung, and prostate cancers account for the most diag-
nosed malignancies globally. According to 2022 census data [1], progress has stagnated for
breast and prostate cancers but strengthened for lung cancer, coinciding with changes in
medical practice related to cancer screening and/or treatment. LCINS is fast becoming more
prevalent globally. Data from murine models and resected human samples have shown
that particulate matter less than or equal to 2.5 µM (PM2.5) is associated with lung cancer
risk. EGFR-driven cancers in never smokers showed a significant association of PM2.5 and
the incidence of lung cancer in multiple cohorts. This was reinforced by functional murine
data where exposure to air pollutants resulted in macrophage infiltration and subsequent
interleukin 1β release, which fueled tumorigenesis [8]. Whilst the majority of LCINS cases
tend to be on the adenocarcinoma spectrum, SqCC is still seen in never smokers. Onco-
genic driver mutations such as those seen in exons 19 and 21 of the EGFR gene have been
reported in SqCC [18], but this is quite infrequent. The morphologic features that suggest
squamous differentiation include intercellular bridging, squamous pearl formation, and
individual cell keratinization. These can be quite apparent in well-differentiated tumors;
however, in poorly differentiated tumors, they are difficult to find [19]. SqCC can have
numerous subtypes, but these do not properly address the morphologic spectrum let alone
the genomic profile of these tumors; hence, current standards do not allow for meaningful
correlations with clinical, prognostic, or molecular features.

Loss of SMARCB1 has been identified as the sole mutation in a number of rare
adult and pediatric cancers. These tend to be highly aggressive, being refractory to most
treatments including surgery, chemotherapy, and radiotherapy, and hence confer a very
poor prognosis [20]. The protein SMARCB1 (SNF5/INI/BAF47/SWI/SNF-Related, Matrix-
Associated, Actin-Dependent Regulator of Chromatin, Subfamily B, Member 1) is a highly
conserved core subunit of the mammalian ATP-dependent BAF chromatin remodeling
complex, which is a key regulator of nucleosome repositioning and gene expression [20].
SMARCB1-deficient cancers are characterized by biallelic loss and inactivation of this tumor
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suppressor gene; this is particularly noted in rare and aggressive childhood cancers such as
rhabdoid tumor of the kidney, atypical teratoid rhabdoid tumors, synovial sarcoma, and
myoepithelial carcinomas of the lung [21–26].

Biological relevance of this tumor suppressor gene was first highlighted in a murine
model where loss of SMARCB1 was shown to result in a highly penetrant cancer predis-
position with 100% of mice developing mature CD8+ T cell lymphoma or rare rhabdoid
tumors with a median onset of 11 weeks [27]. Loss of SMARCB1 causes the widespread loss
of BAF localization, which leads to unchecked PRC2-mediated transcriptional repression at
enhancers and promoters [28]. On a molecular level, SMARCB1 has been shown to regulate
the critical tumor suppressor, p16 (also known as p16INK4a); p16 is a cyclin-dependent
kinase inhibitor that binds to CDK4/6 and prevents activation of the CDK4/6-cyclin D1
complex [29]. SMARCB1-deficient cells have reduced p16 expression, which ultimately
leads to increased cellular proliferation due to unchecked S phase progression [20]. Ad-
ditionally, Myc, which is considered a transcriptional activator that potentiates oncogenic
transformation when over-expressed, is thought to be regulated by SMARCB1 such that its
activation targets are suitably inhibited to prevent neoplastic change [30].

SMARCB1 loss has been described in lung cancer as isolated case reports. SMARCA4
loss has been noted in conjunction with an EGFR mutation [26]. SMARCB1 has been noted
in STK11 deficient de-differentiated lung cancer [25]. In the setting of thoracic neoplasms,
it has been described that SMARCA4 loss correlates with poorer outcome and expression
of SOX2, CD34, and SALL4, and SMARCB1 loss is mainly seen in thoracic neoplasms of
a mesenchymal lineage [31]. Both cases described from our series are virtually identical
to that described by Rickard et al. [24] in that the majority of cells were p40-positive and
uniformly positive for cytokeratins. The patient described in this report [24] was initially
treated with Paclitaxel, Carboplatin, and Ipilimumab and Nivolumab and responded to the
first piece of this, but then progressed on the immunotherapy alone, very much implying
chemotherapy responsiveness. They were then treated with Gemcitabine/Carboplatin and
sustained a good metabolic response in both the primary and metastatic site, and at the
time of the report were still responding. Further to this, a partial response to combination
neoadjuvant Pembrolizumab and combination platinum doublet therapy has been reported
in a case of advanced SMARCB1-deficient cancer [25].

There are now significant advances in the therapeutic targeting of SMARCB1-deficient
cancers, gained through understanding of the molecular biology of this protein. EZH2
inhibition in particular has been biologically and clinically viable, having shown efficacy
in SMARCB1-deficient sarcomas [32]. The FDA-approved drug Tazemetostat is a potent
EZH2 inhibitor [33] and was employed in these sarcoma patients [32].

The BAF complex opposes the repressive PRC2 complex to facilitate chromatin de-
compaction, nucleosome remodeling by promoting sliding, or ejection of nucleosomes;
this facilitates coordination of gene expression. PRC2 complexes induce transcriptional
repression by catalyzing methylation of histone H3 on lysine 27 [20,23]. The BAF and PRC2
complex essentially exist in a state of functional antagonism. Upon loss of SMARCB1, there
is no ability to oppose PRC2-induced repression of the nucleosome, hence no ability to
express BAF-target genes. EZH2 is the catalytic subunit of PRC2, which can be targeted by
FDA-approved agents such as Tazemetostat [33,34].

Other targets that have been proposed include dual blockade of tyrosine kinase
receptors; PDGF-Rα/β and FGFR-2, which have been shown to be co-activated in rhabdoid
tumors and can be targeted by the tyrosine kinase inhibitor (TKI), Ponatinib [35]. GBAF,
another member of the ATP-dependent chromatin remodeling family and an identified
subcomplex of BAF, has been proposed as another target in atypical teratoid rhabdoid
tumors (ATRT) for anti-tumor potential [36]. In vitro work has shown that proliferative
growth in ATRT and synovial sarcomas is dependent on residual GBAF functional activity
and hence targeting selective subunits of the GBAF subcomplex; namely, BRD9 or GLTSCR1
can reduce cellular viability in these solid tumors [20,36]. MYC inhibition has been shown
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to reduce ATRT tumor growth in vivo and employ the BET inhibitor; IQ1 in orthotopic
ATRT xenografts has mimicked the effect of direct MYC inhibition [37].

Immune checkpoint blockade is another area that is being trialed in SMARCB1-
deficient cancers. Although the two patients in our series were PDL1-negative, data from
a pediatric series [38] showed PDL1 positivity in 47% of tumor samples with concurrent
SMARCB1 loss. In SMARCB1-deficient sarcomas, several clinical trials have reported vari-
able success rates with checkpoint blockade as monotherapy or as combination therapy [39].
Some studies (NCT03277924 and NCT02332668) have shown best response durations of
up to 17 months [40,41]. In the setting of unrestricted EZH2 activity, there is likely to be
repression of class I and class II and indeed PDL1 expression, hence reducing the efficacy
of checkpoint blockade. However, a large proportion of SMARCB1-deficient tumors do
demonstrate a degree of immune infiltration [39]. Clinical trials have been conducted
to address the biological plausibility of concurrent EZH2 inhibition with Tazemetostat
and immune checkpoint blockade [23]. A phase I/II study to assess the value of combin-
ing immune checkpoint inhibitors (nivolumab and ipilimumab) with Tazemetostat has
been launched (NCT05407441) [42] for the treatment of a variety of SMARCB1/INI1- or
SMARCA4-deficient tumors [23]. EZH2 inhibition has been shown to increase the infil-
tration of CD8+ T cells in ovarian cancer models [43], and comparisons of tumor biopsy
samples obtained prior to and during Tazemetostat revealed a substantial increase in intra-
tumoral and stromal infiltrates of CD8+ cytotoxic and FOXP3+ regulatory T cells, together
with an enhanced expression of the PD-1 and LAG3 immune-checkpoint proteins on T
cells [39]. Phase II trial data (CAIRE trial; NCT04705818) [44] evaluating the association of
Tazemetostat and anti-PD-L1 (Durvalumab) in solid tumors will hopefully elucidate these
biological relationships further.

The most commonly accepted mechanistic insight into SMARCB1-deficient cancers
is that the loss of the SMARC protein results in the pathological manifestation of cancer.
Recent data have shown that the gene DDB1-CUL4-associated factor 5 (DCAF5) is required
for the survival of SMARCB1-mutant cancers and actually promotes the degradation of
incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion
of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci,
and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse
the cancer state, including in vivo [45]. Consequently, cancer results not from the loss of
SMARCB1 function, but rather from DCAF5-mediated degradation of SWI/SNF complexes.
These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors
may effectively reverse the malignant state of some cancers driven by disruption of tumor
suppressor complexes [45].

4. Methods and Materials

We performed a retrospective analysis over a 20-year period (July 2003–July 2023)
from two major tertiary centers in the United Kingdom. We interrogated our data series to
identify all the LCINS-SqCC patients who had undergone radical surgical resection.

Inclusion Criteria:

1. Any patient who had undergone radical surgical resection for squamous cell carci-
noma of the lung in the time period.

2. Never smoking status.

Exclusion Criteria:

1. Non-squamous histology.

The time period was dictated by the availability and completeness of data from the
electronic patients’ records (EPR) and the national audit database. Data were reported in
accordance with the STROBE guidelines [46,47]. Our primary aim was to identify any key
histopathological features that were unique to this cohort and if said features were linked
to survival. We collected data on demographic features (age, sex, BMI), comorbidities,
histopathological data (IASLC staging post-operatively), and outcome data (disease-free
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and overall survival and length of hospital stay). Smoking status was described and
modeled according to the criteria set out in previous epidemiological studies to ensure we
were truly capturing never smokers [48].

Statistical Analysis

For continuous variables, results are expressed as means and standard deviations or
medians and IQR depending on the distribution of the data. For categorical variables, we
reported counts and percentages. For continuous data, group comparison was carried
out using a Student’s t-test or Mann–Whitney test depending on the distribution of data.
Normality was assessed using Shapiro–Wilk testing. Group differences for categorical data
were assessed using the chi squared test of independence or Fisher’s exact test for low
frequencies. Time-to-event data were analyzed using Cox proportional hazards modeling.
Survival analyses were carried out using survminer and displayed using the ggsurv/ggplot2
packages [49–51]. Data were displayed using the gtsummary package [52]. The tests were
considered significant at p < 0.05. All analyses were performed using R programming
software (v4.0.3) in R studio.

5. Conclusions

This study elucidates the aggressive nature of SMARCB1-deficient squamous cell car-
cinoma (SqCC) in never smokers, highlighting a significant impact on disease-free survival
and underscoring the urgent need for advanced molecular diagnostics and targeted thera-
pies. The identification of biallelic SMARCB1 loss in younger patients with LCINS-SqCC,
associated with rapid relapse despite standard resection, illustrates a critical prognostic
biomarker. It is important, however, to recognize that this analysis is limited by the small
series and retrospective nature.

As lung cancer in never smokers, particularly SqCC, continues to rise globally, the
integration of molecular profiling into routine clinical practice is imperative for the devel-
opment of personalized treatment strategies and improved patient outcomes. Advanced
therapeutic approaches, including EZH2 inhibition and immune checkpoint blockade, show
promise in addressing the distinct molecular pathways disrupted in SMARCB1-deficient
cancers, paving the way for future clinical trials to optimize treatment efficacy in this
challenging subset of lung cancer.
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