Journal Description
Inorganics
Inorganics
is an international, scientific, peer-reviewed, open access journal on inorganic chemistry published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Inorganic and Nuclear) / CiteScore - Q2 (Inorganic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.7 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our authors say about Inorganics.
Impact Factor:
3.1 (2023);
5-Year Impact Factor:
2.6 (2023)
Latest Articles
Uranium-Mediated Thiourea/Urea Conversion on Chelating Ligands
Inorganics 2024, 12(11), 295; https://doi.org/10.3390/inorganics12110295 - 17 Nov 2024
Abstract
2,6-Dipicolinoylbis(N,N-dialkylthioureas) and H2LR2 react with uranyl salts and a supporting base (e.g., NEt3) under formation of monomeric or oligomeric complexes of the compositions [UO2(LR2)(solv)] (solv = donor solvents) or [{UO2(L
[...] Read more.
2,6-Dipicolinoylbis(N,N-dialkylthioureas) and H2LR2 react with uranyl salts and a supporting base (e.g., NEt3) under formation of monomeric or oligomeric complexes of the compositions [UO2(LR2)(solv)] (solv = donor solvents) or [{UO2(LR2)(µ2-OMe)}2]2–. In such complexes, the uranyl ions are commonly coordinated by the “hard” O,N,O or N,N,N donor atom sets of the central ligand unit and the lateral sulfur donor atoms remain uncoordinated. Their individual structures, however, depend on the reaction conditions, particularly on the equivalents of NEt3 used. An unprecedented, selective hydrolysis of the uranium-coordinating bis(thioureato) ligands results in an S/O donor atom exchange at exclusively one thiourea side-arm, when an excess of NEt3 is used. The resulting trimeric uranyl complexes are isolated in fair yields and have a composition of [(UO2)3(L2Et2)2(µ2–OR)(µ3-O)]–. H2L2Et2 represents the newly formed 2,6-dipicolinoyl(N,N-diethylthiourea)(N,N-diethylurea) and R = H, Me, or Et. {L2Et2}2– binds to the uranyl units via the pyridine ring, the dialkylurea arm, and the central carbonyl groups, while the thiourea unit remains uncoordinated. The central cores of the products consist of oxido-centered triangular {(UO2)3O}4+ units. The observed reactivity is metal-driven and corresponds mechanistically most probably to a classical metal-catalyzed hydrodesulfurization. The hydrolytic thiourea/urea conversion is only observed in the presence of uranyl ions. The products were isolated in crystalline form and studied spectroscopically and by X-ray diffraction. The experimental findings are accompanied by DFT calculations, which help to understand the energetic implications in such systems.
Full article
(This article belongs to the Section Coordination Chemistry)
►
Show Figures
Open AccessArticle
Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal
by
Mayra Hernández Trespalacios, María Florencia Mangiameli, Lina Gribaudo, María Inés Frascaroli and Juan Carlos González
Inorganics 2024, 12(11), 294; https://doi.org/10.3390/inorganics12110294 - 14 Nov 2024
Abstract
The lack of access to drinking water is a problem affecting many regions worldwide. In Santa Fe, Argentina, the population uses groundwater as a source of drinking water. Unfortunately, it has high concentrations of As(V), which makes it unsuitable for consumption. Despite several
[...] Read more.
The lack of access to drinking water is a problem affecting many regions worldwide. In Santa Fe, Argentina, the population uses groundwater as a source of drinking water. Unfortunately, it has high concentrations of As(V), which makes it unsuitable for consumption. Despite several methods for As(V) quantification and elimination, the high cost and technical difficulties in their implementation make many of them cost-ineffective, especially in small communities. In this work, a hybrid sorbent of magnetite–chitosan spheres (M-Q) is synthesized, and its sorption capacity is evaluated by employing groundwater with high conductivity (12.1 mS/cm) and hardness (1125 mg/L CaCO3) and an As(V) concentration of 0.265 mg/L. A colorimetric analytical technique, which is sufficiently sensitive, simple, and economical to apply, is used for As(V) quantification. The experimental results indicate that the sorption capacity for As(V) removal is 80.1% (sorbent mass 0.466 g, time 85.3 min, and pH 5.9), with the advantage of the capability of being independent of its magnetic properties. The optimal experimental conditions for As(V) sorption (pH, time, and mass of the hybrid sorbent M-Q) are obtained by response surface factorial designs, which significantly reduce the total number of experiments and, at the same time, demonstrate that all the selected variables significantly affect the As(V) sorption percentage (response studied).
Full article
(This article belongs to the Section Bioinorganic Chemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Hierarchically Electrodeposited Nickel/Graphene Coatings for Improved Corrosion Resistance of Ni Foam Flow Field in PEMFC
by
Yuzhen Xia, Qibin Zuo, Chuanfu Sun, Guilin Hu and Baizeng Fang
Inorganics 2024, 12(11), 293; https://doi.org/10.3390/inorganics12110293 - 14 Nov 2024
Abstract
Metal foams are promising materials for the flow fields of proton exchange membrane fuel cells (PEMFCs) because of excellent mass transport characteristics and high electronic conductivity. To resolve the corrosion problem in the acidic environment under high temperature, nickel/graphene (Ni/G) composite coatings with
[...] Read more.
Metal foams are promising materials for the flow fields of proton exchange membrane fuel cells (PEMFCs) because of excellent mass transport characteristics and high electronic conductivity. To resolve the corrosion problem in the acidic environment under high temperature, nickel/graphene (Ni/G) composite coatings with hierarchical structures were electrodeposited on the surface of Ni foam. The effect of grain size and the distribution in the double layer was discussed. It was found that Ni/G5-10, with larger inner size and middle outer size, exhibited the best corrosion performance. Meanwhile, the corrosion current in the Tafel plots and the steady current density in constant potential analysis was lower than that obtained under steady and gradient currents. Combined with the results of XRD, XPS, and SEM, it was proven that a uniform and dense protective film was produced during the two-step electrodeposition. Moreover, the ICR value was 8.820 mΩ·cm2, which met the requirement of 2025 DOE.
Full article
(This article belongs to the Special Issue Advanced Electrocatalysis Materials Design: Innovations and Applications)
►▼
Show Figures
Figure 1
Open AccessReview
Inorganic-Based Nanoparticles and Biomaterials as Biocompatible Scaffolds for Regenerative Medicine and Tissue Engineering: Current Advances and Trends of Development
by
Nabanita Saikia
Inorganics 2024, 12(11), 292; https://doi.org/10.3390/inorganics12110292 - 11 Nov 2024
Abstract
Regenerative medicine amalgamates stem cell technology and tissue engineering strategies to replace tissues and organs damaged by injury, aging, ailment, and/or chronic conditions by leveraging the innate self-healing mechanism of the body. The term ‘regenerative medicine’ was coined by William A. Haseltine during
[...] Read more.
Regenerative medicine amalgamates stem cell technology and tissue engineering strategies to replace tissues and organs damaged by injury, aging, ailment, and/or chronic conditions by leveraging the innate self-healing mechanism of the body. The term ‘regenerative medicine’ was coined by William A. Haseltine during a 1999 conference on Lake Como. Since its inception in 1968, the field has offered clinical benefits for the regeneration, repair, and restoration of bones, skin, cartilage, neural tissue, and the heart, as well as scaffold fabrication. The field of tissue engineering and regenerative medicine can vastly benefit from advancements in nanoscience and technology, particularly in the fabrication and application of inorganic-based nanoparticles and bionanomaterials. Due to the tunable intrinsic properties, i.e., size, topography, surface charge, and chemical stability, inorganic-based nanoparticles and biomaterials have surpassed traditional synthetic materials. Given the wide gamut of near-future applications of inorganic nanoparticles and biomaterials, this article gives an overview of the emerging roles in stem cell regenerative research, tissue engineering, artificial skin and cartilage regeneration, neural nerve injuries, 3D bioprinting, and development of new inorganic bio-scaffolds. The review also addresses the challenges related to the clinical application and tissue compatibility of inorganic nanoparticles and biomaterials, utilizing current state-of-the-art techniques.
Full article
(This article belongs to the Special Issue Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Nickel Foam-Supported FeP Encapsulated in N, P Co-Doped Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution
by
Jianguo Zhong, Ting Zhang, Jianqiang Tian, Wei Gao and Yuxin Wang
Inorganics 2024, 12(11), 291; https://doi.org/10.3390/inorganics12110291 - 7 Nov 2024
Abstract
Transition metal phosphides (TMPs) show great potential as catalysts for the hydrogen evolution reaction (HER). FeP stands out as an efficient and cost-effective non-noble metal-based HER catalyst. However, FeP tends to aggregate and suffer from instability during the reaction. To tackle these challenges,
[...] Read more.
Transition metal phosphides (TMPs) show great potential as catalysts for the hydrogen evolution reaction (HER). FeP stands out as an efficient and cost-effective non-noble metal-based HER catalyst. However, FeP tends to aggregate and suffer from instability during the reaction. To tackle these challenges, we developed an efficient and straightforward approach to load metal-organic framework-derived N/P co-doped carbon-encapsulated FeP nanoparticles onto a nickel foam substrate (FeP@NPC/NF-450). This catalyst exhibits exceptional HER activity in 0.5 M H2SO4 and 1.0 M KOH solutions, with overpotentials of 68.3 mV and 106.1 mV at a current density of 10 mA cm−2, respectively. Furthermore, it demonstrates excellent stability with negligible decay over 48 h in both acidic and alkaline solutions. The outstanding hydrogen evolution catalytic performance of FeP@NPC/NF-450 is mainly due to the N, P co-doped carbon matrix, which safeguards the FeP nanoparticles from aggregation and surface oxidation. Consequently, this enhances the availability of active sites during the hydrogen evolution reaction (HER), leading to improved stability. Moreover, introducing nickel foam offers a larger specific surface area and enhances charge transfer rates. This study provides a reference method for preparing stable and highly active electrocatalysts for hydrogen evolution.
Full article
(This article belongs to the Special Issue Feature Papers in Inorganic Materials 2024)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Effect of Doping ZrO2 on Structural and Thermal Properties
by
Mirela Petriceanu, Florentina Gabriela Ioniță, Radu Robert Piticescu, Adrian Ionuț Nicoară, Alexandru Cristian Matei, Miruna Adriana Ioța, Ioan Albert Tudor, Ștefania Caramarin and Cristina Florentina Ciobota
Inorganics 2024, 12(11), 290; https://doi.org/10.3390/inorganics12110290 - 6 Nov 2024
Abstract
The aim of this paper was to investigate the structure and thermal properties of zirconia ceramics co-doped with rare earth (RE) elements in equimolar concentrations. We prepared (1 − x)ZrO2 − x(yLa2O3 + yNd2O3 + ySm
[...] Read more.
The aim of this paper was to investigate the structure and thermal properties of zirconia ceramics co-doped with rare earth (RE) elements in equimolar concentrations. We prepared (1 − x)ZrO2 − x(yLa2O3 + yNd2O3 + ySm2O3 + yGd2O3 + yYb2O3) (x = 0.2; y = 0.2) powders by a hydrothermal method in mild conditions (200 °C, 2 h, 60–100 atm.) The powder was analyzed by XRD, SEM-EDAX, BET, and FT-IR after synthesis and heat treatments at 1200 °C and 1500 °C. The samples exhibit good thermal stability, with a single cubic phase presented after heat treatment at 1500 °C. The compound exhibits a low thermal conductivity (0.61 W·m−1·K−1), a low heat capacity (0.42 J·g−1K−1), and a low thermal diffusivity (0.34 mm2·s−1). The values are lower than reported for conventional RE-doped zirconia.
Full article
(This article belongs to the Special Issue Novel Functional Ceramics)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics
by
Fengshu Kang, Gaidong Sheng, Xiaolong Yang and Yan Zhang
Inorganics 2024, 12(11), 289; https://doi.org/10.3390/inorganics12110289 - 4 Nov 2024
Abstract
This article successfully synthesized a series of Bi2MoO6/Bi4O5Br2 heterojunctions using a two-step solvothermal method followed by calcination, and the photocatalytic activity by degradation of tetracycline hydrochloride (TC) was investigated. Compared with pure Bi4
[...] Read more.
This article successfully synthesized a series of Bi2MoO6/Bi4O5Br2 heterojunctions using a two-step solvothermal method followed by calcination, and the photocatalytic activity by degradation of tetracycline hydrochloride (TC) was investigated. Compared with pure Bi4O5Br2 and Bi2MoO6, a series of Bi2MoO6/Bi4O5Br2 heterojunctions exhibit higher photocatalytic activity, which can be attributed to the heterostructures with strong interfacial interaction, improving the charge separation. The 2% Bi2MoO6/Bi4O5Br2 heterojunction shows the best photocatalytic activity under visible light irradiation, which is 1.9 times and 1.8 times that of Bi2MoO6 and Bi4O5Br2, respectively. In addition, cyclic experiments have shown that 2% Bi2MoO6/Bi4O5Br2 heterojunction has high stability, with a degradation efficiency only decreasing by 3% after 5 cycles. From the capture agent experiment and ESR test, it can be seen that ·O2− and h+ are the main active species. A possible photocatalytic mechanism of 2% Bi2MoO6/Bi4O5Br2 heterojunction under visible light irradiation was proposed.
Full article
(This article belongs to the Special Issue Development of Nanocomposite Materials for Environmental Remediation and Biomedical Application)
►▼
Show Figures
Figure 1
Open AccessArticle
Electrochemical Performances of a Solid Oxide Electrolysis Short Stack Under Multiple Steady-State and Cycling Operating Conditions
by
Qinhui Ma, Yuhang Zuo, Kaifeng Lu, Yangyiming Rong, Wei Su, Hanming Chen and Xinhai Xu
Inorganics 2024, 12(11), 288; https://doi.org/10.3390/inorganics12110288 - 4 Nov 2024
Abstract
Solid oxide electrolysis cells (SOECs) are increasingly utilized in hydrogen production from renewable energy sources, yet high degradation rates and unclear degradation mechanisms remain significant barriers to their large-scale application. Consequently, endurance testing of stacks under various operating conditions and studying the degradation
[...] Read more.
Solid oxide electrolysis cells (SOECs) are increasingly utilized in hydrogen production from renewable energy sources, yet high degradation rates and unclear degradation mechanisms remain significant barriers to their large-scale application. Consequently, endurance testing of stacks under various operating conditions and studying the degradation mechanisms associated with these conditions is imperative. However, due to the generally poor performance consistency among stacks, multi-condition data from numerous stacks lack reliability. In this experimental study, having established a specific SOEC stack’s performance and optimal conditions, durability tests under varied conditions, including various current densities, current operation modes (cyclic or constant current), fuel utilization rates, and temperature cycles were conducted. Electrochemical analysis tools like electrochemical impedance spectroscopy and distribution of relaxation time were employed to analyze the causes of voltage fluctuations under high current densities. The results confirmed that the SOEC stack could handle current cycling at low current densities and constant-current electrolysis at high current densities and withstand at least two temperature cycles.
Full article
(This article belongs to the Special Issue Advanced Materials and Enhanced Performance of Solid Oxide Fuel Cells/Electrolyzers)
►▼
Show Figures
Figure 1
Open AccessArticle
Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells
by
Adriana Grozav, Thomas Cheminel, Ancuta Jurj, Oana Zanoaga, Lajos Raduly, Cornelia Braicu, Ioana Berindan-Neagoe, Ovidiu Crisan, Luiza Gaina and Bruno Therrien
Inorganics 2024, 12(11), 287; https://doi.org/10.3390/inorganics12110287 - 2 Nov 2024
Abstract
Monocationic arene ruthenium complexes (RuL1–RuL4) incorporating phenothiazinyl-hydrazinyl-thiazole ligands (L1–L4) have been synthesized, characterized and evaluated as anticancer agents. Their cytotoxicity, antiproliferative activity and alteration of apoptotic gene expression were studied on
[...] Read more.
Monocationic arene ruthenium complexes (RuL1–RuL4) incorporating phenothiazinyl-hydrazinyl-thiazole ligands (L1–L4) have been synthesized, characterized and evaluated as anticancer agents. Their cytotoxicity, antiproliferative activity and alteration of apoptotic gene expression were studied on three cancer cell lines, a double positive breast cancer cell line MCF-7 and two triple negative breast cancer cell lines Hs578T and MDA-MB-231. All arene ruthenium complexes were able to reduce the viability of the breast cancer cell lines, with the highest cytotoxicities being recorded for the [(p-cymene)RuL3Cl]+ (RuL3) complex on the MCF-7 (IC50 = 0.019 µM) and Hs578T cell lines (IC50 = 0.095 µM). In the double positive MCF-7 breast cancer cells, the complexes [(p-cymene)RuL1Cl]+ (RuL1) and [(p-cymene)RuL2Cl]+ (RuL2) significantly upregulated pro-apoptotic genes including BAK, FAS, NAIP, CASP8, TNF, XIAP and BAD, while downregulating TNFSF10. In the triple negative breast cancer cell line Hs578T, RuL1 reduced TNFSF-10 and significantly upregulated BAK, CASP8, XIAP, FADD and BAD, while complex RuL2 also increased BAK and CASP8 expression, but had limited effects on other genes. The triple negative MDA-MB-231 cancer cells treated with RuL1 upregulated NOD1 and downregulated p53, while RuL2 significantly downregulated p53, XIAP and TNFSF10, with minor changes in other genes. The significant alterations in the expression of key apoptotic genes suggest that such complexes have the potential to target cancer cells.
Full article
(This article belongs to the Special Issue Noble Metals in Medicinal Inorganic Chemistry)
►▼
Show Figures
Graphical abstract
Open AccessArticle
A Structure and Magnetism Study of {MnII3MnIVLnIII3} Coordination Complexes with Ln = Dy, Yb
by
Victoria Mazalova, Tatiana Asanova, Igor Asanov and Petra Fromme
Inorganics 2024, 12(11), 286; https://doi.org/10.3390/inorganics12110286 - 31 Oct 2024
Abstract
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their
[...] Read more.
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their anchoring onto substrate surfaces. Specifically, we investigated the electronic and magnetic properties as well as the structural arrangement in {MnII3MnIVLnIII3} with Ln = Dy, Yb coordination complexes using various complementary methods. We studied the electronic and atomic structure of the target compounds using the XAS and XES techniques. The molecular structures of the compounds were determined using density functional theory, and the magnetic data were obtained as a function of the magnetic field. Using the XMCD method, we followed the changes in the electronic and magnetic properties of adsorbed magnetic compounds induced by the reaction of ligands through interaction with the substrate. The complexes show antiferromagnetic exchange interactions between Mn and Ln ions. The spectroscopic analyses confirmed the structural and electronic integrity of complexes in organic solution. This study provides important input for a full understanding of the dependence of the magnetic properties and the molecule–substrate interaction of single adsorbed molecules on the type of ligands. It highlights the importance of chemical synthesis for controlling and tailoring the magnetic properties of metalorganic molecules for their use as optimized building blocks of future molecular spin electronics.
Full article
(This article belongs to the Section Coordination Chemistry)
►▼
Show Figures
Graphical abstract
Open AccessEditorial
Advances in Thermoelectric Materials—Bridging the Gap Between Discovery and Application
by
Marco Fronzi, Paolo Mele and Giovanna Latronico
Inorganics 2024, 12(11), 285; https://doi.org/10.3390/inorganics12110285 - 31 Oct 2024
Abstract
Thermoelectric materials have gained considerable attention in recent years due to their ability to directly convert heat into electricity, making them a key focus in the development of sustainable energy technologies [...]
Full article
(This article belongs to the Special Issue Advances of Thermoelectric Materials)
Open AccessArticle
A New Bromo-Mn(II) Complex with 1,3,5-Triazine Derivative: Synthesis, Crystal Structure, DFT and Biological Studies
by
Sara M. Khattab, Mezna Saleh Altowyan, Ayman El-Faham, Assem Barakat, Matti Haukka, Morsy A. M. Abu-Youssef and Saied M. Soliman
Inorganics 2024, 12(11), 284; https://doi.org/10.3390/inorganics12110284 - 31 Oct 2024
Abstract
►▼
Show Figures
The crystal structure and topology analyses of a new bromo-Mn(II) complex with 2,4-bis(3,5dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT) were reported. Its structure was confirmed using single-crystal X-ray diffraction to create the formula [Mn(MBPT)Br(H2O)2]ClO4. Its crystal system was
[...] Read more.
The crystal structure and topology analyses of a new bromo-Mn(II) complex with 2,4-bis(3,5dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT) were reported. Its structure was confirmed using single-crystal X-ray diffraction to create the formula [Mn(MBPT)Br(H2O)2]ClO4. Its crystal system was monoclinic and its space group was p21. The Mn(II) was coordinated with MBPT as a NNN-pincer ligand, with one bromide ion in the equatorial plane. The two axial terminals were occupied by two trans water molecules. H…H, N…H, Br…H, C…H and O…H were the predominant intermolecular contacts, while Br…H, O…H and C…O were the significant contacts based on Hirshfeld analysis. Moreover, anion–ᴨ interaction was found between C(s-triazine) and O(perchlorate). This complex had better antioxidant activity than the free ligand (MBPT). In addition, the cytotoxicity of the [Mn(MBPT)Br(H2O)2]ClO4 complex showed better results against HepG-2 and MCF-7 cells, recording IC50 values of 31.11 ± 2.04 and 50.05 ± 2.16 µM, respectively, compared to the free ligand (IC50 = 671.44 ± 21.41 and 1113.55 ± 29.77 µM). In comparison to cis-platin as a reference drug, the IC50 values were 63 and 80 μM, respectively, which indicated the promising anticancer activity of the studied compound against both cell lines. In terms of the safety of normal cells, the Mn(II) complex recorded a high IC50 value of 359.10 ± 8.72 µM against the WI-38 non-cancerous cell line. The complex showed better activity towards Staphylococcus aureus, Bacillus subtilis, and Proteus vulgaris relative to the free MBPT, but had low to moderate activity compared to Gentamycin as an antibacterial positive control.
Full article
Graphical abstract
Open AccessArticle
Catalytic Behavior of NHC–Silver Complexes in the Carboxylation of Terminal Alkynes with CO2
by
Assunta D’Amato, Marco Sirignano, Francesco Viceconte, Pasquale Longo and Annaluisa Mariconda
Inorganics 2024, 12(11), 283; https://doi.org/10.3390/inorganics12110283 - 30 Oct 2024
Abstract
A number of N-heterocyclic carbene–silver compounds (NHCs)AgX were tested in the direct carboxylation of terminal alkynes using carbon dioxide as the C1 carbon feedstock. The reactions proceed at a pressure of 1 atm of CO2 at room temperature, in the presence of
[...] Read more.
A number of N-heterocyclic carbene–silver compounds (NHCs)AgX were tested in the direct carboxylation of terminal alkynes using carbon dioxide as the C1 carbon feedstock. The reactions proceed at a pressure of 1 atm of CO2 at room temperature, in the presence of Cs2CO3, and using silver–NHC complexes as catalysts. Thus, phenylacetylene and several alkynes are converted to the corresponding propiolic acids in good to high conversions. The activity of the catalysts is strongly influenced by the substituents on the NHC backbone and the nature of the counterion. Specifically, the most active compound exhibits iodide as the counterion and is stabilized by a benzimidazole derivative. After 24 h of reaction, a quantitative conversion is obtained utilizing DMF as the solvent and phenylacetylene as the substrate.
Full article
(This article belongs to the Special Issue N-Heterocyclic Carbene Metal Complexes: Synthesis, Properties and Applications, 2nd Edition)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Comparative Study of Docking Tools for Evaluation of Potential Copper Metallodrugs and Their Interaction with TMPRSS2
by
Sergio Vázquez-Rodríguez, Diego Ramírez-Contreras, Lisset Noriega, Amalia García-García, Brenda L. Sánchez-Gaytán, Francisco J. Meléndez, Walter Filgueira de Azevedo, Jr., María Eugenia Castro and Enrique González-Vergara
Inorganics 2024, 12(11), 282; https://doi.org/10.3390/inorganics12110282 - 30 Oct 2024
Abstract
COVID-19 has caused over seven million deaths globally due to its high transmission rate. The virus responsible for the disease requires a transmembrane protease serine type II (TMPRSS2-7MEQ) to infiltrate host cells and has been linked to several cancers, particularly prostate cancer. To
[...] Read more.
COVID-19 has caused over seven million deaths globally due to its high transmission rate. The virus responsible for the disease requires a transmembrane protease serine type II (TMPRSS2-7MEQ) to infiltrate host cells and has been linked to several cancers, particularly prostate cancer. To investigate COVID-19 potential therapies, a series of Casiopeina-like copper complexes containing 1,10-Phenanthroline and amino acids were investigated as TMPRSS2 inhibitors. The molecular structures of twelve Phenanthroline copper complexes were calculated, and their global reactivity indices were analyzed using DFT and conceptual DFT methods. Three molecular docking algorithms were employed to identify the most effective inhibitors by examining their interactions with amino acid residues in the target protein’s catalytic activity triad (Asp345, His296, and Ser441). All complexes are docked above the catalytic site, blocking the interaction with substrates. The Phenanthroline complexes showed better interactions than the Bipyridine complexes, likely due to increased hydrophobic contacts. Analogs’ cationic nature and amino acids’ basic side chains bring them near the active site by interacting with Asp435. The top complexes in this study contain Ornithine, Lysine, and Arginine, making them promising alternatives for researching new drugs for COVID-19 and cancers like prostate cancer.
Full article
(This article belongs to the Special Issue Evaluation of the Potential Biological Activity of Metallo-Drugs)
►▼
Show Figures
Figure 1
Open AccessArticle
Core/Shell ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 Nanoparticles for the Photodecomposition of Brilliant Blue E-4BA
by
Mahboubeh Dolatyari, Mehdi Tahmasebi, Sudabeh Dolatyari, Ali Rostami, Armin Zarghami, Ashish Yadav and Axel Klein
Inorganics 2024, 12(11), 281; https://doi.org/10.3390/inorganics12110281 - 30 Oct 2024
Abstract
The synthesis and characterization of ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 core/shell nanoparticles (NPs) is reported. The NPs were used for photocatalytic degradation of brilliant
[...] Read more.
The synthesis and characterization of ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 core/shell nanoparticles (NPs) is reported. The NPs were used for photocatalytic degradation of brilliant blue E-4BA under UV and visible light irradiation, monitored by high-performance liquid chromatography and UV-vis absorption spectroscopy. The size of the NPs ranged from 10 to 30 nm for the core and an additional 3 nm for the TiO2 shell. Al2O3/TiO2 and Al1.9Co0.1O3/TiO2 showed superior degradation under UV and visible light compared to ZnO/TiO2 and SiO2/TiO2 with complete photodecomposition of 20 ppm dye in 20 min using a 10 mg/100 mL photocatalyst. The “Co-doped” Al1.9Co0.1O3/TiO2 NPs show the best performance under visible light irradiation, which is due to increased absorption in the visible range. DFT-calculated band structure calculations confirm the generation of additional electronic levels in the band gap of γ-Al2O3 through Co3+ ions. This indicates that Co-doping enhances the generation of electron–hole pairs after visible light irradiation.
Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand
by
Violeta Jevtovic, Luka Golubović, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Y. A. Alanazi, Aleksandra Radulović, Đura Nakarada, Jasmina Dimitrić Marković, Aleksandra Rakić and Dušan Dimić
Inorganics 2024, 12(11), 280; https://doi.org/10.3390/inorganics12110280 - 30 Oct 2024
Abstract
The pyridoxal-semicarbazone (PLSC) ligand and its transition metal complexes have shown significant biological activity. In this contribution, a novel nickel(II)-PLSC complex, [Ni(PLSC)(SO4)(H2O)2], was obtained, and its structure was determined by X-ray crystallographic analysis, FTIR, and UV-VIS spectroscopy.
[...] Read more.
The pyridoxal-semicarbazone (PLSC) ligand and its transition metal complexes have shown significant biological activity. In this contribution, a novel nickel(II)-PLSC complex, [Ni(PLSC)(SO4)(H2O)2], was obtained, and its structure was determined by X-ray crystallographic analysis, FTIR, and UV-VIS spectroscopy. The sulfate ion is directly coordinated to the central metal ion. The intermolecular stabilization interactions were examined using Hirshfeld surface analysis. The crystal structure was optimized by a B3LYP functional using two pseudopotentials for nickel(II) (LanL2DZ and def2-TZVP) together with a 6-311++G(d,p) basis set for non-metallic atoms. The experimental and theoretical bond lengths and angles were compared, and the appropriate level of theory was determined. The stabilization interactions within the coordination sphere were investigated by the Quantum Theory of Atoms in Molecules (QTAIM). The antioxidant activity towards hydroxyl and ascorbyl radicals was measured by EPR spectroscopy. The interactions between Human Serum Albumin (HSA) and the complex were examined by spectrofluorimetric titration and a molecular docking study. The mechanism of binding to DNA was analyzed by complex fluorescence quenching, potassium iodide quenching, and ethidium bromide displacement studies in conjunction with molecular docking simulations.
Full article
(This article belongs to the Special Issue Metal Complexes Containing Bioactive Ligands: Structure and Biological Evaluation)
►▼
Show Figures
Figure 1
Open AccessCommunication
Monodentate Ligands in X-Cu(I)-Y Complexes—Structural Aspects
by
Milan Melník, Veronika Mikušová and Peter Mikuš
Inorganics 2024, 12(11), 279; https://doi.org/10.3390/inorganics12110279 - 30 Oct 2024
Abstract
This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes
[...] Read more.
This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes crystallize into three different crystal classes: monoclinic (seventy-two instances), triclinic (twenty-eight instances), and orthorhombic (eight instances). The Cu-L bond length increases with the covalent radius of the ligating atom. There are two possible geometries for coordination number two: linear and bent. A total of 21 varieties of inner coordination spheres exist, categorized into two hetero-types (C-Cu-Y, i.e., organometallic compounds and X-Cu-Y, i.e., coordination compounds). The structural parameters of hetero Cu(I) complexes were compared with trans-X-Cu (I)-X (homo) complexes and analyzed. The maximum deviations from linearity (180.0°) are, on average, 10.3° for Br-Cu(I)-Br, 16.6° for C-Cu(I)-Sn, and 35.5° for P-Cu(I)-I. These results indicate that ligand properties influence deviation from linearity, increasing in the order of hard < borderline < soft.
Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
►▼
Show Figures
Graphical abstract
Open AccessReview
Emerging New-Generation Semiconductor Single Crystals of Metal Halide Perovskites for Radiation Detection
by
Guigen Luo, Min Peng, Zhibin Yang, Chungming Paul Chu and Zhengtao Deng
Inorganics 2024, 12(11), 278; https://doi.org/10.3390/inorganics12110278 - 30 Oct 2024
Abstract
Radiation detection uses semiconductor materials to convert high-energy photons into charge (direct detection) or low-energy photons (indirect detection), and it has a wide range of applications in nuclear physics, medical imaging, astronomical detection, homeland security, and other fields. Metal halide perovskites have the
[...] Read more.
Radiation detection uses semiconductor materials to convert high-energy photons into charge (direct detection) or low-energy photons (indirect detection), and it has a wide range of applications in nuclear physics, medical imaging, astronomical detection, homeland security, and other fields. Metal halide perovskites have the advantages of high frequency number, high carrier mobility, high defect tolerance, low defect density, adjustable band gap, and fast light response, and they have wide application prospects in the field of radiation detection. However, the research is still in its infancy stage, and it is far from meeting the requirements of industrial application. This paper focuses on the advantages of metal halide perovskite single-crystal materials in both semiconductors-based direct conversion detection and scintillator-based indirect detection as well as the latest progress in this promising field. This paper not only introduces the latest application of lead halide perovskite monocrystalline materials in high-energy electromagnetic radiation detection (X-ray and γ-rays), but it also introduces the latest development of α-particle/β-particle/neutron detection. Finally, this paper points out the challenges and future prospects of metal halide perovskite single-crystal materials in radiation detection.
Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
►▼
Show Figures
Figure 1
Open AccessReview
Late Transition Metal Olefin Polymerization Catalysts Derived from 8-Arylnaphthylamines
by
Zonglin Qiu, Wenyan Wang, Handou Zheng, Dengfei Wang, Xinglong Zhao, Guangshui Tu, Jiahao Yang and Haiyang Gao
Inorganics 2024, 12(11), 277; https://doi.org/10.3390/inorganics12110277 - 28 Oct 2024
Abstract
Late transition metal catalysts represent a significant class of olefin polymerization catalysts that have played an essential role in advancing the polyolefin industry owing to their highly tunable ligands and low oxophilicity. A key feature for the design of late transition metal catalysts
[...] Read more.
Late transition metal catalysts represent a significant class of olefin polymerization catalysts that have played an essential role in advancing the polyolefin industry owing to their highly tunable ligands and low oxophilicity. A key feature for the design of late transition metal catalysts lies in the steric bulk of the o-aryl substituents. Bulky 8-arylnaphthylamines have emerged as a promising aniline candidate for conducting high-performance catalysts by introducing axially steric hindrance around the metal center. This review focuses on late transition metal (Ni, Pd, Fe) catalysts derived from 8-arylnaphthylamines, surveying their synthesis, structural features, and catalytic applications in olefin (co)polymerizations. Additionally, the relationship between catalyst structure and catalytic performance is discussed, highlighting how these unique ligand systems influence polymerization activity, molecular weight, and polymer branching.
Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands, 2nd Edition)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Adsorption Studies of Ternary Metal Ions (Cs+, Sr2+, and Co2+) from Water Using Zeolite@Magnetic Nanoparticles (Z@Fe3O4 NPs)
by
Tung Van Nguyen, Lien Thi Nguyen, Ha Thi Thu Nguyen and Thu-Huong Le
Inorganics 2024, 12(11), 276; https://doi.org/10.3390/inorganics12110276 - 25 Oct 2024
Abstract
The mixture of three metal ions (Cs+, Sr2+, and Co2+) is commonly found in radioactive waste, which induces several negative health effects. The removal of multiple metal ions is a true challenge for researchers due to the
[...] Read more.
The mixture of three metal ions (Cs+, Sr2+, and Co2+) is commonly found in radioactive waste, which induces several negative health effects. The removal of multiple metal ions is a true challenge for researchers due to the competitive adsorption of ions onto adsorbents. In this study, three metal ions, namely Cs+, Sr2+, and Co2+, have been successfully removed simultaneously from water using zeolite@magnetic nanoparticles (Z@Fe3O4 NPs). The optimized condition for the adsorption of ternary metal ions was obtained at an adsorbent weight of 0.2, pH of 6.0~7.0, and contact time of 60 min. The adsorption mechanism of ternary metal ions onto the surface of Z@Fe3O4 NPs was studied using the Pseudo-first-order, Pseudo-second-order, Elovich, and Intra-particle diffusion models. The Dubinin–Radushkevich Temkin, Freundlich, and Langmuir isotherm models were used to study the isotherm adsorption. The ternary metal ion adsorption (Cs+, Sr2+, and Co2+) on Z@Fe3O4 NPs was followed by the Pseudo-second-order model (PSO) with correlation coefficient (R2) range of 0.9826–0.9997. Meanwhile, the adsorption isotherms of ternary metal ions on Z@Fe3O4 NPs were in line with the Langmuir model with R2 values higher than 0.9206, suggesting monolayer chemisorption with maximum adsorption capacities of 48.31, 15.02, and 10.41 mg/g for Cs+, Sr2+, and Co2+, respectively. Thus, the selectivity trend in the ternary metal ions system towards the Z@Fe3O4 NPs is observed to be Cs+ > Sr2+ > Co2+, which indicates that the competitive effect of Cs+ is the strongest compared to Sr2+ and Co2+ions.
Full article
(This article belongs to the Special Issue Mixed Metal Oxides II)
►▼
Show Figures
Figure 1
Journal Menu
► ▼ Journal Menu-
- Inorganics Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Crystals, Inorganics, Materials, Molecules, Solids
Advances in Inorganic Synthesis
Topic Editors: Andrei V. Shevelkov, Maxim N. SokolovDeadline: 31 December 2024
Topic in
Chemistry, Inorganics, Molecules, IJMS
Recent Advances in Coumarin Derivatives and Their Metal Complexes
Topic Editors: Dušan Dimić, Edina Avdović, Dejan MilenkovićDeadline: 28 February 2025
Topic in
Catalysts, Chemistry, Inorganics, Molbank, Molecules, Polymers
Heterocyclic Carbene Catalysis
Topic Editors: Sabine Berteina-Raboin, Thierry Besson, Patrick RollinDeadline: 31 December 2025
Topic in
Atoms, Crystals, Molecules, Organics, Symmetry, Inorganics
Advances in Molecular Symmetry and Chirality Research
Topic Editors: Ralph N. Salvatore, Guzman Gil-RamirezDeadline: 31 March 2026
Conferences
Special Issues
Special Issue in
Inorganics
Novel Functional Ceramics
Guest Editors: Oana-Cătălina Mocioiu, Ana-Maria MocioiuDeadline: 30 November 2024
Special Issue in
Inorganics
Inorganic Membranes for Large Scale Applications
Guest Editor: Hendrik VerweijDeadline: 30 November 2024
Special Issue in
Inorganics
New Semiconductor Materials for Energy Conversion
Guest Editor: Peng GaoDeadline: 30 November 2024
Special Issue in
Inorganics
Advanced Inorganic Semiconductor Materials, 2nd Edition
Guest Editors: Sake Wang, Minglei Sun, Nguyen HungDeadline: 30 November 2024
Topical Collections
Topical Collection in
Inorganics
Coordination Complexes for Dye-Sensitized Solar Cells (DSCs)
Collection Editor: Catherine Housecroft