X-ray Fluorescence Core Scanning for High-Resolution Geochemical Characterisation of Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Preparation
2.1.1. Soil Core Sampling
2.1.2. XRF Count Data Acquisition
2.1.3. Laboratory Reference Data Acquisition
2.2. Statistical Analysis
2.2.1. Pre-Processing
2.2.2. Feature Selection
2.2.3. Calibration
- To determine if higher resolution absolute concentrations can be obtained from calibration on lower resolution data, a single core calibration regression was performed with the 10 cm reference concentrations and counts as the training set and 1 cm element reference concentrations and counts for the same BE core as the validation set. The predicted results for the 1 cm intervals were smoothed using Savitsky–Golay filtering using the window widths described and a power of 2.
- To determine if the calibration curve obtained in (i) can be used on a new core to avoid overfitting caused by autocorrelation with depth, a complete dataset calibration regression was performed with 10 cm reference concentrations and counts for all cores and a systematic 9-fold cross-validation, with each core left out as validation.
3. Results
3.1. Data Description
3.2. Feature Selection
3.3. Single Core Calibration
3.4. Complete Dataset Calibration
4. Discussion
4.1. Statistical Aspects of Calibration
4.2. Information in Higher Resolution
4.3. Generalisability of the Calibration Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Croudace, I.; Rindby, A.; Rothwell, R. ITRAX: Description and Evaluation of a New Multi-Function X-ray Core Scanner. Geol. Soc. London Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef]
- Jansen, J.H.F.; Van der Gaast, S.J.; Koster, B.; Vaars, A.J. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar. Geol. 1998, 151, 143–153. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Kulkova, M.; Mazurkevich, A.; Dolbunova, E. Paste recipes and raw material sources for pottery-making in hunter-gatherer communities in the forest zone of Eastern Europe (Dnepr-Dvina region, 7–6th millennia BC). J. Archaeol. Sci. Rep. 2018, 21, 962–972. [Google Scholar] [CrossRef]
- Rajapaksha, D.; Waduge, V.; Padilla-Alvarez, R.; Kalpage, M.; Rathnayake, R.M.N.P.; Migliori, A.; Frew, R.; Abeysinghe, S.; Abrahim, A.; Amarakoon, T. XRF to support food traceability studies: Classification of Sri Lankan tea based on their region of origin. X-ray Spectrom. 2017, 46, 220–224. [Google Scholar] [CrossRef]
- Shand, C.A.; Wendler, R.; Dawson, L.; Yates, K.; Stephenson, H. Multivariate analysis of Scotch whisky by total reflection X-ray fluorescence and chemometric methods: A potential tool in the identification of counterfeits. Anal. Chim. Acta 2017, 976, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Haughton, P.D.W.; Shannon, P.M.; Turner, J.N.; Pierce, C.S.; Obradors-Latre, A.; Barker, S.P.; Martinsen, O.J. High-resolution X-ray fluorescence profiling of hybrid event beds: Implications for sediment gravity flow behaviour and deposit structure. Sedimentology 2020, 67, 2850–2882. [Google Scholar] [CrossRef]
- Flood, R.P.; Bloemsma, M.R.; Weltje, G.J.; Barr, I.D.; O’Rourke, S.M.; Turner, J.N.; Orford, J.D. Compositional data analysis of Holocene sediments from the West Bengal Sundarbans, India: Geochemical proxies for grain-size variability in a delta environment. Appl. Geochem. 2016, 75, 222–235. [Google Scholar] [CrossRef]
- Albanese, S.; Sadeghi, M.; Lima, A.; Cicchella, D.; Dinelli, E.; Valera, P.; Falconi, M.; Demetriades, A.; De Vivo, B. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. J. Geochem. Explor. 2015, 154, 81–93. [Google Scholar] [CrossRef]
- O’Rourke, S.; Minasny, B.; Holden, N.; McBratney, A. Synergistic Use of Vis-NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry. Soil Sci. Soc. Am. J. 2016, 80, 888–899. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties. Eur. J. Soil Sci. 2020, 71, 316–333. [Google Scholar] [CrossRef]
- Benedet, L.; Acuña-Guzman, S.F.; Faria, W.M.; Silva, S.H.G.; Mancini, M.; Teixeira, A.F.d.S.; Pierangeli, L.M.P.; Acerbi Júnior, F.W.; Gomide, L.R.; Pádua Júnior, A.L.; et al. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena 2021, 197, 105003. [Google Scholar] [CrossRef]
- John, K.; Kebonye, N.M.; Agyeman, P.C.; Ahado, S.K. Comparison of Cubist models for soil organic carbon prediction via portable XRF measured data. Environ. Monit. Assess. 2021, 193, 197. [Google Scholar] [CrossRef]
- Ranganathan, Y.; Borges, R.M. Reducing the babel in plant volatile communication: Using the forest to see the trees. Plant Biol. 2010, 12, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Weltje, G.J.; Bloemsma, M.R.; Tjallingii, R.; Heslop, D.; Röhl, U.; Croudace, I.W. Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties. In Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 507–534. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Society. Ser. B 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Jones, A.F.; Turner, J.N.; Daly, J.S.; Francus, P.; Edwards, R.J. Signal-to-noise ratios, instrument parameters and repeatability of Itrax XRF core scan measurements of floodplain sediments. Quat. Int. 2019, 514, 44–54. [Google Scholar] [CrossRef]
- Bloemsma, M.R.; Weltje, G.J. Reduced-rank approximations to spectroscopic and compositional data: A universal framework based on log-ratios and counting statistics. Chemom. Intell. Lab. Syst. 2015, 142, 206–218. [Google Scholar] [CrossRef]
- Dunlea, A.G.; Murray, R.W.; Tada, R.; Alvarez-Zarikian, C.A.; Anderson, C.H.; Gilli, A.; Giosan, L.; Gorgas, T.; Hennekam, R.; Irino, T.; et al. Intercomparison of XRF Core Scanning Results from Seven Labs and Approaches to Practical Calibration. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009248. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of spatial predictor variable selection in machine learning applications—Moving from data reproduction to spatial prediction. Ecol. Model. 2019, 411, 108815. [Google Scholar] [CrossRef]
- Collins, J.F.; Brickley, W. Soils of Lyons Estate Celbridge, Co. Kildare: (University College Dublin, Farm); Soil Science Department, University College Dublin: Dublin, Ireland, 1970. [Google Scholar]
- O’Rourke, S.M.; Turner, J.N.; Holden, N.M. Estimating Fine Resolution Carbon Concentration in an Intact Soil Profile by X-ray Fluorescence Scanning. In Soil Carbon; Hartemink, A.E., McSweeney, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 179–187. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Pelliccia, D. Choosing the Optimal Parameters for a Savitzky–Golay Smoothing Filter. Available online: https://nirpyresearch.com/choosing-optimal-parameters-savitzky-golay-smoothing-filter (accessed on 5 February 2024).
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wold, S.; Martens, H.; Wold, H. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method; Springer: Berlin/Heidelberg, Germany, 1982; pp. 286–293. [Google Scholar]
- Urdan, T.C. Statistics in Plain English, 3rd ed.; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Sanford, R.F.; Pierson, C.T.; Crovelli, R.A. An objective replacement method for censored geochemical data. Math. Geol. 1993, 25, 59–80. [Google Scholar] [CrossRef]
- Kaufman, S.; Rosset, S.; Perlich, C.; Stitelman, O. Leakage in data mining: Formulation, detection, and avoidance. ACM Trans. Knowl. Discov. Data 2012, 6, 15. [Google Scholar] [CrossRef]
- Larson, T.E.; Loucks, R.G.; Sivil, J.E.; Hattori, K.E.; Zahm, C.K. Machine learning classification of Austin Chalk chemofacies from high-resolution x-ray fluorescence core characterization. AAPG Bull. 2023, 107, 907–927. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. Forest 2001, 23, 18–22. [Google Scholar]
- Hennekam, R.; Sweere, T.; Tjallingii, R.; de Lange, G.J.; Reichart, G.J. Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method. Quat. Int. 2019, 514, 55–67. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Wennrich, V. Utilisation of XRF core scanning on peat and other highly organic sediments. Quat. Int. 2019, 514, 85–96. [Google Scholar] [CrossRef]
- Kern, O.A.; Koutsodendris, A.; Mächtle, B.; Christanis, K.; Schukraft, G.; Scholz, C.; Kotthoff, U.; Pross, J. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments: Evidence from the Füramoos peat bog (Southern Germany). Sci. Total Environ. 2019, 697, 134110. [Google Scholar] [CrossRef]
- Poto, L.; Gabrieli, J.; Crowhurst, S.; Agostinelli, C.; Spolaor, A.; Cairns, W.R.L.; Cozzi, G.; Barbante, C. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies. Anal. Bioanal. Chem. 2015, 407, 379–385. [Google Scholar] [CrossRef]
- Tjallingii, R.; Röhl, U.; Kölling, M.; Bickert, T. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Kabiri, S.; Holden, N.; Flood, R.; Turner, J.; O’Rourke, S. Grassland Soil XRF Dataset. Available online: https://zenodo.org/records/10956953 (accessed on 10 April 2024).
Element | Units | Mean | Std. Dev. | Disp. | 1st Quantile | 3rd Quantile | %CV | Corr. Coef. with Core Counts |
---|---|---|---|---|---|---|---|---|
Al | wt% | 3.04 | 0.61 | 0.20 | 2.70 | 3.47 | 8.68 | 0.23 |
As | mg/Kg | 22.49 | 3.99 | 0.18 | 20.88 | 24.26 | 4.46 | 0.65 |
Ba | mg/Kg | 322.61 | 132.37 | 0.41 | 202.92 | 422.76 | 9.14 | 0.87 |
Bi | mg/Kg | 0.20 | 0.03 | 0.15 | 0.19 | 0.23 | 6.68 | |
Ca | wt% | 3.70 | 4.17 | 1.13 | 0.43 | 5.68 | 3.27 | 0.97 |
Cd | mg/Kg | 2.97 | 0.65 | 0.22 | 2.48 | 3.38 | 3.59 | |
Ce | mg/Kg | 48.52 | 8.86 | 0.18 | 45.20 | 53.95 | 6.15 | 0.41 |
Co | mg/Kg | 14.45 | 2.01 | 0.14 | 13.21 | 15.75 | 3.87 | |
Cr | mg/Kg | 64.75 | 12.85 | 0.20 | 55.52 | 73.03 | 10.58 | 0.39 |
Cu | mg/Kg | 58.10 | 21.87 | 0.38 | 44.52 | 65.03 | 3.99 | 0.10 |
Fe | wt% | 2.11 | 0.30 | 0.14 | 1.94 | 2.28 | 3.12 | 0.66 |
Ga | mg/Kg | 22.16 | 7.57 | 0.34 | 15.74 | 26.67 | 10.01 | |
Ge | mg/Kg | 2.73 | 0.59 | 0.22 | 2.17 | 3.19 | 8.89 | |
K | wt% | 0.74 | 0.14 | 0.19 | 0.64 | 0.84 | 12.28 | 0.45 |
La | mg/Kg | 25.22 | 5.32 | 0.21 | 21.91 | 28.86 | 9.49 | |
Mg | wt% | 0.38 | 0.06 | 0.16 | 0.32 | 0.42 | 4.74 | |
Mn | mg/Kg | 1214.90 | 291.34 | 0.24 | 994.18 | 1462.77 | 3.54 | 0.79 |
Ni | mg/Kg | 65.67 | 13.34 | 0.20 | 56.80 | 73.31 | 4.20 | 0.73 |
P | wt% | 0.09 | 0.05 | 0.56 | 0.05 | 0.12 | 8.06 | |
Pb | mg/Kg | 52.61 | 26.28 | 0.50 | 35.88 | 64.53 | 3.77 | |
Rb | mg/Kg | 69.51 | 14.19 | 0.20 | 61.93 | 78.25 | 10.94 | 0.12 |
S | wt% | 0.03 | 0.03 | 1.00 | 0.02 | 0.04 | 4.28 | 0.49 |
Sc | mg/Kg | 8.78 | 1.54 | 0.18 | 7.68 | 9.75 | 7.13 | |
Se | mg/Kg | 5.01 | 0.92 | 0.18 | 4.51 | 5.23 | 7.29 | |
Sn | mg/Kg | 3.20 | 2.22 | 0.69 | 1.96 | 3.74 | 22.11 | |
Sr | mg/Kg | 126.39 | 117.65 | 0.93 | 43.99 | 159.91 | 4.93 | 0.95 |
U | mg/Kg | 1.93 | 0.30 | 0.16 | 1.73 | 2.17 | 6.77 | |
V | mg/Kg | 100.05 | 22.35 | 0.22 | 84.21 | 113.16 | 8.22 | 0.69 |
Y | mg/Kg | 24.62 | 5.94 | 0.24 | 20.21 | 28.60 | 4.26 | |
Zn | mg/Kg | 163.26 | 65.37 | 0.40 | 111.09 | 187.08 | 3.10 | 0.96 |
Zr | mg/Kg | 23.54 | 4.82 | 0.20 | 21.35 | 25.46 | 10.81 | 0.15 |
Element | Mean | Std. Dev. | Disp. | 1st Quantile | 3rd Quantile | %CV | Corr. Coef. with Pellet Counts |
---|---|---|---|---|---|---|---|
Al | 0.0026 | 0.0008 | 0.31 | 0.0020 | 0.0032 | 9.78 | 0.22 |
Ar | 0.0240 | 0.0142 | 0.59 | 0.0159 | 0.0254 | 2.90 | 0.23 |
As | 0.0062 | 0.0021 | 0.34 | 0.0048 | 0.0077 | 10.93 | 0.68 |
Ba | 0.0060 | 0.0025 | 0.42 | 0.0046 | 0.0077 | 17.93 | 0.91 |
Br | 0.0003 | 0.0003 | 1.00 | 0.0002 | 0.0003 | 28.37 | 0.57 |
Ca | 0.9010 | 0.9880 | 1.10 | 0.1147 | 1.3672 | 6.68 | 0.96 |
Ce | 0.0034 | 0.0007 | 0.21 | 0.0029 | 0.0038 | 16.96 | 0.39 |
Cl | 0.0025 | 0.0028 | 1.12 | 0.0005 | 0.0035 | 211.16 | 0.14 |
Cr | 0.0088 | 0.0012 | 0.14 | 0.0079 | 0.0096 | 9.32 | 0.61 |
Cu | 0.0057 | 0.0023 | 0.40 | 0.0037 | 0.0074 | 17.81 | 0.06 |
Fe | 5.0092 | 0.8394 | 0.17 | 4.3512 | 5.5898 | 3.53 | 0.86 |
K | 0.1470 | 0.0213 | 0.14 | 0.1320 | 0.1625 | 3.45 | 0.74 |
Mn | 0.1895 | 0.0580 | 0.31 | 0.1439 | 0.2345 | 13.28 | 0.77 |
Ni | 0.0193 | 0.0044 | 0.23 | 0.0168 | 0.0219 | 6.56 | 0.54 |
Rb | 0.0592 | 0.0109 | 0.18 | 0.0544 | 0.0648 | 8.16 | 0.57 |
S | 0.0013 | 0.0007 | 0.54 | 0.0008 | 0.0016 | 89.27 | 0.66 |
Si | 0.0663 | 0.0142 | 0.21 | 0.0544 | 0.0765 | 3.29 | 0.65 |
Sr | 0.0942 | 0.0417 | 0.44 | 0.0610 | 0.1194 | 7.06 | 0.94 |
Ti | 0.1255 | 0.0198 | 0.16 | 0.1123 | 0.1397 | 5.02 | 0.81 |
V | 0.0080 | 0.0017 | 0.21 | 0.0065 | 0.0093 | 8.06 | 0.80 |
Zn | 0.0735 | 0.0301 | 0.41 | 0.0483 | 0.0877 | 4.31 | 0.97 |
Zr | 0.0258 | 0.0066 | 0.26 | 0.0209 | 0.0312 | 24.63 | 0.77 |
Calibration with Preprocessing | Calibration without Preprocessing | |||||
---|---|---|---|---|---|---|
Element | Validation R2 | Validation RMSE | No. of Principal Components | Validation R2 | Validation RMSE | No. of Principal Components |
Al | 0.46 | 0.24 | 1 | 0.39 | 0.26 | 2 |
As | NC | NC | NC | NC | NC | NC |
Ba | 0.86 | 50.55 | 5 | 0.81 | 59.33 | 2 |
Bi | 0.56 | 0.02 | 1 | 0.50 | 0.02 | 2 |
Ca | 0.94 | 0.62 | 7 | 0.92 | 0.69 | 5 |
Cd | 0.76 | 0.27 | 5 | 0.67 | 0.31 | 3 |
Ce | 0.56 | 2.36 | 5 | 0.30 | 2.96 | 4 |
Co | 0.56 | 0.87 | 3 | 0.43 | 0.99 | 3 |
Cr | 0.55 | 4.75 | 4 | 0.38 | 5.56 | 4 |
Cu | 0.60 | 16.71 | 2 | 0.50 | 18.61 | 2 |
Fe | NC | NC | NC | NC | NC | NC |
Ga | 0.67 | 5.52 | 4 | 0.60 | 6.04 | 2 |
Ge | 0.80 | 0.21 | 1 | 0.72 | 0.26 | 2 |
K | 0.28 | 0.07 | 5 | 0.10 | 0.07 | 6 |
La | 0.57 | 1.42 | 5 | 0.32 | 1.78 | 4 |
Mg | 0.65 | 0.02 | 7 | 0.61 | 0.02 | 5 |
Mn | 0.58 | 200.20 | 4 | 0.55 | 206.15 | 3 |
Ni | 0.68 | 4.14 | 5 | 0.32 | 6.02 | 2 |
P | 0.93 | 0.02 | 6 | 0.92 | 0.02 | 5 |
Pb | 0.81 | 5.32 | 5 | 0.67 | 6.94 | 2 |
Rb | 0.76 | 6.34 | 5 | 0.63 | 7.89 | 3 |
S | 0.91 | 0.01 | 5 | 0.81 | 0.01 | 3 |
Sc | 0.32 | 0.78 | 1 | 0.17 | 0.86 | 2 |
Se | NC | NC | NC | NC | NC | NC |
Sn | 0.19 | 6.21 | 7 | 0.12 | 6.45 | 1 |
Sr | 0.92 | 12.37 | 3 | 0.89 | 14.74 | 2 |
U | 0.90 | 0.09 | 1 | 0.83 | 0.13 | 2 |
V | 0.62 | 5.71 | 6 | 0.48 | 6.70 | 3 |
Y | 0.80 | 1.57 | 5 | 0.60 | 2.22 | 4 |
Zn | 0.93 | 9.51 | 3 | 0.90 | 11.72 | 3 |
Zr | NC | NC | NC | NC | NC | NC |
Cores | Pellets | |||||
---|---|---|---|---|---|---|
Element | R2 | RMSE | Number of Components | R2 | RMSE | Number of Components |
Al | NC | 0.NC | NC | 0.07 | 0.61 | 7 |
As | 0.47 | 2.84 | 4 | 0.47 | 2.16 | 5 |
Ba | 0.74 | 66.70 | 4 | 0.77 | 69.48 | 4 |
Bi | 0.51 | 0.02 | 1 | 0.57 | 0.02 | 4 |
Ca | 0.94 | 0.95 | 4 | 0.95 | 0.90 | 4 |
Cd | 0.21 | 0.57 | 3 | 0.24 | 0.54 | 1 |
Ce | 0.45 | 6.49 | 3 | 0.68 | 5.51 | 3 |
Co | 0.35 | 1.58 | 4 | 0.67 | 1.19 | 3 |
Cr | NC | NC | NC | 0.33 | 10.76 | 7 |
Cu | 0.03 | 21.33 | 2 | 0.22 | 22.05 | 7 |
Fe | 0.25 | 0.26 | 4 | 0.58 | 0.17 | 6 |
Ga | 0.66 | 4.34 | 3 | 0.71 | 4.43 | 6 |
Ge | 0.53 | 0.40 | 4 | 0.52 | 0.42 | 6 |
K | NC | NC | NC | NC | NC | NC |
La | 0.49 | 3.76 | 3 | 0.65 | 3.34 | 3 |
Mg | 0.09 | 0.05 | 1 | 0.33 | 0.05 | 2 |
Mn | 0.70 | 158.61 | 2 | 0.67 | 161.50 | 7 |
Ni | 0.01 | 13.25 | 1 | 0.43 | 10.48 | 7 |
P | 0.37 | 0.04 | 1 | 0.46 | 0.04 | 4 |
Pb | 0.75 | 13.12 | 6 | 0.64 | 12.29 | 7 |
Rb | 0.05 | 13.84 | 1 | 0.16 | 13.60 | 7 |
S | 0.06 | 0.03 | 1 | 0.31 | 0.03 | 2 |
Sc | 0.18 | 1.39 | 4 | 0.55 | 1.04 | 7 |
Se | 0.15 | 0.84 | 4 | 0.21 | 0.74 | 7 |
Sn | 0.07 | 2.13 | 1 | 0.16 | 2.15 | 7 |
Sr | 0.93 | 30.40 | 3 | 0.97 | 18.99 | 7 |
U | 0.01 | 0.30 | 3 | 0.23 | 0.25 | 7 |
V | NC | NC | NC | 0.09 | 21.56 | 7 |
Y | 0.47 | 4.27 | 2 | 0.60 | 4.01 | 4 |
Zn | 0.93 | 17.40 | 6 | 0.93 | 11.72 | 7 |
Zr | NC | NC | NC | 0.13 | 4.17 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabiri, S.; Holden, N.M.; Flood, R.P.; Turner, J.N.; O’Rourke, S.M. X-ray Fluorescence Core Scanning for High-Resolution Geochemical Characterisation of Soils. Soil Syst. 2024, 8, 56. https://doi.org/10.3390/soilsystems8020056
Kabiri S, Holden NM, Flood RP, Turner JN, O’Rourke SM. X-ray Fluorescence Core Scanning for High-Resolution Geochemical Characterisation of Soils. Soil Systems. 2024; 8(2):56. https://doi.org/10.3390/soilsystems8020056
Chicago/Turabian StyleKabiri, Shayan, Nick M. Holden, Rory P. Flood, Jonathan N. Turner, and Sharon M. O’Rourke. 2024. "X-ray Fluorescence Core Scanning for High-Resolution Geochemical Characterisation of Soils" Soil Systems 8, no. 2: 56. https://doi.org/10.3390/soilsystems8020056