Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,450)

Search Parameters:
Keywords = calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6453 KiB  
Article
Sampling Confined Fission Tracks for Constraining Geological Thermal Histories
by Raymond Jonckheere, Carolin Aslanian, Hongyang Fu and Florian Trilsch
Minerals 2024, 14(10), 1016; https://doi.org/10.3390/min14101016 (registering DOI) - 8 Oct 2024
Abstract
Fission-track modeling rests on etching, counting and measuring the lattice damage trails from uranium fission. The tools for interpreting fission-track data are advanced but the results are never better than the data. Confined-track samples must be an adequate size for statistical analysis, representative [...] Read more.
Fission-track modeling rests on etching, counting and measuring the lattice damage trails from uranium fission. The tools for interpreting fission-track data are advanced but the results are never better than the data. Confined-track samples must be an adequate size for statistical analysis, representative of the track population and consistent with the model assumptions and with the calibration data. Geometrical and measurement biases are understood and can be dealt with up to a point. However, the interrelated issues of etching protocol and track selection are more difficult to untangle. Our investigation favors a two-step protocol. The duration of the first step is inversely proportional to the apatite etch rate so that different apatites etch to the same Dpar. A long immersion reveals many more confined tracks, terminated by basal and prism faces. This allows consistent length measurements and permits orienting each track relative to the c-axis. Long immersion times combined with deep ion irradiation reveal confined tracks deep inside the grains. Provided it is long enough, the precise immersion time is not important if the effective etch times of the selected tracks are calculated from their measured widths. Then, whether the sample is mono- or multi-compositional, we can, post hoc, select tracks with the desired properties. The second part of the protocol has to do with the fact that fossil tracks in geological samples appear to be under-etched compared to induced tracks etched under the same conditions. This should be assumed if the semi-axes of a fitted ellipse plot above the induced-track line. In that case, an additional etch can increase the track lengths to a point where they are consistent with the model based on lab-annealing of induced tracks, a condition for valid thermal histories. Here too, it is possible to select a subset of tracks with effective etch times consistent with the model if the widths of confined tracks are measured along with their lengths and orientations. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

12 pages, 1792 KiB  
Article
3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms
by Peter Homolka, Lara Breyer and Friedrich Semturs
Biomimetics 2024, 9(10), 606; https://doi.org/10.3390/biomimetics9100606 (registering DOI) - 8 Oct 2024
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine [...] Read more.
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis. Full article
(This article belongs to the Special Issue Bio-Inspired Additive Manufacturing Materials and Structures)
Show Figures

Figure 1

29 pages, 10333 KiB  
Article
How to Recognize Mosses from Extant Groups among Paleozoic and Mesozoic Fossils
by Michael S. Ignatov, Tatyana V. Voronkova, Ulyana N. Spirina and Svetlana V. Polevova
Diversity 2024, 16(10), 622; https://doi.org/10.3390/d16100622 - 8 Oct 2024
Abstract
This paper describes a range of Paleozoic and Mesozoic mosses and assesses how far they can be referred to extant taxa at the family, ordinal, or class levels. The present study provides new data on Paleozoic mosses of the order Protosphagnales, re-evaluating affinities [...] Read more.
This paper describes a range of Paleozoic and Mesozoic mosses and assesses how far they can be referred to extant taxa at the family, ordinal, or class levels. The present study provides new data on Paleozoic mosses of the order Protosphagnales, re-evaluating affinities of some groups previously thought to be unrelated. The leaf areolation pattern, combined with the leaf costa anatomy, results in the subdivision of Protosphagnales into five separate families: Protosphagnaceae (at least six genera), Polyssaieviaceae (at least three genera), and three monogeneric families: Rhizonigeritaceae, Palaeosphagnaceae, and Servicktiaceae. We urge caution in referring Paleozoic and Early Mesozoic fossil mosses as members of Dicranidae and Bryidae, as they may belong to the extinct moss order Protosphagnales. Additional evidence supports the relation of the Permian genus Arvildia to extant Andreaeopsida. We segregate Late Palaeozoic and Early Mesozoic mosses that are superficially similar to extant members of either Dicranales or Polytrichales, into the artificial informal group of Archaeodicranids, distinguishing them from ecostate Paleozoic and Mesozoic mosses, which are combined here into another artificial informal group, Bryokhutuliinids. The latter includes the genus Bryokhutuliinia, widespread in contemporary Asia, from the Middle Jurassic to the Lower Cretaceous, as well as other superficially similar ecostate plants from different regions worldwide, ranging from the Upper Palaeozoic to the Lower Cretaceous. A list of Paleozoic, Mesozoic, and Eocene moss fossils suitable for age calibration in phylogenetic trees is provided. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

6 pages, 1972 KiB  
Communication
High Impedance Active Probe for High Voltages
by Marc-Aurèle Boillat and Peter C. Hauser
Hardware 2024, 2(4), 273-278; https://doi.org/10.3390/hardware2040013 (registering DOI) - 8 Oct 2024
Viewed by 81
Abstract
The probe was designed for the measurement of DC voltages of up to 30 kV from high impedance sources. It is based on a resistive divider with a total resistance of 200 GΩ and a step-down factor of 10’000. In order to allow [...] Read more.
The probe was designed for the measurement of DC voltages of up to 30 kV from high impedance sources. It is based on a resistive divider with a total resistance of 200 GΩ and a step-down factor of 10’000. In order to allow the measurement of the stepped down voltage with a conventional multimeter without loading, the signal was buffered with an operational amplifier. The device was calibrated against a commercial probe using a low impedance high voltage source. A linear relationship was obtained for a high impedance resistive ladder for voltages between 3 and 30 kV, with a coefficient of determination (R2) of 0.9999. The low-cost device (ca. US $200) fills an application niche not addressed by commercial products. Full article
Show Figures

Figure 1

21 pages, 5459 KiB  
Article
A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems
by Ruijie Liang, Holger Robert Maier, Mark Andrew Thyer and Graeme Clyde Dandy
Water 2024, 16(19), 2844; https://doi.org/10.3390/w16192844 - 7 Oct 2024
Viewed by 381
Abstract
Traditionally, urban stormwater infrastructure systems consist of passive infrastructure that is not actively controlled in response to rainfall events. Recently, real-time control (RTC) has been considered as a means to significantly increase the capacity and lifespan of these systems. This paper introduces the [...] Read more.
Traditionally, urban stormwater infrastructure systems consist of passive infrastructure that is not actively controlled in response to rainfall events. Recently, real-time control (RTC) has been considered as a means to significantly increase the capacity and lifespan of these systems. This paper introduces the target flow control systems (TFCS) approach, which can use real-time control of systems of storages to achieve the desired flow conditions at the locations of interest. The first distinctive feature of this approach is that it does not require calibration to catchment-specific data, unlike existing approaches. This means that the TFCS approach is generally applicable to different catchments and is able to respond to future changes in runoff due to land use and/or climate change. The second distinctive feature is that the approach only requires storage-level information measured in real time with the aid of low-cost pressure sensors. This means that the approach is practical and relatively easy to implement. In addition to the introduction of the novel TFCS approach, a key innovation of this study is that the approach is tested on three case studies, each with different physical configurations and stormwater management objectives. Another key innovation is that the TFCS approach is compared to five RTC approaches, including three of the best-performing advanced approaches from the literature. Comparisons of multiple RTC approaches that consider both performance and practicality across multiple case studies are rare. Results show that the TFCS approach is the only one of the five control approaches analysed that has both the best overall performance and the highest level of practicality. The outcomes highlight the potential of the TFCS approach as a practical RTC approach that is applicable to a wide range of catchments with different stormwater management objectives. By maximizing the performance of existing stormwater storages, the TFCS approach can potentially extend the lifespan of existing infrastructure and avoid costly upgrades due to increased runoff caused by land use and climate change. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

20 pages, 6698 KiB  
Article
A Low-Cost, Portable, Multi-Cancer Screening Device Based on a Ratio Fluorometry and Signal Correlation Technique
by Abdulaziz S. Alghamdi and Rabah W. Aldhaheri
Biosensors 2024, 14(10), 482; https://doi.org/10.3390/bios14100482 - 7 Oct 2024
Viewed by 387
Abstract
The autofluorescence of erythrocyte porphyrins has emerged as a potential method for multi-cancer early detection (MCED). With this method’s dependence on research-grade spectrofluorometers, significant improvements in instrumentation are necessary to translate its potential into clinical practice, as with any promising medical technology. To [...] Read more.
The autofluorescence of erythrocyte porphyrins has emerged as a potential method for multi-cancer early detection (MCED). With this method’s dependence on research-grade spectrofluorometers, significant improvements in instrumentation are necessary to translate its potential into clinical practice, as with any promising medical technology. To fill this gap, in this paper, we present an automated ratio porphyrin analyzer for cancer screening (ARPA-CS), a low-cost, portable, and automated instrument for MCED via the ratio fluorometry of porphyrins. The ARPA-CS aims to facilitate cancer screening in an inexpensive, rapid, non-invasive, and reasonably accurate manner for use in primary clinics or at point of care. To accomplish this, the ARPA-CS uses an ultraviolet-excited optical apparatus for ratio fluorometry that features two photodetectors for detection at 590 and 630 nm. Additionally, it incorporates a synchronous detector for the precision measurement of signals based on the Walsh-ordered Walsh–Hadamard transform (WHT)w and circular shift. To estimate its single-photodetector capability, we established a linear calibration curve for the ARBA-CS exceeding four orders of magnitude with a linearity of up to 0.992 and a low detection limit of 0.296 µg/mL for riboflavin. The ARPA-CS also exhibited excellent repeatability (0.21%) and stability (0.60%). Moreover, the ratio fluorometry of three serially diluted standard solutions of riboflavin yielded a ratio of 0.4, which agrees with that expected based on the known emission spectra of riboflavin. Additionally, the ratio fluorometry of the porphyrin solution yielded a ratio of 49.82, which was ascribed to the predominant concentration of protoporphyrin IX in the brown eggshells, as confirmed in several studies. This study validates this instrument for the ratio fluorometry of porphyrins as a biomarker for MCED. Nevertheless, large and well-designed clinical trials are necessary to further elaborate more on this matter. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

27 pages, 11457 KiB  
Article
From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard
by Sandra Graßl, Christoph Ritter, Jonas Wilsch, Richard Herrmann, Lionel Doppler and Roberto Román
Remote Sens. 2024, 16(19), 3725; https://doi.org/10.3390/rs16193725 - 7 Oct 2024
Viewed by 317
Abstract
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in [...] Read more.
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in the European Arctic, in Ny-Ålesund, Svalbard, of the 20 years from 2004–2023. Due to polar day and polar night, it is crucial to use observations of both instruments. Their data is evaluated in the same way and follows the cloud-screening procedure of AERONET. Additionally, an improved method for the calibration of the star photometer is presented. We found out, that autumn and winter are generally more polluted and have larger particles than summer. While the monthly median Aerosol Optical Depth (AOD) decreases in spring, the AOD increases significantly in autumn. A clear signal of large particles during the Arctic Haze can not be distinguished from large aerosols in winter. With autocorrelation analysis, we found that AOD events usually occur with a duration of several hours. We also compared AOD events with large-scale processes, like large-scale oscillation patterns, sea ice, weather conditions, or wildfires in the Northern Hemisphere but did not find one single cause that clearly determines the Arctic AOD. Therefore the observed optical depth is a superposition of different aerosol sources. Full article
Show Figures

Figure 1

25 pages, 2839 KiB  
Review
Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR, NIR, and NMR Techniques
by Sanja Seratlic, Bikash Guha and Sean Moore
NDT 2024, 2(4), 392-416; https://doi.org/10.3390/ndt2040024 - 6 Oct 2024
Viewed by 450
Abstract
The quest for reliable techniques to predict Cheddar cheese maturity has gained momentum to ensure quality and consistency in large-scale production. Given the complexity of cheese ripening and the industry’s need for fast and reliable evaluation methods, this review addresses the challenge by [...] Read more.
The quest for reliable techniques to predict Cheddar cheese maturity has gained momentum to ensure quality and consistency in large-scale production. Given the complexity of cheese ripening and the industry’s need for fast and reliable evaluation methods, this review addresses the challenge by scrutinising the application of spectroscopic techniques such as Fourier transform infrared (FT-IR), near-infrared (NIR), and nuclear magnetic resonance (NMR). These methods are evaluated for their noninvasive and rapid on-site analysis capabilities, which are essential for ensuring quality in cheese production. This review synthesises current research findings, discusses the potential and limitations of each technique, and highlights future research directions. Overall, NIR spectroscopy emerges as the most promising, offering quick, nondestructive assessments and reasonably accurate compositional predictions, crucial for real-time maturation monitoring. It provides rapid results within minutes, making it significantly faster than FT-IR and NMR. While FT-IR also offers high accuracy, it typically requires longer analysis times due to extensive calibration and can be sensitive to sample conditions, while NMR, although highly accurate, involves complex and time-consuming procedures. Nonetheless, further studies are necessary to refine these spectroscopic techniques, enhance their predictive accuracy, and deepen the understanding of the correlations between chemical attributes and sensory qualities in Cheddar cheese. Full article
Show Figures

Figure 1

21 pages, 5954 KiB  
Article
Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model
by Xiao Yang, Changlei Dai, Gengwei Liu, Xiang Meng and Chunyue Li
Water 2024, 16(19), 2839; https://doi.org/10.3390/w16192839 - 6 Oct 2024
Viewed by 463
Abstract
The SWAT model primarily investigates sources of water pollution and conducts ecological assessments of surface water in contemporary hydrology and water resources research. To date, there have been limited accomplishments in the study of groundwater resources in China. The MODFLOW model currently primarily [...] Read more.
The SWAT model primarily investigates sources of water pollution and conducts ecological assessments of surface water in contemporary hydrology and water resources research. To date, there have been limited accomplishments in the study of groundwater resources in China. The MODFLOW model currently primarily simulates groundwater levels and the migration of water quality, depending on the hydrological surface water data in the relevant area. This study aims to investigate the groundwater distribution characteristics of the middle and lower reaches of the Songhua River, a significant agricultural and grain production region in China. The research focuses on the middle and lower reaches of the Songhua River basin in Northeast China and employed the SWAT distributed hydrological model to simulate runoff. The monthly recorded runoff at Tongjiang Station in Jiamusi City was utilized to calibrate the model parameters. Consequently, the MODFLOW model was introduced to compare and assess the simulation outcomes of the SWAT model, ultimately ascertaining the distribution characteristics of shallow groundwater, groundwater recharge, recoverable volume, and groundwater levels in the Songhua River Basin. The findings indicate that: (1) The SWAT model demonstrates efficacy in the study region, achieving R2 and NS values of 0.81 and 0.76, respectively, thereby fulfilling the fundamental criteria for scientific research. The MODFLOW model exhibits strong performance in the study region, achieving a periodic R2 of 0.98 and a verification R2 of 0.97, with the discrepancy between simulated and actual groundwater levels confined to 0.6 m, thereby satisfying the criteria for scientific research. (2) In 2011, 2014, and 2016, the groundwater recharge in the middle and lower sections of the Songhua River was 24.33 × 108 m3, 30.79 × 108 m3, and 32.25 × 108 m3, respectively, aligning closely with the SWAT simulation results, while the average annual groundwater level depth was 8.17 m. (3) In the research area, groundwater recharging occurs primarily by atmospheric precipitation, while drainage predominantly transpires via groundwater as base flow, constituting 81.46%. Secondly, the recharge of shallow groundwater to deep aquifers is around 7.14%, with a minimal share attributed to vadose zone loss, constituting merely 2.1%. (4) From 2010 to 2016, the average groundwater runoff modulus of the middle and lower reaches of the Songhua River basin was 1.005 L/(s·km²), with a total recharge of 216.58 × 108 m3 and a total recoverable amount of 105.11 × 108 m3. The mean yearly supply was 25.11 × 108 m3. The total groundwater recharge was 26.54 × 108 m3 in the driest year (2011) and 33.25 × 108 m3 in the year of most ample water (2016). Full article
Show Figures

Figure 1

17 pages, 3974 KiB  
Article
Applying Low-Impact Development Techniques for Improved Water Management in Urban Areas
by Jaemoon Kim, Jaerock Park, Sungmin Cha and Soonchul Kwon
Water 2024, 16(19), 2837; https://doi.org/10.3390/w16192837 - 6 Oct 2024
Viewed by 330
Abstract
Worldwide, the increase in impervious surfaces due to urbanization has led to significant water cycle issues such as groundwater depletion, urban heat islands, and flooding. To address these challenges, Low-Impact Development (LID) techniques are increasingly being applied in stormwater management. This study focuses [...] Read more.
Worldwide, the increase in impervious surfaces due to urbanization has led to significant water cycle issues such as groundwater depletion, urban heat islands, and flooding. To address these challenges, Low-Impact Development (LID) techniques are increasingly being applied in stormwater management. This study focuses on Ulsan, designated as a water cycle model city in South Korea, with a particular emphasis on the highly urbanized Okgyo drainage watershed. Using the Stormwater Management Model (SWMM) version 5.1, long-term runoff simulations were conducted to evaluate the effects of LID implementation on water cycle change rates and recovery rates. The model incorporates detailed hydrological and hydraulic parameters, including inflow, runoff, infiltration, and evapotranspiration for six subcatchments within the watershed. The SWMM was calibrated and validated using 30 years of historical rainfall data (1987–2016) from the Ulsan weather station. Calibration and validation processes used the NRCS-CN (Curve Number) method to ensure accuracy in simulating runoff patterns and water balance. The study specifically evaluated the effectiveness of two LID techniques: bioretention and permeable pavements. Three scenarios were modeled: bioretention applied to 5% of the area, permeable pavements applied to 5% of the area, and a combined application of both techniques. The results showed that the combined scenario provided the best outcome, with a 7.80% reduction in surface runoff and a 14.56% improvement in water cycle health. The LID application scenario confirmed the potential to achieve the water cycle management target of handling 25.5 mm of rainfall. These findings demonstrate that the introduction of LID techniques in public spaces can significantly enhance water management. This research provides insights into effective water cycle management methods tailored to specific urban land uses, laying a foundation for future urban planning and sustainable development. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 4873 KiB  
Article
Nondestructively Determining Soluble Solids Content of Blueberries Using Reflection Hyperspectral Imaging Technique
by Guangjun Qiu, Biao Chen, Huazhong Lu, Xuejun Yue, Xiangwu Deng, Haishan Ouyang, Bin Li and Xinyu Wei
Agronomy 2024, 14(10), 2296; https://doi.org/10.3390/agronomy14102296 - 6 Oct 2024
Viewed by 321
Abstract
Effectively detecting the quality of blueberries is crucial for ensuring that high-quality products are supplied to the fresh market. This study developed a nondestructive method for determining the soluble solids content (SSC) of blueberry fruit by using a near-infrared hyperspectral imaging technique. The [...] Read more.
Effectively detecting the quality of blueberries is crucial for ensuring that high-quality products are supplied to the fresh market. This study developed a nondestructive method for determining the soluble solids content (SSC) of blueberry fruit by using a near-infrared hyperspectral imaging technique. The reflection hyperspectral images in the 900–1700 nm waveband range were collected from 480 fresh blueberry samples. An image analysis pipeline was developed to extract the spectrums of blueberries from the hyperspectral images. A regression model for quantifying SSC values was successfully established based on the full range of wavebands, achieving the highest RP2 of 0.8655 and the lowest RMSEP value of 0.4431 °Brix. Furthermore, three variable selection methods, namely the Successive Projections Algorithm (SPA), interval PLS (iPLS), and Genetic Algorithm (GA), were utilized to identify the feature wavebands for modeling. The models calibrated from feature wavebands generated an RMSEP of 0.4643 °Brix, 0.4791 °Brix, and 0.4764 °Brix, as well as the RP2 of 0.8507, 0.8397, and 0.8420 for SPA, iPLS, and GA, respectively. Furthermore, a pseudo-color distribution diagram of the SSC values within blueberries was successfully generated based on established models. This study demonstrated a novel approach for blueberry quality detection and inspection by jointly using hyperspectral imaging and machine learning methodologies. It can serve as a valuable reference for the development of grading equipment systems and portable testing devices for fruit quality assurance. Full article
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
Comparative Evaluation of Evapotranspiration and Optimization Schemes for Green Roof Runoff Simulations Using HYDRUS-1D
by Hwansuk Kim, Haein Sim, Seungwan Hong, Zong Woo Geem, Hafzullah Aksoy, Yongseok Hong and Jaeyoung Yoon
Water 2024, 16(19), 2835; https://doi.org/10.3390/w16192835 - 6 Oct 2024
Viewed by 332
Abstract
The use of green roofs, a low-impact development practice, can be an effective means of reducing direct runoff in urban centers. Green roof modeling can enable efficient design by preliminarily grasping the behavior of the green roof system according to specific configurations. In [...] Read more.
The use of green roofs, a low-impact development practice, can be an effective means of reducing direct runoff in urban centers. Green roof modeling can enable efficient design by preliminarily grasping the behavior of the green roof system according to specific configurations. In this study, we aimed to find appropriate evapotranspiration and parameter optimization schemes for HYDRUS-1D, a commonly used modeling tool for green roofs. Comparative studies of this sort in the context of green roof runoff modeling have not been conducted previously and are important in guiding users to overcome the difficulties of choosing the right numerical schemes for an accurate prediction of runoff from a green roof. As a study site, the Portland Building Ecoroof in Portland, Oregon, USA, was chosen, as green roof configurations and observed data for climate and runoff were available. From the simulation results of the runoff volume, the Blaney–Criddle method, which was considered an alternative, was found to be appropriate for calculating evapotranspiration from a green roof (R2 = 0.82) relative to the Hargreaves method built in HYDRUS-1D (R2 = 0.46). In addition, this study showed that the optimization method using the harmony search algorithm, which was proposed as an alternative optimizer, was better (R2 = 0.95) than that of the HYDRUS-1D’s own optimization module (R2 = 0.82) in calibrating HYDRUS-1D for green roof runoff. The findings are thought to be useful in guiding modelers who are considering using HYDRUS-1D for green roof runoff simulations. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

15 pages, 3823 KiB  
Article
NIR Spectroscopy for the Online Monitoring of Water and Olive Oil Content in Pomace during the Extraction Process
by Alessandro Leone, Antonio Berardi, Giovanni Antonelli, Cosimo Damiano Dellisanti and Antonia Tamborrino
Appl. Syst. Innov. 2024, 7(5), 96; https://doi.org/10.3390/asi7050096 - 6 Oct 2024
Viewed by 288
Abstract
The main challenge of this scientific work was the implementation on an industrial olive oil extraction plant of an NIR device for the multispectral analysis of pomace to predict the percentage of humidity and oil contained in it. Subsequent to the implementation of [...] Read more.
The main challenge of this scientific work was the implementation on an industrial olive oil extraction plant of an NIR device for the multispectral analysis of pomace to predict the percentage of humidity and oil contained in it. Subsequent to the implementation of the NIR device on the oil extraction line on the solid’s outlet from the decanter, NIRS interaction measurements in the 761–1081 nm region were used to probe the pomace. NIRS calibration models for the prediction of water and oil content in the pomace were obtained and successfully tested and validated. The correlations of calibration results for oil and water content were 0.700 and 0.829, while the correlations of validation were 0.773 and 0.676, respectively. Low values of root mean square error were found for both the prediction and validation set. The results highlight the good robustness of an NIR approach based on a PLS calibration model to monitor the industrial olive oil process. The results obtained are a first step toward the large-scale implementation of NIR devices for monitoring pomace in oil mills. The possibility of knowing the oil lost in the pomace, moment by moment, would open a new frontier towards system control and the sustainability of the olive oil extraction process. Full article
Show Figures

Figure 1

22 pages, 6928 KiB  
Article
An Investigation on a Comprehensive Calibration Technique to Determine the Discrete Elemental Characteristics of Unrotted Sheep Dung at Varying Water Concentrations
by Jian Wang, Kailin Ren, Zhe Li and Longfei Zhang
Agriculture 2024, 14(10), 1762; https://doi.org/10.3390/agriculture14101762 - 6 Oct 2024
Viewed by 285
Abstract
An experimental study was undertaken to investigate the problem of the substantial variability in water content in unrotted sheep dung, which leads to a lack of universality and practicality in calibrating its discrete element simulation parameters. The stacking angle was used as the [...] Read more.
An experimental study was undertaken to investigate the problem of the substantial variability in water content in unrotted sheep dung, which leads to a lack of universality and practicality in calibrating its discrete element simulation parameters. The stacking angle was used as the response value in these experiments. The objective of this study was to establish precise simulation parameters for the composting process. A model for water content-stacking angle was established using the cylinder-lifting technique, resulting in a correlation value of 0.997. Utilizing the Hertz–Mindlin with JKR bonding model, three EDEM particle models were developed, each with distinct particle sizes, based on the particle size distribution of sheep dung. The JKR surface energy was determined using the Plackett–Burman test, the steepest-climbing test, and the Box–Behnken test using a set of 10 parameters. A subsequent study was conducted on the JKR surface energy, rolling friction factor, and static friction factor utilizing the Plackett–Burman test and Box–Behnken test. A parameter model for stacking angle–discrete elements was developed that achieved a p-value below 0.0001 and a relative inaccuracy of 3.46% or less. The regression model for the water content–discrete element parameter was derived by combining the water content–stacking angle model with the stacking angle–discrete element parameter model. Validation of this model was conducted using both the pumping plate technique and the hopper approach, resulting in a relative error of 4.89% or less. The findings demonstrate that the specific characteristics of sheep manure may be accurately anticipated by considering its water content. This approach offers a valid and universally applicable way of predicting the specific characteristics of sheep dung in the simulation of composting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 4785 KiB  
Article
The Determination of the Elastoplastic and Phase-Field Parameters for Monotonic and Fatigue Fracture of Sintered Steel Astaloy™ Mo+0.2C
by Tomislav Polančec, Tomislav Lesičar and Zdenko Tonković
Metals 2024, 14(10), 1138; https://doi.org/10.3390/met14101138 - 5 Oct 2024
Viewed by 370
Abstract
This paper presents a procedure for determining the elastoplastic parameters of phase-field fracture of sintered material. The material considered was sintered steel Astaloy™ Mo+0.2C of three densities: 6.5, 6.8 and 7.1 g/cm3. The stress–strain curve and Wöhler curve, which are [...] Read more.
This paper presents a procedure for determining the elastoplastic parameters of phase-field fracture of sintered material. The material considered was sintered steel Astaloy™ Mo+0.2C of three densities: 6.5, 6.8 and 7.1 g/cm3. The stress–strain curve and Wöhler curve, which are experimentally obtained, are utilized for validation of the numerical simulations. For modelling of damage evolution, a CCPF (Convergence check phase-field) algorithm was used as a numerical framework. During calibration of the numerical parameters, two-dimensional as well as three-dimensional modelling was used. A comparison of different fatigue degradation functions known from the literature is also made. To improve the efficiency of numerical simulations of fatigue behaviour, the cycle skip technique is also employed. Full article
(This article belongs to the Special Issue Research on Fatigue Behavior of Additively Manufactured Materials)
Show Figures

Figure 1

Back to TopTop