Growth and Biocontrol of Listeria monocytogenes in Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P Extract: Interactive Effects of the Native Spoilage Microbiota during Vacuum-Packed Storage at 4 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Crude Enterocin A-B-P Extract
2.2. Commercial Anthotyros Whey Cheese Samples
2.3. Cheese Inoculation, Enterocin Addition and Storage
2.4. Cheese Analyses
2.5. Isolation and Characterization of the Dominant Whey Cheese Spoilage Microbiota
2.6. Statistical Analysis
3. Results
3.1. Behavior of L. monocytogenes in Fresh Anthotyros Whey Cheeses: Potential pH-Dependent Antilisterial Effects of the CEntE during VP Storage at 4 °C
3.2. Effects of the Native Spoilage Microbiota on the Growth/Survival Pattern of L. monocytogenes in Fresh VP Anthotyros Whey Cheeses during Storage at 4 °C
3.3. Effects of Anthotyros Aging on the Behavior of L. monocytogenes during VP Storage at 4 °C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melo, J.; Andrew, P.W.; Faleiro, M.L. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res. Int. 2015, 67, 75–90. [Google Scholar] [CrossRef]
- Falardeau, J.; Trmčić, A.; Wang, S. The occurrence, growth, and biocontrol of Listeria monocytogenes in fresh and surface–ripened soft and semisoft cheeses. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4019–4048. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.H.; Mungai, E.; Behravesh, C.B. Outbreaks attributed to cheese: Differences between outbreaks caused by unpasteurized and pasteurized dairy products, United States, 1998-2011. Foodborne Path. Dis. 2014, 11, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese—A review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Martinez-Rios, V.; Dalgaard, P. Prevalence of Listeria monocytogenes in European cheeses: A systematic review and meta-analysis. Food Control 2018, 84, 205–214. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority-European Center Disease Control (EFSA-ECSC). The European Union one health 2018 Zoonoses Report. EFSA J. 2019, 17, 5926. [Google Scholar]
- Álvarez-Ordóñez, A.; Leong, D.; Hickey, B.; Beaufort, A.; Jordan, K. The challenge of challenge testing to monitor Listeria monocytogenes growth on ready-to-eat foods in Europe by following the European Commission (2014) Technical Guidance document. Food Res. Int. 2015, 75, 233–243. [Google Scholar] [CrossRef]
- Lahou, E.; Uyttendaele, M. Growth potential of Listeria monocytogenes in soft, semi-soft and semi-hard artisanal cheeses after post-processing contamination in deli retail establishments. Food Control 2017, 76, 13–23. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Gkerekou, M.A.; Vitzilaiou, E.S.; Skandamis, P.N. Assessing the capacity of growth, survival, and acid adaptive response of Listeria monocytogenes during storage of various cheeses and subsequent simulated gastric digestion. Int. J. Food Microbiol. 2017, 246, 50–63. [Google Scholar] [CrossRef]
- Gérard, A.; El-Hajjaji, S.; Van Coillie, E.; Bentaïb, A.; Daube, G.; Sindic, M. Determination of the growth potential of Listeria monocytogenes in various types of Belgian artisanal cheeses by challenge tests. Food Microbiol. 2020, 92, 103582. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005. Microbiological criteria for foodstuffs. 15 November 2005. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- Genigeorgis, C.; Carniciu, M.; Dutulescu, D.; Farver, T.B. Growth and survival of Listeria monocytogenes in market cheeses stored at 4 °C to 30 °C. J. Food Prot. 1991, 54, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, D.K.; Bori, M.; Mantis, A. Growth of Listeria monocytogenes in the whey cheeses Myzithra, Anthotyros, and Manouri during storage at 5, 12, and 22 °C. J. Food Prot. 1996, 59, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.A.; Bevis, H.E.; Delves-Broughton, J. The use of bacteriocin nisin, as a preservative in ricotta-type cheeses to control the food-borne pathogen Listeria monocytogenes. Lett. Appl. Microbiol. 1997, 24, 343–346. [Google Scholar] [CrossRef]
- Samelis, J.; Kakouri, A.; Rogga, K.J.; Savvaidis, I.N.; Kontominas, M.G. Nisin treatments to control Listeria monocytogenes post-processing contamination on Anthotyros, a traditional Greek whey cheese, stored at 4 °C in vacuum packages. Food Microbiol. 2003, 20, 661–669. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Spanu, V.; Penna, C.; Virdis, S.; De Santis, E.P.L. Listeria monocytogenes growth potential in Ricotta salata cheese. Int. Dairy J. 2012, 24, 120–122. [Google Scholar] [CrossRef]
- Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Pintado, M.E.; Macedo, A.C.; Malcata, F.X. Review: Technology, chemistry and microbiology of whey cheeses. Food Sci. Technol. Int. 2001, 7, 105–116. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; De Santis, E.P.L. Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage. Food Microbiol. 2016, 58, 135–138. [Google Scholar] [CrossRef]
- Sattin, E.; Andreani, N.A.; Carraro, L.; Fasolato, L.; Balzan, S.; Novelli, E.; Squartini, A.; Telatin, A.; Simionati, B.; Cardazzo, B. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration. Food Microbiol. 2016, 57, 8–15. [Google Scholar] [CrossRef]
- Sattin, E.; Andreani, N.A.; Carraro, L.; Lucchini, R.; Fasolato, L.; Telatin, A.; Balzan, S.; Novelli, E.; Simionati, B.; Cardazzo, B. A multi-omics approach to evaluate the quality of milk whey used in ricotta cheese production. Front. Microbiol. 2016, 7, 1272. [Google Scholar] [CrossRef] [Green Version]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Di Salvo, R.; Piga, C.; Buschettu, L.; Casti, D.; Lamon, S.; Cossu, F. Comparison of post-lethality thermal treatment conditions on the reduction of Listeria monocytogenes and sensory properties of vacuum packed ricotta salata cheese. Food Control 2015, 50, 740–747. [Google Scholar] [CrossRef]
- Coroneo, V.; Carraro, V.; Aissani, N.; Sanna, A.; Ruggeri, A.; Succa, S.; Meloni, B.; Pinna, A.; Sanna, C. Detection of virulence genes and growth potential in Listeria monocytogenes strains isolated from ricotta salata cheese. J. Food Sci. 2016, 81, M114–M120. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.V.; Jagus, R.J.; Mugliaroli, S.L. Effect of combined natural antimicrobials on spoilage microorganisms and Listeria innocua in a whey cheese “Ricotta”. Food Bioprocess Technol. 2014, 7, 2528–2537. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Piras, F.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G. Testing commercial biopreservative against spoilage microorganisms in MAP packed Ricotta fresca cheese. Food Microbiol. 2017, 66, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of Carnobacterium spp. protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol. 2018, 74, 50–56. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Theodoridis, A.; Abrahim, A.; Sarimvei, A.; Panoulis, C.; Karaioannoglou, P.; Genigeorgis, C.; Mantis, A. Prevalence and significance of Listeria monocytogenes in Greek whey cheeses. A comparison between the years 1990 and 1996. Milchwissenschaft 1998, 53, 147–148. [Google Scholar]
- Angelidis, A.S.; Georgiadou, S.S.; Zafeiropoulou, V.; Velonakis, E.N.; Papageorgiou, D.K.; Vatopoulos, A. A survey of soft cheeses in Greek retail outlets highlights a low prevalence of Listeria spp. Dairy Sci. Technol. 2012, 92, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Noutsopoulos, D.; Kakouri, A.; Kartezini, E.; Pappas, D.; Hatziloukas, E.; Samelis, J. Growth, nisA gene expression and in situ nisin A activity of novel Lactococcus lactis subsp. cremoris costarter culture in commercial hard cheese production. J. Food Prot. 2017, 80, 2137–2146. [Google Scholar]
- Samelis, J.; Kakouri, A. Cell growth density and nisin A activity of the indigenous Lactococcus lactis subsp. cremoris M78 costarter depend strongly on inoculation levels of a commercial Streptococcus thermophilus starter in milk: Practical aspects for traditional Greek cheese processors. J. Food Prot. 2020, 83, 542–551. [Google Scholar] [PubMed]
- Kakouri, A.; Lianou, A.; Samelis, J. Antilisterial activity of wild, novel nisin-producing Lactococcus lactis subsp. cremoris strains in synthetic culture media and different dairy foods. In Proceedings of the 23rd International ICFMH Symposium (FoodMicro 2012), Istanbul, Turkey, 3–7 September 2012; Abstract P-573. p. 761. [Google Scholar]
- Mojgani, N.; Ameli, M.; Vaseji, N.; Hejazi, M.A.; Torshizi, M.A.K.; Amirinia, C. Growth control of Listeria monocytogenes in experimental cheese samples by Lactobacillus casei RN78 and its bacteriocin. African J. Microbiol. Res. 2010, 4, 1044–1050. [Google Scholar]
- Martinez, R.C.R.; Staliano, C.D.; Vieira, A.D.S.; Villarreal, M.L.M.; Todorov, S.D.; Saad, S.M.I.; Franco, B.D.G.M. Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially symbiotic cheese spread. Food Microbiol. 2015, 48, 143–152. [Google Scholar]
- Dapkevicious, M.L.E.; Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Malcata, F.X. Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.; Stack, H.; Rea, R. Safety, beneficial and technological properties of enterococci for use in functional food applications—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef]
- Sameli, N.; Sioziou, E.; Bosnea, L.; Kakouri, A.; Samelis, J. Assessment of the spoilage microbiota during refrigerated (4 °C) vacuum-packed storage of fresh Greek Anthotyros whey cheese without or with a crude enterocin A-B-P-containing extract. Foods 2021, 10, 2946. [Google Scholar] [CrossRef]
- Tsanasidou, C.; Asimakoula, S.; Sameli, N.; Fanitsios, C.; Vandera, E.; Bosnea, L.; Koukou, A.I.; Samelis, J. Safety evaluation, biogenic amine formation, and enzymatic activity profiles of autochthonous enterocin-producing Greek cheese isolates of the Enterococcus faecium/durans group. Microorganisms 2021, 9, 777. [Google Scholar] [CrossRef]
- Vandera, E.; Parapouli, M.; Kakouri, A.; Koukkou, A.I.; Hatziloukas, E.; Samelis, J. Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol. 2020, 86, 103335. [Google Scholar] [CrossRef]
- Sameli, N.; Skandamis, P.N.; Samelis, J. Application of Enterococcus faecium KE82, an enterocin A-B-P–producing strain, as an adjunct culture enhances inactivation of Listeria monocytogenes during traditional Protected Designation of Origin Galotyri processing. J. Food Prot. 2021, 84, 87–98. [Google Scholar] [CrossRef]
- Dicks, L.M.T.; Fantuzzi, L.; Gonzalez, F.C.; Du Toit, M.; Dellaglio, F. Leuconostoc argentinum sp. nov., isolated from Argentine raw milk. Int. J. Syst. Evol. Microbiol. 1993, 43, 347–351. [Google Scholar] [CrossRef]
- Vancanneyt, M.; Zamfir, M.; De Wachter, M.; Cleenwerck, I.; Hoste, B.; Rossi, F.; Dellaglio, F.; De Vuyst, L.; Swings, J. Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int. J. Syst. Evol. Microbiol. 2006, 56, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beshkova, D.; Frengova, G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng. Life Sci. 2012, 12, 419–432. [Google Scholar] [CrossRef]
- Vandera, E.; Lianou, A.; Kakouri, A.; Feng, J.; Koukkou, A.-I.; Samelis, J. Enhanced control of Listeria monocytogenes by Enterococcus faecium KE82, a multiple enterocin-producing strain, in different milk environments. J. Food Prot. 2017, 80, 74–85. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Moreno, F.M.R.; Revets, H. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int. J. Food Microbiol. 2003, 84, 299–318. [Google Scholar] [CrossRef]
- Asimakoula, S.; Giaka, K.; Fanitsios, C.; Kakouri, A.; Vandera, E.; Samelis, J.; Koukkou, A.-I. Monitoring growth compatibility and bacteriocin gene transcription of adjunct and starter lactic acid bacterial strains in milk. J. Food Prot. 2021, 84, 509–520. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S. Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza”, a traditional Slovak dairy product from sheep milk. Microbiol. Res. 2001, 156, 31–34. [Google Scholar] [CrossRef]
- Huang, E.; Zhang, L.W.; Chung, Y.K.; Zheng, Z.X.; Yousef, A.E. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis. Biomed Res. Int. 2013, 2013, 206917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, M.C.; Silva, C.C.G.; Ribeiro, S.C.; Dapkevicius, M.; Rosa, H.J.D. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 2014, 191, 53–59. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Ross, R.P.; Stanton, C.; Silva, C.C.G. Characterization and application of antilisterial enterocins on model fresh cheese. J. Food Prot. 2017, 80, 1303–1316. [Google Scholar] [CrossRef]
- Bassi, D.; Gazzola, S.; Sattin, E.; Dal Bello, F.; Simionati, B.; Cocconcelli, P.S. Lactic acid bacteria adjunct cultures exert a mitigation effect against spoilage microbiota in fresh cheese. Microorganisms 2020, 8, 1199. [Google Scholar] [CrossRef]
- Sacco System. Supporting Food Culture & Life. 4-Protection. Special Protective Food Cultures: Tradition, Passion, Innovation; Sacco System: Cadorago, Italy, 2020; Available online: www.saccosystem.com (accessed on 4 March 2020).
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Kaminarides, S.; Aktypis, A.; Koronios, G.; Massouras, T.; Papanikolaou, S. Effect of ‘in situ’ produced bacteriocin thermophilin T on the microbiological and physicochemical characteristics of Myzithra whey cheese. Int. J. Dairy Technol. 2018, 71, 213–222. [Google Scholar] [CrossRef]
- Callon, C.; Saubusse, M.; Didienne, R.; Buchin, S.; Montel, M.C. Simplification of a complex microbial antilisterial consortium to evaluate the contribution of its flora in uncooked pressed cheese. Int. J. Food Microbiol. 2011, 145, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irlinger, F.; Yung, S.A.Y.I.; Sarthou, A.-S.; Delbès-Paus, C.; Montel, M.-C.; Coton, E.; Coton, M.; Helinck, S. Ecological and aromatic impact of two Gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese. Int. J. Food Microbiol. 2012, 153, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Bré, J.-M.; Guéguen, M.; Vernoux, J.-P.; Desmasures, N. Reduced growth of Listeria monocytogenes in two novel model cheese microcosms is not associated with individual microbial strains. Food Microbiol. 2013, 33, 30–39. [Google Scholar] [CrossRef]
- Abreu, A.C.S.; Carazzole, M.F.; Crippa, B.L.; Barboza, G.R.; Rall, V.L.M.; Rocha, L.O.; Silva, N.C.C. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int. Dairy J. 2021, 122, 105139. [Google Scholar] [CrossRef]
- Lioliou, K.; Litopoulou-Tzanetaki, E.; Tzanetakis, N.; Robinson, R.K. Changes in the microflora of Manouri, A traditional Greek whey cheese, during storage. Int. J. Dairy Technol. 2001, 54, 100–106. [Google Scholar] [CrossRef]
- Pala, C.; Scarano, C.; Venusti, M.; Sardo, D.; Casti, D.; Cossu, F.; Lamon, S.; Spanu, V.; Ibba, M.; Marras, M. Shelf life evaluation of ricotta fresca sheep cheese in modified atmosphere packaging. Ital. J. Food Saf. 2016, 5, 5502. [Google Scholar] [CrossRef] [Green Version]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
Bacterial Group | Cheese Treatment | Days of Storage at 4 °C | ||||
---|---|---|---|---|---|---|
0 | 8 | 15 | 30 | 40 | ||
Listeria monocytogenes strain No. 10 | CN | 3.34 a | 4.55 b | 5.20 b | 5.35 b | 5.25 b B |
(0.09) | (0.38) | (0.87) | (1.17) | (0.89) | ||
CEntE | 3.32 a | 4.65 b | 5.38 c | 4.90 cb | 4.25 ab A | |
(0.10) | (0.22) | (0.85) | (0.72) | (1.04) | ||
Total dairy lactic acid bacteria (LAB)—selective colony enumeration on MPCA plates at 37 °C for 48 h | CN | 4.28 a | 6.70 ab | 7.17 b AB | 8.39 c B | 8.67 c B |
(2.06) | (1.12) | (0.97) | (0.27) | (0.52) | ||
CEntE | 4.00 a | 6.12 a | 8.32 b B | 8.68 b B | 8.66 b B | |
(2.13) | (1.21) | (0.63) | (0.61) | (0.29) | ||
Total Gram-negative dairy bacteria—selective colony enumeration on MPCA plates at 37 °C for 48 h | CN | 4.51 a | 6.24 b | 6.67 bc A | 7.46 c A | 7.05 bc A |
(1.15) | (1.03) | (1.61) | (0.69) | (0.45) | ||
CEntE | 4.97 a | 5.85 b | 7.14 c AB | 7.52 c A | 6.89 bc A | |
(1.29) | (1.25) | (1.31) | (0.60) | (0.89) | ||
Whey cheese pH b | CN | 6.80 d | 6.84 d | 6.21 c | 5.51 b B | 5.14 a B |
(0.18) | (0.28) | (0.13) | (0.23) | (0.21) | ||
CEntE | 6.83 c | 6.82 c | 5.98 b | 4.87 a A | 4.63 a A | |
(0.14) | (0.23) | (0.54) | (0.28) | (0.21) |
Species | Biotypes | Whey Cheese Batch Isolates | Total Isolates (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||||
CN | Ent | CN | Ent | CN | Ent | CN | Ent | |||
Leuconostoc mesenteroides (Non-slime-producers) | 3 | 10 | 8 | 11 | 10 | 7 | 9 | 10 | 10 | 75 (62.5) |
Leuconostoc mesenteroides (Slime-producers) | 1 | 4 | 7 | 2 | 2 | 2 | 17 (14.2) | |||
Leuconostoc lactis | 1 | 2 | 2 | 4 (3.3) | ||||||
Carnobacterium maltaromaticum | 4 | 2 | 3 | 4 | 4 | 13 (10.9) | ||||
Streptococcus thermophilus | 1 | 5 | 2 | 7 (5.9) | ||||||
Enterococcus faecium | 1 | 1 | 1 (0.8) | |||||||
Lactococcus lactis | 1 | 2 | 2 (1.6) | |||||||
Mesophilic Lactobacillus sp. | 1 | 1 | 1 (0.8) | |||||||
Total LAB isolates | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 120 | |
Hafnia alvei | 2 | 13 | 17 | 2 | 9 | 41 (42.7) | ||||
Serratia liquefaciens | 2 | 3 | 7 | 3 | 3 | 1 | 17 (17.7) | |||
Rahnella aquatilis | 2 | 5 | 3 | 8 (8.3) | ||||||
Pantoea sp. | 1 | 1 | 1 (1.1) | |||||||
Klebsiella oxytoca | 2 | 1 | 2 | 3 (3.1) | ||||||
Enterobacter sp./E. cloacae | 2 | 1 | 1 | 1 | 1 | 4 (4.2) | ||||
Pseudomonas sp. | 3 | 2 | 5 | 4 | 11 (11.4) | |||||
Aeromonas sp. | 2 | 9 | 9 (9.4) | |||||||
Flavibacterium sp. | 1 | 2 | 2 (2.1) | |||||||
Total Gram-negative bacteria isolates | 10 | 5 | 10 | 7 | 19 | 19 | 16 | 10 | 96 |
Bacterial Group | Enumeration Medium/Incubation Conditions | Days of Additional Storage at 4 °C | ||
---|---|---|---|---|
0 (15) | 8 (23) | 20 (35) | ||
Listeria monocytogenes No. 10 | PALCAM agar/30 °C; 48–72 h; aerobically | 3.13 a (0.28) | 3.29 a (0.31) | 3.01 a (0.23) |
Total spoilage lactic acid bacteria (LAB) | M17 agar/22 °C; 72 h; aerobically | 8.29 a (0.25) | 8.64 b* (0.07) | 8.49 ab* (0.56) |
Total spoilage Gram-negative bacteria | 7.70 a (0.10) | 7.29 a* (0.96) | 7.18 a* (1.03) | |
Total mesophilic aciduric LAB | MRS agar/30 °C; 72 h; aerobically | 7.74 a (0.89) | 8.09 a (0.72) | 7.99 a (0.79) |
Pseudomonas and related Gram-negative bacteria | Cephalothin–fucidin–cetrimide (CFC) agar/ 25 °C; 48 h; aerobically | 7.60 b (0.25) | 6.48 ab (1.89) | 6.13 a (1.99) |
Coliform bacteria | Violet Red Bile agar (VRBA)/37 °C; 18–24 h; anaerobically (double-layered) | 6.70 b (0.92) | 5.95 ab (1.91) | 5.00 a (1.20) |
Enterococci | Kanamycin Aesclulin Azide (KAA) agar/ 37 °C; 48 h; aerobically | 4.11 a (2.12) | 4.63 a (1.70) | 4.67 a (1.74) |
Total staphylococci | Baird-Parker agar with egg yolk tellurite/ 37 °C; 48 h; aerobically | 4.65 a (1.36) | 4.62 a (1.37) | 3.43 a (1.29) |
Yeasts | Rose Begnal Chloramphenicol (RBC) agar/ 25 °C; 48 h; aerobically | 2.58 a (0.53) | 2.65 a (0.16) | 3.69 a (1.21) |
Whey cheese pH | 6.10 b (0.16) | 5.14 a (0.35) | 4.86 a (0.24) |
Biochemical Test | Leuconostoc spp. Isolates | Other LAB Isolates | Total Isolates | ||||||
---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L6 | L7 | Cn | Lb | Ent | ||
Cell morphology | BC | BC | BC | BC | BC | SR | C | C | |
CO2 from glucose | + | + | + | + | + | − | − | − | |
NH3 from arginine | − | − | − | − | − | (+) | − | ++ | |
Growth at 45 °C | − | − | − | − | − | − | − | + | |
Growth in 4% NaCl | + | + | + | + | + | + | + | + | |
Growth in 6.5% NaCl | + | + | + | + | + | − | + | + | |
Slime from sucrose | − | − | − | − | − | − | − | − | |
Growth on KAA agar | − | (+) | −/(+) | − | − | + | −/(+) | ++ | |
Acid from: | |||||||||
Maltose | 6/12 | + | 1/6 | − | + | + | + | + | |
Mannitol | − | − | − | − | − | + | + | + | |
Lactose | + | + | + | + | + | + | + | + | |
Ribose | − | (+)/+ | 1/6 | − | − | + | − | + | |
L-Arabinose | − | + | + | − | − | − | + | + | |
Xylose | + | + | + | + | − | − | + | − | |
Raffinose | − | + | − | + | −/+d | − | + | − | |
Sucrose | + | + | + | + | + | + | + | + | |
Cellobiose | − | 4/9 | 1/6 | − | 5/10 | + | + | + | |
Trehalose | + | + | + | + | + | 2/3 | + | + | |
Galactose | + | + | + | + | + | + | + | + | |
Total isolates | 12 | 9 | 6 | 1 | 10 | 3 | 2 | 1 | 44 |
Batch C (CN/Ent) | 0/0 | 1/0 | 0/0 | 0/1 | 3/4 | 1/0 | 1/1 | 0/0 | 12 |
Batch D (CN/Ent) | 6/5 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/1 | 12 |
Batch X-15A | 1 | 8 | 6 | 0 | 3 | 2 | 0 | 0 | 20 |
Test | Reactions/Enzymes | Hafnia alvei I | Pantoea sp. | Klebsiella oxytoca | Shewanella putrefaciens | Total Isolates |
---|---|---|---|---|---|---|
ONPG | β-Galactosidase | +/− | + | + | − | |
ADH | Arginine dihydrolase | − | − | − | − | |
LDC | Lysine decarboxylase | + | − | + | − | |
ODC | Ornithine decarboxylase | + | − | − | − | |
CIT | Citrate utilization | + | − | + | − | |
H2S | H2S production | − | − | − | + | |
URE | Urease | − | − | − | − | |
TDA | Tryptophane deaminase | − | − | − | − | |
IND | Indole production | − | − | + | − | |
VP | Acetoin production | + | − | + | − | |
GEL | Gelatinase | − | + | − | + | |
GLU | Glucose (F/O) | + | + | + | − | |
MAN | Mannitol (F/O) | + | + | + | − | |
INO | Inositol (F/O) | − | − | + | − | |
SOR | Sorbitol(F/O) | − | − | + | − | |
RHA | Rhamnose (F/O) | + | − | + | − | |
SAC | Saccharose (F/O) | − | + | + | − | |
MEL | Melibiose (F/O) | − | − | + | − | |
AMY | Amygdalin (F/O) | − | − | + | − | |
ARA | Arabinose (F/O) | + | + | + | − | |
OX | Oxidase reaction | − | − | − | + | |
API code | 4305112 5305112 | 1006122 | 5245773 | 0402004 | ||
Identification accuracy | Excellent Very good | Acceptable | Good | Excellent | ||
Total isolates | 8 | 4 | 1 | 5 | 18 | |
Isolates/batch C (CN/Ent) | 3/3 | 0/0 | 0/0 | 0/0 | 6 | |
Isolates/batch D (CN/Ent) | 0/0 | 0/0 | 0/1 | 3/2 | 6 | |
Isolates/batch X-15M | 2 | 4 | 0 | 0 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sameli, N.; Samelis, J. Growth and Biocontrol of Listeria monocytogenes in Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P Extract: Interactive Effects of the Native Spoilage Microbiota during Vacuum-Packed Storage at 4 °C. Foods 2022, 11, 334. https://doi.org/10.3390/foods11030334
Sameli N, Samelis J. Growth and Biocontrol of Listeria monocytogenes in Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P Extract: Interactive Effects of the Native Spoilage Microbiota during Vacuum-Packed Storage at 4 °C. Foods. 2022; 11(3):334. https://doi.org/10.3390/foods11030334
Chicago/Turabian StyleSameli, Nikoletta, and John Samelis. 2022. "Growth and Biocontrol of Listeria monocytogenes in Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P Extract: Interactive Effects of the Native Spoilage Microbiota during Vacuum-Packed Storage at 4 °C" Foods 11, no. 3: 334. https://doi.org/10.3390/foods11030334