

Prevalence of Listeria monocytogenes in European cheeses - A systematic review and meta-analysis

Martinez Rios, Veronica; Dalgaard, Paw

Published in: Food Control

Link to article, DOI: 10.1016/j.foodcont.2017.07.020

Publication date: 2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Martinez Rios, V., & Dalgaard, P. (2018). Prevalence of *Listeria monocytogenes* in European cheeses - A systematic review and meta-analysis. *Food Control*, *84*, 205-214. https://doi.org/10.1016/j.foodcont.2017.07.020

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Prevalence of <i>Listeria monocytogenes</i> in European cheeses: A systematic review and meta-analysis
2	Veronica Martinez-Rios*, Paw Dalgaard
3	
4	National Food Institute (DTUFood), Technical University of Denmark, Kgs. Lyngby, Denmark
5	
6	
7	
8	
9	
10	
11	* Corresponding author: Analytical and Predictive Microbiology, National Food Institute, Technical
12	University of Denmark, Kemitorvet, Building 204, DK-2800, Kgs. Lyngby, Denmark. E-mail:
13	veri@food.dtu.dk (V. Martinez-Rios)
14	
15	
16	
17	
18	
19	

ABSTRACT

20

43

Both in Europe and worldwide cheese has caused important outbreaks of listeriosis and can be a 21 22 vehicle for transmission of Listeria monocytogenes to consumers. A systematic review and metaanalysis were conducted using scientific literature and European Food Safety Authority (EFSA) 23 reports to summarize available data on the prevalence of L. monocytogenes in different types of 24 cheeses produced in Europe. Meta-analysis models were used to estimate mean prevalence of the 25 pathogen and to compare prevalence among types of cheeses (fresh, ripened, veined, smear and 26 brined) and cheeses produced using, respectively, pasteurized or un-pasteurized milk. Data from a 27 28 total of 130,604 samples were analysed. Mean prevalence for presence during 2005-2015 estimated from scientific literature (2.3% with confidence interval (CI): 1.4-3.8%) was more than three times 29 higher than results from EFSA reports (0.7%; CI: 0.5-1.1%). The prevalence differed among types 30 of cheeses including fresh (0.8%; CI: 0.3-1.9%), ripened (2.0%; CI: 0.8-4.9%), veined (2.4%; CI: 31 0.9-6.3%), smear (5.1%; CI: 1.9-13.1%) and brined (11.8%; CI: 3.5-33.3%). Mean prevalence of L. 32 monocytogenes in soft/semi-soft cheeses were not significantly different (P > 0.05) for cheeses 33 produced from pasteurized (0.9%; CI: 0.4-1.9%) or un-pasteurized (1.0%; CI: 0.4-2.2%) milk. For 34 cheese samples reported by EFSA 0.2% CI: 0.1-0.4% had concentration of L. monocytogenes above 35 36 the critical European limits of 100 cfu/g. In addition, this systematic review focused on groups/species of microorganisms suitable as indicator organisms for L. monocytogenes in cheeses 37 to reflect the level of production hygiene or as index organisms to assess the prevalence of L. 38 monocytogenes in cheeses. However, no suitable indicator or index organisms were identified. The 39 performed meta-analyses improved our understanding of L. monocytogenes prevalence in different 40 41 types of cheeses and provided results that can be useful as input for quantitative microbiological risk assessment modelling. 42

Keywords: Occurrence, fresh cheese, soft and semi-soft cheeses, risk assessment

1. Introduction

The genus <i>Listeria</i> includes more than 20 species that can be divided into three clades
(Weller et al. 2015). Two <i>Listeria</i> species belonging to the same clade are generally considered to
be pathogenic, L. monocytogenes in humans and L. ivanovii in other mammals. Nevertheless, there
have been some reports of L. seeligeri and L. ivanovii causing illness in humans (Cummins et al.,
1994; Rocourt et al., 1986). The likelihood of L. monocytogenes infection leading to listeriosis is
greatest among certain groups; including pregnant woman, neonates, immunocompromised adults
and the elderly (Ryser & Marth, 2007). Within the European Union (EU) there has been a
statistically significant increasing trend of listeriosis over the period 2009-2015. Specifically, the
numbers of confirmed human cases of listeriosis were 1,331 and 2,206 in 2009 and 2015,
respectively (EFSA, 2016). A total of 270 deaths due to listeriosis were reported within nineteen
EU member states. The overall EU notification rate of listeriosis was 0.46 cases per 100.000
population with a case-fatality rate of 17.7% (EFSA, 2016). Seven EU Member States and Norway
provided information from conventional serotyping of L. monocytogenes (accounting for 23.3 % of
all confirmed cases). The most common serotypes in 2013 were 1/2a (57.5 %) and 4b (34.3 %),
followed by 1/2b (6.4 %), 1/2c (1.4 %), 3a and 3b (both 0.2 %) (EFSA, 2015).
In 2010-2011 an EU baseline survey (EFSA, 2013a) collected data about presence of <i>L</i> .
monocytogenes and the non-compliance for different ready-to-eat (RTE) food categories at retail.
The proportion of <i>L. monocytogenes</i> positive samples at retail was highest in fish products (mainly
smoked fish), followed by soft and semi-soft cheeses and RTE meat products. Specifically, the EU
prevalence of <i>L. monocytogenes</i> in cheeses at retail was 0.47 % (CI: 0.29-0.77%) determined as 16
positive samples out of 3393 at the end of shelf-life. For these 2010-2011 samples 0.06% (CI: 0.02-
0.24 %) determined as two samples out of 3393 exceeded the critical concentration of 100 cfu/g

67 (EFSA, 2013a). In 2015 fifteen samples out of 3039 exceeded the critical concentration of 100 cfu/g
68 (EFSA, 2016).

The first reported outbreak of human listeriosis associated with consumption of cheese occurred in the USA during 1985 (Linnan *et al.*, 1988) and was caused by a fresh cheese. Since then, several outbreaks associated with consumption of cheese have occurred worldwide and fatalities continue to be reported (Table 1). Clearly, it is important to collect information and to analyse data in an attempt to improve our understanding and options to better manage this risk.

Meta-analysis is a statistical approach that can be used to analyse, for example, prevalence data (effect size) originating from various sources (primary studies) and in this way provide an overview of effects and variability (Glass, 1976; Sutton, et al., 2001). Lately, meta-analysis has been used to study several food safety issues and the quantitative results obtained can been used as inputs in risk assessment models (Baron et al., 2009).

Fortunately, prevalence and concentrations of *L. monocytogenes* in cheeses and cheese processing environments are low. Therefore, to evaluate its potential presence other index or indicator microorganisms that are easier to determine or quantify can be relevant to analyse. Index organisms can be used to assess likelihood of the presence of a pathogen whereas indicator organisms demonstrate a failure in Good Hygiene Practices (GHP) (Brodsky, 1995; Mossel, 1978). EU Regulation (EC) No 2073/2005 use coagulase-positive staphylococci as index organisms to assess the likelihood of staphylococcal enterotoxins in cheese made from raw or pasteurized milk and *E. coli* is used as an indicator for the level of production hygiene in cheese made from milk that has undergone heat treatment. Furthermore, *Listeria* spp. has been used as index organisms for the likely presence of *L. monocytogenes* in food (FSIS, 2014; Gilbert et al., 2000).

The objective of the present study was to perform a systematic review	and a meta-analysis
of the prevalence of L . $monocytogenes$ in different types of European cheeses	and study potential
indicator organisms for assessment of production hygiene or index organisms	for implementation in
the assessment of product safety.	

2. Materials and methods

2.1. Literature search and inclusion criteria

A systematic review was performed following the protocol presented by Sargeant et al., 2005. Literature searches were carried out to identify suitable scientific literature using Web of Science (2017) or DTU Findit (2017) databases for papers indexed since 1985 as well as Google searches using English, French, Italian, and Spanish terms for combinations of *Listeria* spp., *L. monocytogenes*, cheese, dairy, prevalence, incidence and occurrence. Electronic searches were carried out to identify reports of the prevalence for *Listeria* spp. in cheese. This included reports by national and international organizations such as World Health Organization (WHO), EFSA and the International Commission for Microbiological Specification in Foods (ICMSF).

For inclusion in the meta-analysis results had to meet three requirements: (i) to come from original studies, (ii) to be obtained by using approved (FDA/FIL-IDF or ISO) microbiological methods for detection of *Listeria* spp. and (iii) originate from cheeses produced in Europe during the period of 2005 to 2015.

2.2. Data and definitions

Cheese-type definitions were necessary in order to categorize studies from scientific literature. Available information allowed for a classification based in maturation characteristics. For

111	the purpose of this paper, the following definitions apply. Fresh cheeses are curd-style cheeses
112	which do not undergo any ripening (CAC, 2013), for example, queso fresco, cottage cheese,
113	Mozzarella or Ricotta. Ripened cheeses are not ready for consumption shortly after manufacture
114	and maturation is needed for development of specific cheese characteristics (CAC, 2013), for
115	example, Gouda, Edam, Cheddar or Parmesan. Veined cheeses are ripened cheeses in which
116	ripening has been accomplished primarily by the development of the mould <i>Penicillum roqueforti</i>
117	throughout the interior and/or on the surface, for example, Roquefort, Gorgonzola, Cabrales, Stilton
118	or Danablu. Smear cheeses are ripened cheeses where the surface is treated with <i>Penicillum</i>
119	candidum, Penicillum camemberti or Brevibacterium linens, for example, Brie, Camembert,
120	Limburger or Taleggio. Brined cheeses are ripened and stored in brine until they are sold or packed
121	for example, Feta or Ricotta salata (Fox et al., 2000).
122	Classification of cheese in EFSA reports are based on cheese moisture content. Soft-cheeses
123	have a percentage of moisture, on a fat-free basis, higher than 67 %. Semi-soft cheeses have 62 to
124	67 % fat-free moisture and are characterized by their firm but elastic feel. Hard cheeses have 49 to
125	56 % fat-free moisture (CAC, 2013; EFSA, 2013b).
126	2.3. Problem statement
127	To estimate prevalence of <i>L. monocytogenes</i> in cheese during the period 2005-2015 (i) from
128	scientific literature data, (ii) from data in EFSA reports, (iii) from scientific literature and data in
129	EFSA reports when combined and (iv) to study groups/species of microorganisms suitable as
130	indicator or index organisms to assess prevalence of <i>L. monocytogenes</i> in cheeses.
131	2.4. Description of data sets for meta-analysis and regression modelling
132	From each primary study the number of samples positive for <i>L. monocytogenes</i> (s) and the
133	total number of samples (n) were extracted. Information about year of survey, country, sample

weight and information on sampling at production site or at retail were also collected from each primary study. Meta-analysis for prevalence of *L. monocytogenes* in cheese as reported in the scientific literature was based on 17 primary studies including a total of 7,221 samples (Table 2), while data from seven EFSA reports with a total of 123,383 samples were included (Table 3 and Table 4). The regression model used to evaluate indicator/index organisms for *L. monocytogenes* in European cheeses was based in 16 primary studies all from the scientific literature and including a total of 3,852 samples (Table 5).

- 141 2.5. Meta-analysis
- Prevalence $\left(p_i = \frac{s_i}{n_i}\right)$ data was studied as observed effect size (θ_i) and they were logit
- transformed in order to restrict values to a range between 0-1 and to stabilize variance (Eq. 1;
- Viechtbauer, 2010). The parameter measuring effect size (θ_i) is a common metric that permits
- direct comparison and summation of primary studies (Borestein et al., 2009).

146
$$\theta_i = logit \ p_i = ln\left(\frac{p_i}{1 - p_i}\right) = ln\left(\frac{s_i}{n_i - s_i}\right)$$
 (1)

- Models with random-effects were used to calculate prevalence values (mean and 95% CI) of L.
- *monocytogenes* across primary studies (Eq. 2; Borestein et al., 2009):

149
$$T_i = \theta_i + \varepsilon_i = \mu + u_i + \varepsilon_i$$
 (2)

- where T_i is the true effect size for each primary study (i = 1, 2, ...), ε_i is the sampling error and μ is
- the mean true effect size. u_i represents the true variation in effect sizes being compose of within-
- study (σ^2) and between-study variance (τ^2).
- The between-study variance (τ^2) is estimated from the Q-statistic (DerSimonian & Laird 1986),

154
$$\hat{\tau}^2 = \begin{cases} \frac{Q - (k - 1)}{\sum w_i - \frac{\sum w_i^2}{\sum w_i}}, & for \ Q > (k - 1) \\ 0, & for \ Q \le (k - 1) \end{cases}$$
 (3)

where Q is calculated by Eq. 4 and 5, k is the number of studies and w_i the weight assigned to each

156 study (Eq.5).

157
$$Q = \sum w_i (T_i - \mu)^2$$
 (4)

$$158 \mu = \frac{\sum_{i} w_i T_i}{\sum_{i} w_i} (5)$$

159
$$w_i = \frac{1}{\sigma_i^2 + \tau_i^2}$$
 (6)

160 A significant value of the Q-statistic indicates a real effect difference between primary studies and suggests the use of a multilevel model (Xabier et al., 2014). The I^2 index was used to 161 measure the extent of between-study variance dividing the difference between the result of the Q-162 statistic and its degrees of freedom (k-1) by the Q value itself, and then multiply by 100. Higgins 163 & Thompson (2002) proposed a classification of I^2 values with percentages of around 25% (I^2 164 = 25), 50% (I^2 = 50) and 75% (I^2 = 75) corresponding to low, medium and high between-study 165 variance, respectively. The τ^2 and I^2 indices are related and higher τ^2 values corresponds to higher 166 I^2 index values. 167

Multilevel meta-analysis including type of cheese and pasteurized or unpasteurized milk were used to account for some of the observed between-study variance in prevalence data.

The multilevel models used were formulated as:

171
$$T_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i + \varepsilon_i$$
 (7)

1/2	with $(\lambda_1 \iota \iota \iota \lambda_k)$ being study characteristics and ρ_k the moderator effects.
173	Meta-analysis modelling was performed by using R version 3.1.3 (R Development Core Team) and
174	the "metafor" package (Viechtbauer, 2010), which provides functions for fitting of random-effects
175	and multilevel models as well as meta-analytical graphs including forest plots.
176	2.6. Regression modelling
177	A linear regression model $(y = a + bx)$ was used to evaluate the relation between
178	prevalence of <i>Listeria</i> spp. (x) and prevalence of <i>L. monocytogenes</i> (y). Regression modelling was
179	performed with R and an F-test was used to evaluate if the linear model could be reduced to $y = bx$
180	
181	3. Results
182	3.1. Meta-analysis of prevalence data from scientific literature
183	The overall prevalence for presence of <i>L. monocytogenes</i> in cheese was 2.3% (CI: 1.4-
184	3.8%). Variability in reported prevalence among studies was high (Table 6 and Fig.1) and the
185	between-study variance slightly decrease from $\tau^2 = 1.72$ to 1.12 when cheeses were grouped in
186	categories by the multilevel model. Nevertheless, unexplained variability remained high ($I^2 = 75\%$;
187	p-value < 0.001 in Table 6).
188	Fresh cheese had the lowest mean prevalence of 0.8% (CI: 0.3-1.9%), followed by ripened
189	cheese 2.0% (CI: 0.8- 4.9%), veined cheese 2.4% (CI: 0.9- 6.3%) and smear cheese 5.1% (CI: 1.9-
190	13.1%). Brined cheese had the highest <i>L. monocytogenes</i> prevalence of 11.8% (CI: 3.5-33.3%)
191	(Table 6 and Fig. 1).
192	3.2. Meta-analysis of prevalence data from EFSA reports

The overall prevalence for presence of <i>L. monocytogenes</i> in o	cheese was 0.7% (CI: 0.5 –
1.1%) with high between-studies variance (Table 7). A multilevel me	odel determined the prevalence
of L. monocytogenes in hard and soft/semi-soft cheeses produced from	om un-pasteurized or
pasteurized milk. No significant effect of pasteurization ($p > 0.05$) w	vas observed within hard or
soft/semi-soft cheeses (Table 7).	

A second random-effects meta-analysis was performed to assess non-compliance with the criterion of 100 cfu/g for L. monocytogenes in ready-to-eat (RTE) foods. 0.2% (CI: 0.1-0.4) of the cheese samples had more than 100 L. monocytogenes/g and high between-study variance was observed (Table 8). Prevalence of L. monocytogenes in hard and soft/semi-soft cheese produced with un-pasteurized or pasteurized milk was estimated. Pasteurization of milk had no significant effect (p > 0.05) within hard or soft/semi-soft cheeses (Table 8).

3.3. Meta-analysis of combined prevalence data from scientific literature and EFSA reports

The overall prevalence of *L. monocytogenes* in European cheeses was 1.2% (CI: 0.8-1.8%).

High between-study variance was observed and a significant difference (p < 0.001) was determined

between data from the scientific literature and from EFSA reports data (Table 9).

3.4. Evaluation of index organisms for prevalence of L. monocytogenes in European cheeses

Of 3852 samples reporting presence of *Listeria* spp., 203 (5.3%) were positive for *L. monocytogenes*, 327 (8.5%) *L. innocua*, 19 (0.5%) *L. grayi*, 188 (4.9%) *L. welshimer*, 18 (0.5%) *L. ivanovii* and 20 (0.5%) *L. seeligeri*. The correlation factor was sufficient to describe the relation between prevalence of *Listeria* spp. (x) and prevalence of *L. monocytogenes* (y) in cheeses (y = 0.52 x, $r^2 = 0.86$, Fig. 2).

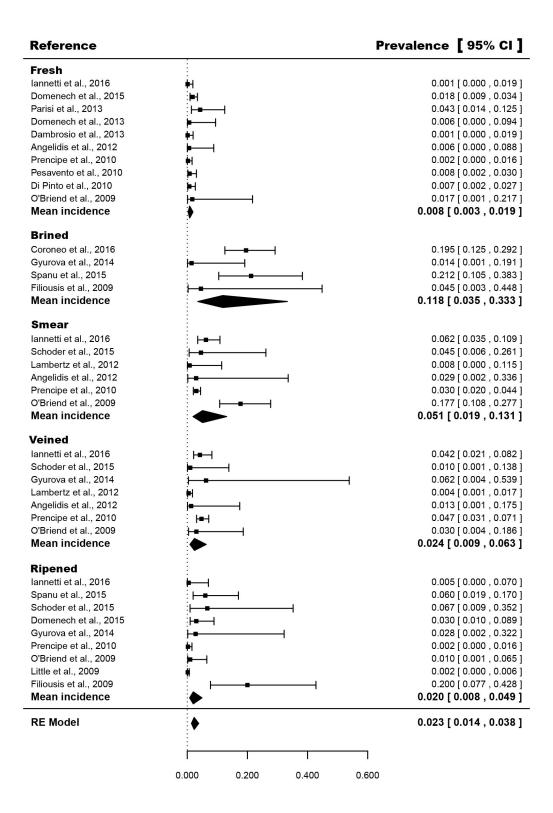
4. Discussion

215	It is critical to understand and quantified prevalence of L. monocytogenes in cheeses since
216	they are an important vehicle for transmission of the pathogen and infection causes the highest
217	fatality case rate among zoonotic diseases (EFSA, 2016).
218	EU mean prevalence of L . $monocytogenes$ in cheese from scientific literature exceeded what
219	was reported by EFSA for the same period. This may result from a focus on problematic cheese
220	products in scientific studies whereas EFSA reports include a larger number of samples from hard
221	cheeses where L. monocytogenes can be inactivated and prevalence therefore is lower. The data
222	from scientific studies corresponded to previous studies reporting prevalence between 0 and 4.8%
223	(Esho et al., 2013; Manfreda et al., 2005; Rosengren et al., 2010), but some other studies reported
224	more than 40% prevalence (Loncarevic et al., 1995; Pintado et al., 2005).
225	Mean prevalence of L. monocytogenes in fresh cheese was similar to the overall prevalence
226	obtained from EFSA data. In 1985 consumption of contaminated fresh cheese (queso blanco) was
227	directly linked to more than 142 cases of listeriosis, including 48 deaths (Linnan et al., 1988). From
228	2009 to 2012 there was an outbreak in Portugal linked to 30 cases of listeriosis, including 11 deaths
229	and related to consumption of fresh cheeses (curded cheese and queijo fresco) (Magalhães et al.,
230	2015). Furthermore, Greco et al., (2014) for example demonstrated how prevalence of L .
231	monocytogenes can be high (24.4%) in mozzarella cheese as result of cross-contamination.
232	Fresh cheeses were excluded from the EFSA baseline survey on prevalence of L .
233	monocytogenes in certain RTE foods within EU during 2010-2011 (EFSA, 2013a). Interestingly,
234	EFSA (2015) started to differentiate between fresh and soft/semi-soft cheeses but included only
235	2.1% fresh cheese samples compared to 80.1% hard cheese samples from a total of 13,718 cheese
236	samples. Hard cheese have never been linked to a listeriosis outbreak (Table 1) and as it does not
237	support growth of <i>L. monocytogenes</i> (Dalmasso & Jordan, 2014; Wemmenhove et al.,2013; Yousef

& Marth, 1990) the large number of these samples does not correspond to a risk-based sampling approach.

It is important to note that mean prevalence for brined cheese was estimated from only four studies with smaller sample sizes compare with other types of cheese. Consequently, there is a high level of uncertainty and results may be biased by results from a single study (Fig. 1; Table 6). In 2012, Ricotta salata imported from Italy and contaminated with *L. monocytogenes* was involved in a listeriosis outbreak in the USA with 22 hospitalizations and 4 deaths (CDC, 2012). Furthermore, ricotta salata supports growth of *L. monocytogenes* (Coroneo et al., 2016; Spanu et al., 2012) and production of this cheese includes manual processing of the curd and exposure to processing environments that increase the risk of *L. monocytogenes* contamination (Spanu et al., 2013). Our findings suggest that prevalence of *L. monocytogenes* in fresh and brined cheese are not negligible; therefore we encourage EFSA to increase and independently report sampling of fresh and brined cheeses since they have been related with listeriosis outbreaks recurrently (Table 1).

As shown by EFSA reports, contamination of cheese by *L. monocytogenes* is not specific to un-pasteurized milk cheeses since cheeses made from pasteurized milk can be contaminated due to inadequate pasteurization or post-pasteurization contamination (De Buyser et al., 2001; Donnelly, 2001). Our report is the first of our knowledge to analysed EFSA prevalence data of cheeses made from un-pasteurized and pasteurized milk. There was no significant difference in prevalence between cheeses produced with un-pasteurized or pasteurized milk; either for hard or soft/semi-soft cheeses (Table 7 and 8). This may be due to requirements leading to the use of milk of high microbiological quality for the production of un-pasteurized milk cheese and to post-pasteurization contamination of pasteurized milk cheese. Tiwari et al., (2015) compared the risk of soft/semi-soft cheese made from un-pasteurized or pasteurized milk and estimated a higher risk for un-pasteurized milk cheese as a consequence of the higher contamination rate of milk due to the lack of


pasteurization and growth of *L. monocytogenes* in un-pasteurized milk cheese but inactivation in the same pasteurized milk cheese. But this study observed no significant effect of pasteurization in prevalence of *L. monocytogenes* in soft/semi-soft cheese. We provide mean prevalence and distributions for *L. monocytogenes* in soft/semi-soft cheese that can be combined with concentration data of *L. monocytogenes* (cfu/g) for the same period in un-pasteurized and pasteurized milk cheese to perform a quantitative risk assessment of the end product (Crépet et al., 2007) and results from both studies could be compared.

Prevalence and concentration of *L. monocytogenes* in cheeses are low, hence evaluation of potential presence of other index or indicator microorganisms easier to determine or quantify was considered. *Listeria* spp. has been proposed as index organisms for presence of *L. monocytogenes* in RTE foods and as indicator of inadequate hygiene conditions in food production practices and environment (FSAI, 2011; Gilbert et al., 2000; McLauchlin, 1997). These findings were confirmed by the present study and we found prevalence of *L. monocytogenes* corresponded to prevalence of *Listeria* spp. when multiplied by a factor of 0.52. This was further supported by Trmčić et al., (2016) where 273 cheese samples had 12 positive for *Listeria* spp. and five of these positive for *L. monocytogenes*. Silva et al., (2003) also found 33% of *Listeria* spp. positive samples from cheese and dairy processing plants to be *L. monocytogenes* positive. However, Arrese & Arroyo-Izaga (2012) found no *L. monocytogenes* positive amongst 51 cheese samples with five samples positive for other *Listeria* spp. Microbiological methods for detection and quantification of *Listeria* spp. are not more performant than available methods for *L. monocytogenes* (Gasanov et al., 2005).

Therefore, we do not consider *Listeria* spp. a useful index- or indicator-organism *L. monocytogenes* despite the relation reported in the present study (Fig. 2).

5. Conclusions

Meta-analysis provided pooled prevalence estimates for <i>L. monocytogenes</i> in specific types of
cheeses, however, significant between-study variance was observed. Overall prevalence of L .
monocytogenes in cheese as estimated from scientific literature data was higher than reported by
data from EFSA during the same period 2005-2015. Considering prevalence of L. monocytogenes in
cheeses produced with un-pasteurized or pasteurized milk no significant difference in prevalence
was observed. The results obtained provided a broad picture of <i>L. monocytogenes</i> prevalence in
cheeses and can be used as an important input in quantitative microbial risk assessments. Listeria
spp. was not a useful index- or indicator-organism for L. monocytogenes in cheeses although
prevalence of <i>Listeria</i> spp. was related to prevalence of <i>L. monocytogenes</i> .

Fig. 1. Forest plot of the multilevel model based on scientific literature reporting prevalence of *L. monocytogenes* in different types of cheeses

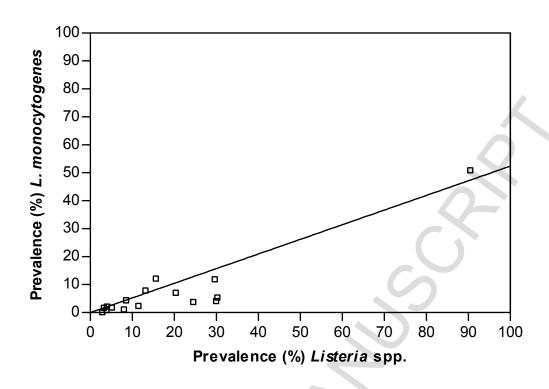


Fig. 2. Comparison of observed prevalence (%) for *Listeria* spp. and *L. monocytogenes* in European cheeses.

Table 1
Overview of listeriosis outbreaks caused by cheese during the period from 1983 to 2016.

Country	Year	Serotype	No.ªof cases (fatalities)	Implicated food	References	
Switzerland	1983-1987	4b	122(31)	Smear cheese (Vacherin Mont d'Or)	Büla et al., 1995; Bille et al., 2006	
USA	1985	4b	142(48)	Fresh cheese (Queso Fresco)	Linnan et al., 1988	
Luxembourg	1989	NR^b	2(0)	Smear cheese (Camembert)	Ries et al., 1990	
Denmark	1989-1990	4b	26(6)	Veined or ripened cheese	Jensen et al., 1994	
France	1995	4b	37(11)	Smear cheese (Brie de Meaux)	Goulet et al., 1995; Arnold & Coble, 1995	
France	1997	4b	14(?°)	Smear cheese (Pont l'Evêque)	Ryser & Marth, 2007; Goulet et al., 2013	
USA	2000	4b	13(5)	Non-commercial fresh cheese (Queso Fresco)	MacDonald et al., 2005	
Sweden	2001	1/2a	≥120(0)	Fresh cheese	Carrique-Mas et al., 2003; Danielsson-Tham et al., 2004	
Japan	2001	1/2b	38(0)	Smear cheese	Makino et al., 2005	
Canada	2002	4b	47(0)	Soft and semi-soft cheese	Gaulin et al., 2003	
Canada	2002	4b	86(0)	Cheese made from pasteurized milk	Pagotto et al., 2006	
Switzerland	2005	1/2a	$10(3+2^{d})$	Smear cheese (Soft "Tomme")	Bille et al., 2006	
USA	2005	NRb	9(?)	Fresh cheese (Queso fresco)	FIOD, 2005	
Czech Republic	2006		78(13)	Soft cheese	EFSA, 2007	
Germany	2006-2007	4b	189(26)	Acid curd cheese	Koch et al., 2010	
Norway	2007	NRb	17(3)	Smear cheese (Camembert)	Johnsen et al., 2010	
Chile	2008	NRb	91(5)	Smear cheese (Brie)	Promed, 2008	
Canada	2008	NRb	38(5)	Cheeses	Gaulin & Ramsay, 2010	
USA	2008	1/2a	8(0)	Fresh cheese (Oaxaca cheese)	Jackson et al., 2011	
Austria-Germany- Czech Republic	2009-2010	1/2a	34 (8)	Fresh cheese (Quargel)	Fretz et al., 2010; Rychli et al., 2014	
Portugal	2009- 2012	4b	30 (11)	Fresh cheese and queijo fresco)	Magalhães et al., 2015	
USA	2010	NR^b	5(0)	Fresh cheese (Panela, queso fresco, Requeson)	FIOD, 2010	
USA	2010-2015	NR^b	28(3)	Fresh cheeses	FIOD, 2015b	

USA	2011	NR^b	2(?°)	Fresh cheese (Chives cheese)	FIOD, 2011
Austria-Germany	2011-2013	1/2b	7(?c)	Fresh cheese	Schmid et al., 2014
Spain	2012	1/2a	2(0)	Fresh cheese (Queso fresco)	De Castro et al., 2012
USA	2012	NR^b	22(4)	Brined cheese (Ricotta salatta)	CDC, 2012; Coroneo et al., 2016
USA	2013	NR^b	5(1)	Smear cheese (Les Freres)	FIOD, 2013
Australia	2013	NR^b	18(?°)	Smear cheese	NSW, 2013
USA	2013-2014	NR^b	4(1)	Fresh cheese	FIOD, 2014a
USA	2014	NR^b	7(1)	Fresh cheese	FIOD, 2014b
USA	2015	NRb	3(1)	Fresh cheese (Panela, Queso Fresco, Requeson, Cotija)	FIOD, 2015b

³¹⁸

321 322 323 324

325

Table 2 Prevalence data (s/n) from the scientific literature.

		Number of	Number of <i>L. monocytogenes</i> positive (s) /total number samples (n)			
References	Survey year	Fresh	Ripened	Veined	Smear	Brined
Filiousis et al., 2009	2005-2006	,	4/20			0/10
Little et al., 2009	2006-2007		2/1240			
O'Brien et al., 2009	2007	0/29	1/104	1/33	14/79	
Di Pinto et al., 2010	2007-2009	2/294				
Pesavento et al., 2010	2008	2/258				
Prencipe et al., 2010	2005-2006	1/437	1/449	21/444	24/802	
Angelidis et al., 2012	2010	0/83		0/38	0/16	
Lambertz et al., 2012	2006-2012			2/465	0/62	
Dambrosio et al., 2013	2009-2010	0/404				
Doménech et al., 2013	2005-2009	0/77				
Parisi et al., 2013	2008-2010	3/70				
Gyurova et al., 2014	2011-2012		0/17	0/7		0/34
Doménech et al., 2015	2006-2012	9/507	3/100			
Schoder et al., 2015	NS^a		1/15	0/50	1/22	
Spanu et al., 2015	2011-2013		3/50			7/33
Iannetti et al., 2016	2011-2012	0/421	0/106	8/190	11/177	
Coroneo et al., 2016	NS ^a					15/87

^a Number of listeriosis cases

³¹⁹ ^b Serotype not reported (NR)

^c Fatalities uncertain

^d Septic abortion i.e. fatality

Total	17/2,580	15/2,101	32/1,218	50/1,158	24/164
10441	1772,500	15/2,101	52/1,210	50/1,150	2 1/101

^a Not specified; but assumed within the period 2005-2015.

Table 3 Prevalence data (s/n) from EFSA reports.

Type of cheese		Numbe	er of L. mond	ocytogenes po	sitive (s) /tot	al number o	f cheese samp	oles (n)
		EFSA, 2006ª	EFSA, 2007 ^a	EFSA, 2009ª	EFSA, 2010 ^a	EFSA, 2011 ^a	EFSA, 2015 ^a	EFSA, 2016ª
		2005 ^b	2006 ^b	2007 ^b	2008 ^b	2009 ^b	2013 ^b	2015 ^b
	Un- pasteurized	0/969	38/718	16/3,242	2/1,606	2/1,001	15/1,618	11/858
Hard	Pasteurized	0/1,367	5/3,284	68/9,449	85/10,877	15/7,246	77/8,288	19/2,384
Soft/	Un- pasteurized	29/1,505	13/1,959	16/5,943	5/4,203	6/774	155/2,880	10/707
Semi-soft	Pasteurized	25/5,973	22/4,736	853/16,333	70/5,585	41/4,087	49/10,668	67/5,123

^a References

^b Survey year

Table 4Cheese samples in non-compliance with EU food safety limits for *L. monocytogenes* in RTE foods.

Type of cheeses		Cheese sa	mples (n) wi	ith > 100 L. n	ionocytogene	s/g /Total nu	ımber of sam	ples (n)
		EFSA, 2006 ^a	EFSA, 2007 ^a	EFSA, 2009 ^a	EFSA, 2010 ^a	EFSA, 2011 ^a	EFSA, 2015ª	EFSA, 2016 ^a
		2005b	2006ь	2007 ^b	2008 ^b	2009ь	2013 ^b	2015 ^b
Hard	Un- pasteurized	Śс	Şc	2/1,569	0/133	2/940	1/2,854	0/880
	Pasteurized	0/672	7/1,701	14/2,292	3/4,005	1/9,894	10/3,041	0/141
Soft/	Un- pasteurized	1/1,174	0/64	2/1,008	17/484	0/775	3/2,718	10/809
Semi-soft	Pasteurized	0/3,231	3/1,093	1/2,727	10/3,230	12/4,702	9/1,351	5/1,209

^a References

^b Survey year

^c Not reported

Table 5European studies reporting the prevalence of *Listeria* species in cheeses.

	_	Sample	Number o	of samples p	ositive f	or different Li	isteria spec	ies
References	Country	size	L. monocytogenes	L. innocua	L. grayi	L. welshimer	L. ivanovii	L. seeligeri
Comi et al., 1990	Italy	1740	65	145	15	185	18	0
Massa et al., 1990	Italy	121	2	2	0	0	0	0
Quagilo et al., 1992	Italy	246	29	42	0	0	0	2
Rota et al., 1992	Spain	58	1	2	0	0	0	0
Pinto & Reali, 1996	Italy	132	7	30	0	2	0	1
Theodoridis et al., 1998	Greece	334	26	8	0	0	0	10
Bottarelli et al., 1999	Italy	100	2	2	0	0	0	0
Rudolf & Scherer, 2000	Germany	50	2	13	0	0	0	0
Rudolf & Scherer, 2001	Austria	274	19	33	0	0	0	4
Vitas et al., 2004	Spain	99	1	6	1	0	0	0
Pintado et al., 2005	Portugal	63	32	23	0	0	0	2
Pesavento et al., 2010	Italy	258	2	6	1	1	0	0
Angelidis et al., 2012	Greece	137	0	1	2	0	0	1
Parisi et al., 2013	Italy	70	3	3	0	0	0	0
Schoder et al., 2015	Europe	87	2	8	0	0	0	0
Spanu et al., 2015	Italy	83	10	3	0	0	0	0
Total		3,852	203	327	19	188	18	20

Table 6

Meta-analysis results for prevalence of *L. monocytogenes* from scientific literature

Prevalence (CI) ^a	$\tau^{2\;b}$	I ² (%) ^c	Q^{d}
0.023 (0.014-0.038)	1.72	86	197***e
			(df = 35)
	1.12	75	108***e
$0.008 (0.003 - 0.019)^{Af}$			(df = 31)
$0.020 (0.008 - 0.049)^{ABf}$			
$0.024 (0.009 \text{-} 0.063)^{\text{Bf}}$			
$0.051 (0.019 - 0.131)^{Bf}$			
$0.118 (0.035 - 0.333)^{Bf}$			
	0.023 (0.014-0.038) 0.008 (0.003-0.019) ^{Af} 0.020 (0.008-0.049) ^{ABf} 0.024 (0.009-0.063) ^{Bf} 0.051 (0.019-0.131) ^{Bf}	0.023 (0.014-0.038) 1.72 0.008 (0.003-0.019) ^{Af} 0.020 (0.008-0.049) ^{ABf} 0.024 (0.009-0.063) ^{Bf} 0.051 (0.019-0.131) ^{Bf}	0.023 (0.014-0.038) 1.72 86 1.12 75 0.008 (0.003-0.019) ^{Af} 0.020 (0.008-0.049) ^{ABf} 0.024 (0.009-0.063) ^{Bf} 0.051 (0.019-0.131) ^{Bf}

- ^a 95% confidence interval.
- ^b Between-study variance.
 - ^c Between-study variance index proposed by Higgins & Thompson (2002).
- ^d Q-statistic proposed by DerSimonian & Laird (1986).
- ^e P-value < 0.001.
 - f Mean values for classes with the same capital letter do not differ significantly (p > 0.05).

Table 7

Meta-analysis results for prevalence of *L. monocytogenes* from EFSA reports

Prevalence (CI) ^a	$\tau^{2 b}$	I ² (%) ^c	Q^{d}
0.007 (0.005-0.011)	1.09	98	1712***e
			(df = 27)
•	1.17	88	1174***e (df = 24)
0.006 (0.003-0.015) ^f			,
$0.012 (0.002 \text{-} 0.010)^{\text{f}}$			
0.009 (0.004-0.019)g			
0.010 (0.004-0.022)g			
	0.007 (0.005-0.011) 0.006 (0.003-0.015) f 0.012 (0.002-0.010) f 0.009 (0.004-0.019) s	0.007 (0.005-0.011) 1.09 1.17 0.006 (0.003-0.015) f 0.012 (0.002-0.010) f 0.009 (0.004-0.019) g	0.007 (0.005-0.011) 1.09 98 1.17 88 0.006 (0.003-0.015) f 0.012 (0.002-0.010) f 0.009 (0.004-0.019) g

- ^a 95% confidence interval.
- ^b Between-study variance.
 - ^c Between-study variance index proposed by Higgins & Thompson (2002).
 - ^d Q-statistic proposed by DerSimonian & Laird (1986).
- ^e P-value < 0.001.
- ^f Mean values within hard cheeses do not differ significantly (p > 0.05).
 - g Mean values within soft/semi-soft cheeses do not differ significantly (p > 0.05).

391 Table 8

 Meta-analysis results assessing non-compliance with the criterion of "> 100 cfu/g" for L. monocytogenes in cheeses as reported by EFSA.

Meta-analysis type	Prevalence (CI) ^a	τ^{2b}	I ² (%) ^c	Q^{d}
Random-effects	0.002 (0.001-0.004)	1.22	84	154***e
				(df = 25)
Multilevel		1.18	82	95***e (df = 22)
Hard and un-pasteurized	$0.001(0.000 - 0.004)^{\rm f}$			(#2 =2)
Hard and pasteurized	0.002 (0.001-0.005) ^f			
Soft/semi-soft and un-pasteurized	$0.004 (0.002 - 0.012)^g$			
Soft/semi-soft and pasteurized	0.002 (0.001-0.006) ^g			

^{394 &}lt;sup>a</sup> 95% confidence interval.

Table 9

Meta-analysis results for prevalence of L. monocytogenes from combined data

Meta-analysis type	Prevalence (CI) ^a	$ au^{2b}$	I ² (%) ^c	Q^{d}
Random-effects	0.012 (0.008-0.018)	1.78	97	1961***e
				(df = 63)
Multilevel		1.38	97	1909***e (df= 62)
Scientific literature	0.007 (0.004-0.011) ^{Af}			(= -)
EFSA reports	$0.024 (0.015 - 0.038)^{Bf}$			

^a 95% confidence interval.

³⁹⁵ b Between-study variance.

^c Between-study variance index proposed by Higgins & Thompson (2002).

^d Q-statistic proposed by DerSimonian & Laird (1986).

^e P-value < 0.001.

f Mean values within hard cheeses do not differ significantly (p > 0.05).

g Mean values within soft/semi-soft cheeses do not differ significantly (p > 0.05).

^b Between-study variance.

^c Between-study variance index proposed by Higgins & Thompson (2002).

^d Q-statistic proposed by DerSimonian & Laird (1986).

^e P-value < 0.001.

f Mean values for classes with different capital letters differed significantly (p < 0.001).

425	Acknowledgements
426	The present study was supported by DTU Food and by Danish Veterinary and Food Administration.
427	We thank Dr. Ursula Gonzales-Barron from Instituto Politécnico de Bragança, Portugal for advice
428	on R code to performed forest plot.
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	▼
448	

- 450 References
- Angelidis, A. S., Georgiadou, S. S., Zafeiropoulou, V., Velonakis, E. N., Papageorgiou, D. K., &
- Vatopoulos, A. (2012). A survey of soft cheeses in Greek retail outlets highlights a low
- prevalence of *Listeria* spp. *Dairy Science and Technology*, 92(2), 189–201.
- 454 Arnold, G. J., & Coble, J. (1995). Incidence of *Listeria* species in foods in NSW. *Food Australia*,
- 455 *47*(2), 71–75.
- 456 Arrese, E., & Arroyo-Izaga, M. (2012). Prevalence of *Listeria monocytogenes* in Idiazabal cheese.
- 457 *Nutricion Hospitalaria*, *27*(6), 2139-2141.
- Barron, U. G., Soumpases, I., Butler, F., Prendergast, D., Duggan, S., Duffy, G. (2009). Estimation
- of Prevalence of Salmonella on Pig Carcasses and Pork Joints, Using a Quantitative Risk
- Assessment Model Aided by Meta-Analysis. *Journal of Food Protection*, 72(2), 274–285.
- Bille, J., Blanc, D. S., Schmid, H., Boubaker, K., Baumgartner, A., Siegrist, H. H., Tritten, M.L.,
- Liernhard, R., Berner, D., Anderau, R., Treboux, M., Ducommun, J.M., Malinverni, R.,
- Genné, D., Erard, P., & Waespi, U. (2006). Outbreak of human listeriosis associated with
- Tomme cheese in Northwest Switzerland, 2005. Eurosurveillance, 11(6), 91–93.
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-
- 466 *analysis* (1st ed.). Chichester: Willey.
- Bottarelli, A., Bonardi, S., & Bentley, S. (1999). Presence of *Listeria* spp. in short-ripened cheeses.
- 468 Annali Della Facoltà Di Medicina Veterinaria, 29, 293–296.
- Brodsky, M. H. (1995). The benefits and limitations of using index and indicator microorganisms in
- verifying food safety. Presented at the FSIS meeting on the "Role of microbiology testing in
- verifying food safety", May 1-2, 1995, Philadelphia, PA.
- Büla, C. J., Bille, J., & Glauser, M. P. (1995). An epidemic of food-borne listeriosis in western
- Switzerland: description of 57 cases involving adults. *Clinical Infectious Diseases*, 20(1), 66–
- 474 72.
- 475 CAC (2013). Codex General Standard for Cheese. CODEX STAN 283-1978
- www.fao.org/input/download/standards/175/CXS 283e.pdf Accessed 13.05.16
- Carrique-Mas, J. J., Hökeberg, I., Andersson, Y., Arneborn, M., Tham, W., Danielsson-Tham, M.
- L., Osterman, B., Leffler, M., Steen, M., Eriksson, E., Hedin, G., & Giesecke, J. (2003).
- Febrile gastroenteritis after eating on-farm manufactured fresh cheese--an outbreak of
- 480 listeriosis? *Epidemiology and Infection*, 130(1), 79–86.
- 481 CDC (2012). Centers for Disease Control and Prevention. Multistate outbreak of listeriosis linked to

- imported Frescolina Marte brand ricotta salata. https://www.cdc.gov/listeria/outbreaks/cheese-
- 483 <u>09-12/</u> Accessed 23.03.17.
- Cochran, W. G. (1954). The combination of estimates from different experiments. *Biometrics*,
- 485 *10*(1), 101–129.
- Comi, G., Cantoni, C., Valenti, M., & Civilini, M. (1990). Listeria species in Italian cheeses.
- 487 *Microbiologie Aliments Nutrition*, 8, 377–382.
- Condoleo, R., Mezher, Z., Marozzi, S., Guzzon, A., Fischetti, R., Senese, M., Sette, S., & Bucchini,
- L. (2016). Risk assessment of human listeriosis from semisoft cheeses made from raw sheep's
- milk in Lazio and Tuscany (Italy). *Risk Analysis*. http://doi.org/10.1111/risa.12649
- Coroneo, V., Carraro, V., Aissani, N., Sanna, A., Ruggeri, A., Succa, S., Meloni, B., Pinna, A., &
- Sanna, C. (2016). Detection of Virulence Genes and Growth potential in *Listeria*
- 493 monocytogenes strains isolated from Ricotta salata cheese. Journal of Food Science, 81(1),
- 494 M114–M120.
- 495 Crepet, A., Albert, I., Dervin, C., & Carlin, F. (2007). Estimation of microbial contamination of
- food from prevalence and concentration data: Application to Listeria monocytogenes in fresh
- vegetables. *Applied and Environmental Microbiology*, 73(1), 250–258.
- Cummins, A. J., Fielding, A. K., & McLauchlin, J. (1994). Listeria ivanovii infection in a patient
- with AIDS. *Journal of Infection*, 28(1), 89–91.
- Dalmasso, M., & Jordan, K. (2014). Absence of growth of Listeria monocytogenes in naturally
- contaminated Cheddar cheese. *Journal of Dairy Research*, 81(1), 46–53.
- Dambrosio, A., Quaglia, N. C., Saracino, M., Malcangi, M., Montagna, C., Quinto, M., Lorusso, V.,
- & Normanno, G. (2013). Microbiological quality of Burrata cheese produced in Puglia Region:
- Southern Italy. *Journal of Food Protection*, 76(11), 1981–1984.
- Danielsson-Tham, M.-L., Eriksson, E., Helmersson, S., Leffler, M., Ludtke, L., Steen, M., Sørgjerd,
- S., & Tham, W. (2004). Causes behind a human cheese-borne outbreak of gastrointestinal
- listeriosis. *Foodborne Pathogens and Disease*, 1(3), 153–159.
- De Buyser, M.-L., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk
- products in food-borne diseases in France and in different industrialised countries.
- 510 *International Journal of Food Microbiology*, 67(1–2), 1–17.
- de Castro, V., Escudero, J. M., Rodriguez, J. L., Muniozguren, N., Uribarri, J., Saez, D., &
- Vazquez, J. (2012). Listeriosis outbreak caused by Latin-style fresh cheese, Bizkaia, Spain,
- 513 August 2012. *Eurosurveillance*, 17(42), 3–5.

- DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. *Controlled Clinical Trials*,
- 515 *7*(3), 177–188.
- Di Pinto, A., Novelleo, L., Montemurro, F., Bonerba, E., & Tantillo, G. (2010). Occurrence of
- Listeria monocytogenes in ready-to-eat foods from supermarkets in Southern Italy. New
- 518 *Microbiologica*, *33*(3), 249–252.
- Doménech, E., Amorós, J. A., & Escriche, I. (2013). Effectiveness of prerequisites and the HACCP
- plan in the control of microbial contamination in ice cream and cheese companies. *Foodborne*
- 521 *Pathogens and Disease*, 10(3), 222–8.
- Doménech, E., Jimenez -Belenguer, A., Amoros, J. A., Ferrus, M. A., & Escriche, I. (2015).
- Prevalence and antimicrobial resistance of *Listeria monocytogenes* and *Salmonella* strains
- isolated in ready-to-eat foods in Eastern Spain. Food Control, 47, 120–125.
- 525 Donnelly, C. W. (2001). Factors associated with hygienic control and quality of cheeses prepared
- from raw milk: a review. Bulletin of the International Dairy Federation, 369, 16–27.
- 527 DTU Findit. Technical University of Denmark digital library (2017). https://findit.dtu.dk/ Accessed
- 528 05.04.17.
- 529 EFSA. (2006). The community summary report on trends and sources of zoonoses, zoonotic agents,
- antimicrobial resistance and foodborne outbreaks in the European Union in 2006. *EFSA*
- 531 *Journal*, 94, 1–288.
- 532 EFSA. (2007). The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic
- Agents, Antimicrobial resistance and Foodborne outbreaks in the European Union in 2006.
- 534 EFSA Journal, 130, 1–352.
- EFSA. (2009). Trends and sources of zoonoses and zoonotic agents in the European Union in 2007.
- 536 *EFSA Journal*, *223*, 1–320.
- EFSA. (2010). Trends and sources of zoonoses and zoonotic agents and food-borne outbreaks in the
- European Union in 2008. *EFSA Journal*, *8*(1), 1–368.
- EFSA. (2011). The European Union summary report on trends and sources of zoonoses, zoonotic
- agents and food-borne outbreaks in 2009. EFSA Journal, 9(3), 1–378.
- EFSA. (2013a). Analysis of the baseline survey on the prevalence of Listeria monocytogenes in
- certain ready-to-eat foods in the EU, 2010-2011 Part A: Listeria monocytogenes prevalence
- estimates. *EFSA Journal*, 11(6), 3241.
- EFSA. (2013b). The European Union summary report on trends and sources of zoonoses, zoonotic
- agents and food-borne outbreaks in 2011. EFSA Journal, 11(4), 1–250.

546	EFSA. ((2015)	. The Euro	pean Union	summary re	eport on	trends and	sources	of zoonoses,	zoonotic
	,	,		O • • • • • • • • • • • • • • • • • • •	D 0111111001 / 1 4	- p 0 - t 0 - t	01 0 11 01 D 0011 01	200120	01 200110000,	

- agents and food-borne outbreaks in 2013. EFSA Journal, 13(1), 3991.
- EFSA. (2016). The Euroean Union summary report on trends and sources of zoonsoes, zoonotic
- agents and food-borne outbreaks in 2015. EFSA Journal, 14(14), 4634.
- Esho, F. K., Enkhtuya, B., Kusumoto, A., & Kawamoto, K. (2013). Microbial Assessment and
- Prevalence of Foodborne Pathogens in Natural Cheeses in Japan. *BioMed Research*
- *International*, 2013:20580, 1–6. http://doi.org/10.1155/2013/205801
- EU Regulation (EC) No. 2073/2005. Commission Regulation (EC) No. 2073/2005 of 15 November
- 554 2005 on microbiological criteria for foodstuffs. *Official Journal of the European*
- 555 *Communitites*, *338*(2073), 1–26.
- FDA. (2015). Joint FDA / Health Canada quantitative assessment of the risk of listeriosis from soft-
- ripened cheese consumption in the United States and Canada: Report.
- https://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafetyAssessment/UCM429
- 559 419.pdf Accessed 10.03.16.
- 560 Filiousis, G., Johansson, A., Frey, J., & Perreten, V. (2009). Prevalence, genetic diversity and
- antimicrobial susceptibility of *Listeria monocytogenes* isolated from open-air food markets in
- 562 Greece. Food Control, 20(3), 314–317.
- Finazzi, G., Daminelli, P., Serraino, A., Pizzamiglio, V., Riu, R., Giacometti, F., Bertasi, B., Losio,
- M.N., & Boni, P. (2011). Behaviour of *Listeria monocytogenes* in packaged water buffalo
- mozzarella cheese. *Letters in Applied Microbiology*, 53(3), 364–370.
- FIOD (2005). Raw, unpasteurized, queso fresco 2005.
- 567 http://www.outbreakdatabase.com/details/raw-unpasteurized-queso-fresco-
- 568 2005/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16
- FIOD. (2010). Queseria Bendita Fresh Cheese 2010.
- 570 http://www.outbreakdatabase.com/details/queseria-bendita-fresh-cheese-
- 571 2010/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16
- 572 FIOD. (2011). Green Cedar Dairy Harb, Inc. Natural Ackawi and Chives Cheese 2011.
- 573 http://www.outbreakdatabase.com/details/green-cedar-dairy-harb-inc.-natural-ackawi-and-
- 574 chives-cheese-2011/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16.
- 575 FIOD. (2013). Les Freres Cheese Listeriosis Outbreak, June 2013.
- 576 http://www.outbreakdatabase.com/details/les-freres-cheese-listeriosis-outbreak-june-
- 577 2013/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16

- 578 FIOD. (2014a). 2013-2014 Listeria linked to Oasis Brands Cheese.
- 579 http://www.outbreakdatabase.com/details/2013-2014-listeria-linked-to-oasis-brands-
- cheese/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16.
- FIOD. (2014b). 2014 Outbreak of Listeriosis Linked to Soft Cheese Produced by Roos Foods.
- http://www.outbreakdatabase.com/details/2014-outbreak-of-listeriosis-linked-to-soft-cheese-
- produced-by-roos-foods/?organism=Listeria+monocytogenes&vehicle=cheese Accessed
- 584 29.05.16
- FIOD. (2015a). 2015 Listeria Outbreak Linked to Queseria Bendita Latin-style cheese, Washington
- State. http://www.outbreakdatabase.com/details/2015-listeria-outbreak-linked-to-queseria-
- 587 bendita-latin-style-cheese-washington-
- state/?organism=Listeria+monocytogenes&vehicle=cheese Accessed 29.05.16
- FIOD. (2015b). Listeriosis linked to soft cheese produced by Karoun Dairies, Inc., 2010 to 2015.
- 590 http://www.outbreakdatabase.com/details/listeriosis-linked-to-soft-cheese-produced-by-
- karoun-dairies-inc.-2010-to-2015/?organism=Listeria+monocytogenes&vehicle=cheese
- 592 Accessed 29.05.16
- Fox, P.F., Guinee, T.P., Cogan, T.M., & McSweeney, P.L.H. (2000). Fundamentals of cheese
- science. (1st ed.). Maryland: Aspen, (Chapter 17).
- Fretz, R., Pichler, J., Sagel, U., Much, P., Ruppitsch, W., Pietzka, A. T., Stöger, A., Huhulescu, S.,
- Hueberger, S., Appl, G., Werber, D., Stark, K., Prager, R., Flieger, A., Karpísková, R., Pfaff,
- 597 G., & Allerberger, F. (2010). Update: Multinational listeriosis outbreak due to "quargel", a
- sour milk curd cheese, caused by two different *L. monocytogenes* serotype 1/2a strains, 2009-
- 599 2010. Eurosurveillance, 15(16), 2–3.
- FSAI. (2011). Establishing baseline data on the presence of *Listeria monocytogenes* on cooked meat
- slicers in retail and catering.
- 602 https://www.fsai.ie/establishingbaselinedataonthepresenceoflisteriamonocytogenesoncookedm
- eatslicersinretailandcateringpremises.html Accessed 10.05.17
- FSIS. (2014). FSIS Compliance Guideline: Controlling *Listeria monocytogenes* in post-lethality
- exposed ready-to-eat meat and poultry products.
- 606 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-
- 607 e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES Accessed 25.04.16.
- Gasanov, U., Hughes, D., & Hansbro, P. M. (2005). Methods for the isolation and identification of
- 609 Listeria spp. and Listeria monocytogenes: a review. Fems Microbiology Reviews, 29(5), 851–

- 610 875.
- 611 Gaulin, C. (2003). First documented outbreak of *Listeria monocytogenes* in Quebec, 2002. Canada
- 612 Communicable Disease Report = Relevé Des Maladies Transmissibles Au Canada, 29(21),
- 613 181–186.
- 614 Gaulin, C., & Ramsay, D. (2010). Le lien suivant vous amènera à un autre site Web Rapport
- d'investigation et d'intervention à la suite de l'éclosion d'infections à *Listeria monocytogenes*
- pulsovar 93 liée à la consommation de fromages québecois, 2008.
- 617 https://www.mapaq.gouv.qc.ca/fr/Publications/Rapporteclosionlisteriose.pdf Accessed
- 618 08.06.16.
- 619 Gianfranceschi, M. V., Rodriguez-Lazaro, D., Hernandez, M., González-García, P., Comin, D.,
- Gattuso, A., Delibato, E., Sonnessa, M., Pasquali, F., Prencipe, V., Sreter-Lancz, Z., Saiz-
- Abajo, M.J., Pérez-De-Juan, J., Butrón, J., Kozačinski, L., Tomic, D.H., Zdolec, N.,
- Johannessen, G.S., Jakočiüne, D., Olsen, J.E., De Santis, P., Lovari, S., Bertasi, B., Pavoni, E.,
- Paiusco, A., De Cesare, A., Manfreda, G., & De Medici, D. (2014). European validation of a
- real-time PCR-based method for detection of *Listeria monocytogenes* in soft cheese.
- 625 *International Journal of Food Microbiology*, 184, 128–133.
- 626 Gilbert, R. J., de Louvois, J., Donovan, T., Little, C., Nye, K., Ribeiro, C. D., Richards, J., Roberts,
- D., & Bolton, F. J. (2000). Guidelines for the microbiological quality of some ready-to-eat
- foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products.
- 629 *Communicable Disease and Public Health*, 3(3), 163–167.
- 630 Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. *Educational Researcher*,
- 631 *5*(10), 3–8.
- 632 Greco, S., Tolli, R., Bossù, T., Flores Rodas, E. M., Di Giamberardino, F., Di Sirio, A., Vita, S., De
- Angelis, V., Bilei, S., Sonnessa, M., Gattuso, A., & Lanni, L. (2014). Case of contamination
- by Listeria monocytogenes in mozzarella cheese. Italian Journal of Food Safety, 3(1), 51-53.
- 635 Goulet, V., Jacquet, C., Vaillant, V., Rebière, I., Mouret, E., Lorente, C., Maillot, E., Staïner, F., &
- Rocourt, J. (1995). Listeriosis from consumption of raw-milk cheese. *The Lancet*, 345(8964),
- 637 1581–1582.
- 638 Goulet, V., King, L. A., Vaillant, V., & de Valk, H. (2013). What is the incubation period for
- listeriosis? *BMC Infectious Diseases*, 13, 11. doi:10.1186/1471-2334-13-11.
- 640 Gyurova, E., Krumova-Vulcheva, G., Daskalov, H., & Gogov, Y. (2014). Prevalence of Listeria
- 641 monocytogenes in ready-to-eat foods in Bulgaria. Journal of Hygienic Engineering and

- Design, 7, 112–118. UDC 579.67:579.869.1.
- 643 Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis.
- *Statistics in Medicine*, 21(11), 1539–1558.
- Iannetti, L., Acciari, V. A., Antoci, S., Addante, N., Bardasi, L., Bilei, S., Calistri, P., Cito, F.,
- 646 Cogoni, P., D'Aurelio, R., Decastelli, L., Iannetti, S., Iannito, G., Marino, A.M.F., Muliari, R.,
- Neri, D., Perilli, M., Pomilio, F., Prencipe, V.A., Proroga, Y., Santarelli, G.A., Sericola, M.,
- Torresi, M., & Migliorati, G. (2016). *Listeria monocytogenes* in ready-to-eat foods in Italy:
- Prevalence of contamination at retail and characterisation of strains from meat products and
- 650 cheese. *Food Control*, 68, 55–61.
- Jackson, K. A., Biggerstaff, M., Tobin-D'Angelo, M., Sweat, D., Klos, R., Nosari, J., Garrison, O.,
- Boothe, E., Saathoff-Huber, L., Hainstock, L., & Fagan, R. P. (2011). Multistate outbreak of
- 653 *Listeria monocytogenes* associated with Mexican-style cheese made from pasteurized milk
- among pregnant, Hispanic women. *Journal of Food Protection*, 74(6), 949–953.
- Jensen, A., Frederiksen, W., & Gerner-Smidt, P. (1994). Risk Factors for Listeriosis in Denmark,
- 656 1989–1990. Scandinavian Journal of Infectious Diseases, 26(2), 171–178.
- Johnsen, B. O., Lingaas, E., Torfoss, D., Strøm, E. H., & Nordøy, I. (2010). A large outbreak of
- 658 *Listeria monocytogenes* infection with short incubation period in a tertiary care hospital.
- *Journal of Infection*, *61*(6), 465–470.
- Koch, J., Dworak, R., Prager, R., Becker, B., Brockmann, S., Wicke, A., Wichmann-Schauer, H.,
- Hof, H., Werber, D., & Stark, K. (2010). Large listeriosis outbreak linked to cheese made from
- pasteurized milk, Germany, 2006-2007. Foodborne Pathogens and Disease, 7(12), 1581–
- 663 1584.
- Lambertz, S. T., Nilsson, C., Brådenmark, a, Sylvén, S., Johansson, a, Jansson, L.-M., & Lindblad,
- M. (2012). Prevalence and level of *Listeria monocytogenes* in ready-to-eat foods in Sweden
- 666 2010. International Journal of Food Microbiology, 160(1), 24–31.
- 667 Linnan, M. J., Mascola, L., Lou, X. D., Goulet, V., May, S., Salminen, C., Hird, D.W., Yonekura,
- M.L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B.D., Fannin, S.L., Kleks, A., & Broome,
- 669 C. V. (1988). Epidemic listeriosis associated with Mexican-style cheese. *New England Journal*
- *of Medicine*, *319*(13), 823–828.
- Little, C. L., Sagoo, S. K., Gillespie, I. A., & Grant, K. (2009). Prevalence and level of *Listeria*
- 672 monocytogenes and other Listeria species in selected retail ready-to-eat foods in the United
- Kingdom. Journal of Food Protection, 72(9), 1869–1877.

- Loncarevic, S., Danielsson-Tham, M. L., & Tham, W. (1995). Occurrence of Listeria
- 675 monocytogenes in soft and semi-soft cheeses in retail outlets in Sweden. *International Journal*
- 676 *of Food Microbiology*, 26(2), 245–250.
- MacDonald, P.D., Whitwam, R.E., Boggs, J.D., MacCormack, J.N., Anderson, K.L., Reardon, J.W.,
- Saah, J.R., Graves, L.M., Hunter, S.B., & Sobel, J. (2005). Outbreak of listeriosis among
- Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese.
- *Clinical Infectious Diseases*, 40(5), 677–682.
- Magalhães, R., Almeida, G., Ferreira, V., Santos, I., Silva, J., Mendes, M. M., Pita, J., Mariano, G.,
- Mancio, I., Sousa, M.M., Farber, J., Pagotto, F., & Teixeira, P. (2015). Cheese-related
- listeriosis outbreak, Portugal, March 2009 to February 2012. Eurosurveillance, 20(17), 1–6.
- Makino, S. I., Kawamoto, K., Takeshi, K., Okada, Y., Yamasaki, M., Yamamoto, S., & Igimi, S.
- 685 (2005). An outbreak of food-borne listeriosis due to cheese in Japan, during 2001.
- International Journal of Food Microbiology, 104(2), 189–196.
- Massa, S., Cesaroni, D., Poda, G., & Trovatelli, L. D. (1990). The incidence of *Listeria* spp. in soft
- cheeses, butter and raw milk in the province of Bologna. Journal of Applied Bacteriology,
- 689 *68(2)*, 153–156.
- 690 McLauchlin, J. (1997). The identification of Listeria species. International Journal of Food
- 691 *Microbiology*, 38(1), 77–81.
- Mossel, D. A. (1978). Index and indicator organisms a current assessment of their usefulness and
- significance. *Food Technology in Australia*, 30, 212–219.
- 694 NSW. (2013). Further Cases of *Listeria* Identified.
- http://www.health.nsw.gov.au/news/Pages/20130118 01.aspx Accessed 15.06.16.
- 696 O'Brien, M., Hunt, K., McSweeney, S., & Jordan, K. (2009). Occurrence of foodborne pathogens in
- 697 Irish farmhouse cheese. *Food Microbiology*, 26(8), 910–914.
- OXOID. (2016). Listeria Precis. http://www.oxoid.com/pdf/uk/27363 Listeria Precis.pdf
- 699 Accessed 20.05.16.
- Pagotto, F., Ng, L.-K., Clark, C., & Farber, J. (2006). Canadian listeriosis reference service.
- Foodborne Pathogens and Disease, 3(1), 132–137.
- Parisi, A., Latorre, L., Fraccalvieri, R., Miccolupo, A., Normanno, G., Caruso, M., & Santagada, G.
- 703 (2013). Occurrence of *Listeria* spp. in dairy plants in Southern Italy and molecular subtyping
- of isolates using AFLP. Food Control, 29(1), 91–97.
- Pesavento, G., Ducci, B., Nieri, D., Comodo, N., & Lo Nostro, A. (2010). Prevalence and antibiotic

- susceptibility of *Listeria* spp. isolated from raw meat and retail foods. *Food Control*, 21(5),
- 707 708–713.
- Pintado, C. M. B., Oliveira, A., Pampulha, M. E., & Ferreira, M. A. S. (2005). Prevalence and
- characterization of *Listeria monocytogenes* isolated from soft cheese. *Food Microbiology*,
- 710 *22*(1), 79–85.
- 711 Pinto, B., & Reali, D. (1996). Prevalence of Listeria monocytogenes and other listerias in Italian-
- made soft cheeses. *International Journal of Hygiene and Environmental Medicine*, 199(1), 1–
- 713 98.
- Prencipe, V., Migliorati, G., Matteucci, O., Calistri, P., & Giannatale, E. Di. (2010). Valutazione
- della qualità igienico sanitaria di alcuni tipi di formaggi prelevati in fase di vendita al dettaglio.
- 716 *Veterinaria Italiana*, 46(2), 221–231.
- ProMed. (2008). Listeriosis, fatal Chile: (Santiago), cheese suspected, request for information.
- 718 http://www.promedmail.org/post/20081128.3754 Accessed 10.06.16.
- 719 Quaglio, G., Casolari, C., Menziani, G., & Fabio, A. (1992). Indagine sulla presenza di Listeria
- 720 *monocytogenes* in campioni di latte e derivati. *L'Igiene Moderna*, 97, 565–579.
- Ries, F. (1990). Camembert, Listeria and the immunocompromised patient. Bulletin De La Societe
- *Des Sciences Medicales Du Grand-Duche De Luxembourg, 127*(1), 41-43.
- Rocourt, J., Hof, H., Schrettenbrunner, A., Malinverni, R., & Bille, J. (1986). Acute purulent
- Listeria seelingeri meningitis in an immunocompetent adult. Schweizerische Medizinische
- 725 *Wochenschrift*, 116(8), 248-251.
- Rodriguez-Lazaro, D., Gonzalez-García, P., Gattuso, A., Gianfranceschi, M. V., & Hernandez, M.
- 727 (2014). Reducing time in the analysis of *Listeria monocytogenes* in meat, dairy and vegetable
- products. *International Journal of Food Microbiology*, 184, 98–105.
- Rosengren, Å., Fabricius, A., Guss, B., Sylvén, S., & Lindqvist, R. (2010). Occurrence of
- foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on
- farm-dairies. *International Journal of Food Microbiology*, 144(2), 263–269.
- Rota, C., Yangüela, J., Blanco, D., Carramiñana, J. J., & Herrera, A. (1992). Aislamiento e
- identificación de microorganismos del G. Listeria en quesos frescos, quesos curados y quesos
- 734 fundidos. *Alimentaria*, 236, 59–62.
- Rudolf, M., & Scherer, S. (2000). Incidence of Listeria and Listeria monocytogenes in acid curd
- cheese. Archiv Für Lebensmittelhygiene, 51, 81–128.
- Rudolf, M., & Scherer, S. (2001). High incidence of *Listeria monocytogenes* in European red smear

- cheese. *International Journal of Food Microbiology*, 63(1–2), 91–98.
- Rychli, K., Müller, A., Zaiser, A., Schoder, D., Allerberger, F., Wagner, M., & Schmitz-Esser, S.
- 740 (2014). Genome sequencing of *Listeria monocytogenes* "Quargel" listeriosis outbreak strains
- reveals two different strains with distinct in vitro virulence potential. *PLoS ONE*, 9(2), 1–11.
- Ryser, E. T., & Marth, E. H. (2007). Foodborne Listeriosis. In *Listeria, listeriosis, and food safety*.
- 743 (3th ed.). Boca Raton: CRC Press, (Chapter 10).
- Sanaa, M., Coroller, L., & Cerf, O. (2004). Risk assessment of listeriosis linked to the consumption
- of two soft cheeses made from raw milk: Camembert of Normandy and Brie of Meaux. *Risk*
- 746 *Analysis*, 24(2), 389–399.
- Sargeant, J. M., Amezcua, M., Rajic, A., & Waddell, L. (2005). A guide to condacting systematic
- reviews in agri-food public health. http://www.angelfire.com/co4/civph/english.pdf Accessed
- 749 22.10.15.
- Schmid, D., Allerberger, F., Huhulescu, S., Pietzka, A., Amar, C., Kleta, S., Prager, R., Preußel, K.,
- Aichinger, E., & Mellmann, A. (2014). Whole genome sequencing as a tool to investigate a
- cluster of seven cases of listeriosis in Austria and Germany, 2011–2013. *Clinical Microbiology*
- 753 and Infection, 20(5), 431–436.
- Schoder, D., Strauß, A., Szakmary-Brändle, K., & Wagner, M. (2015). How safe is European
- Internet cheese? A purchase and microbiological investigation. *Food Control*, *54*, 225–230.
- 756 Silva, I. M. M., Almeida, R. C. C., Alves, M. A. O., & Almeida, P. F. (2003). Occurrence of
- Listeria spp. in critical control points and the environment of Minas Frescal cheese processing.
- 758 International Journal of Food Microbiology, 81(3), 241–248.
- 759 Spanu, C., Scarano, C., Spanu, V., Penna, C., Virdis, S., & De Santis, E. P. L. (2012). Listeria
- monocytogenes growth potential in Ricotta salata cheese. *International Dairy Journal*, 24(2),
- 761 120–122.
- Spanu, C., Spanu, V., Pala, C., Virdis, S., Scarano, C., & De Santis, E. P. L. (2013). Evaluation of a
- post-lethality treatment against *Listeria monocytogenes* on Ricotta salata cheese. *Food*
- 764 *Control*, 30(1), 200–205.
- Spanu, C., Scarano, C., Ibba, M., Spanu, V., & De Santis, E. P. L. (2015). Occurrence and
- traceability of *Listeria monocytogenes* strains isolated from sheep's milk cheese-making plants
- 767 environment. *Food Control*, *47*, 318–325.
- Sutton, A. J. (2001). An illustrated guide to the methods of meta-analysis. *Journal of Evaluation in*
- 769 *Clinical Practice*, 7(2), 135-148.

- 770 Theodoridis, A., Abrahim, A., Sarimvei, A., Panoulis, C., Karaioannoglou, P. Genigeorgis, C., &
- A., M. (1998). Prevalence and significance of *Listeria monocytogenes* in Greek whey cheeses .
- A comparison between the years 1990 and 1996. MILCHWISSENSCHAFT, 53(3), 147–149.
- Tiwari, U., Cummins, E., Valero, A., Walsh, D., Dalmasso, M., Jordan, K., & Duffy, G. (2015).
- Farm to fork quantitative risk assessment of *Listeria monocytogenes* contamination in raw and
- pasteurized milk cheese in Ireland. *Risk Analysis*, 35(6), 1140–1153.
- 776 Trmčić, A., Chauhan, K., Kent, D. J., Ralyea, R. D., Martin, N. H., Boor, K. J., & Wiedmann, M.
- 777 (2016). Coliform detection in cheese is associated with specific cheese characteristics, but no
- association was found with pathogen detection. *Journal of Dairy Science*, 99(8), 6105–6120.
- 779 Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor. *Journal of Statistical*
- 780 *Software*, *36*(3), 1-48.
- Vitas, A. I., Aguado, V., & Garcia-Jalon, I. (2004). Occurrence of Listeria monocytogenes in fresh
- and processed foods in Navarra (Spain). *International Journal of Food Microbiology*, 90(3),
- 783 349–356.
- Web of Science. Thomson reuters (2017). https://webofknowledge.com/ Accessed 05.04.17.
- Weller, D., Andrus, A., Wiedmann, M., & den Bakker, H. C. (2015). Listeria booriae sp. nov. and
- 786 Listeria newyorkensis sp. nov., from food processing environments in the USA. International
- Journal of Systematic and Evolutionary Microbiology, 65(Pt 1), 286–292.
- Wemmenhove, E., Stampelou, I., van Hooijdonk, A. C. M., Zwietering, M. H., & Wells-Bennik, M.
- H. J. (2013). Fate of Listeria monocytogenes in Gouda microcheese: No growth,
- and substantial inactivation after extended ripening times. *International Dairy Journal*, 32(2),
- 791 192–198.
- 792 Xavier, C., Gonzales-Barron, U., Paula, V., Estevinho, L., & Cadavez, V. (2014). Meta-analysis of
- the incidence of foodborne pathogens in Portuguese meats and their products. *Food Research*
- 794 *International*, 55, 311–323.
- Yousef, A. E., & Marth, E. H. (1990). Fate of Listeria monocytogenes During the Manufacture and
- Ripening of Parmesan Cheese. *Journal of Dairy Science*, 73(12), 3351–3356.

Highlights:

- Overview of listeriosis outbreaks caused by cheese 1983-2016
- Overall prevalence of *L. monocytogenes* in European cheese 2005 2015
- Prevalence of *L. monocytogenes* in different types of cheese
- No indicator or index organism identified for L. monocytogenes in cheese