Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance
Abstract
:1. Introduction
2. Results
2.1. Identification of Rust Resistance Genes Using Molecular Markers
2.2. Seedling Resistance Test
2.3. Rust Assessment in the Field
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Identification of Lr, Sr and Yr Genes Using Molecular Markers
4.3. Seedling Tests
4.4. Disease Assessment in the Field
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afonin, A.N.; Greene, S.L.; Dzyubenko, N.I.; Frolov, A.N. (Eds.) Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and Their Diseases, Pests and Weeds. 2008. Available online: http://www.agroatlas.ru (accessed on 12 August 2024). (In Russian).
- Morgounov, A.; Pozherukova, V.; Kolmer, J.; Gultyaeva, E.; Abugalieva, A.; Chudinov, V.; Kuzmin, O.; Rasheed, A.; Rsymbetov, A.; Shepelev, S.; et al. Genetic basis of spring wheat resistance to leaf rust (Puccinia triticina) in Kazakhstan and Russia. Euphytica 2020, 216, 170. [Google Scholar] [CrossRef]
- Ali, S.; Hodson, D. Wheat rust surveillance: Field disease scoring and sample collection for phenotyping and molecular genotyping. Methods Mol. Biol. 2017, 1659, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rsaliyev, A.S.; Rsaliyev, S.S. Principal approaches and achievements in studying race composition of wheat stem rust. Vavilov J. Genet. Breed. 2018, 22, 967–977. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Pototskaya, I.V.; Shepelev, S.S.; Pozherukova, V.E.; Salina, E.A.; Skolotneva, E.S.; Hodson, D.; Hovmøller, M.; Patpour, M.; Morgounov, A.I. Stem rust in Western Siberia—Race composition and effective resistance genes. Vavilov J. Genet. Breed. 2020, 24, 131–138. [Google Scholar] [CrossRef]
- Ivanova, Y.N.; Rosenfread, K.K.; Stasyuk, A.I.; Skolotneva, E.S.; Silkova, O.G. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilov J. Genet. Breed. 2021, 25, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Malysheva, A.A.; Kokhmetova, A.M.; Kumarbayeva, M.K.; Zhanuzak, D.K.; Bolatbekova, A.A.; Keishilov, Z.S.; Gultyaeva, E.I.; Kokhmetova, A.M.; Tsygankov, V.; Dutbayev, Y.B.; et al. Identification of carriers of Puccinia striiformis resistance genes in the population of recombinant inbred wheat lines. Int. J. Biol. Chem. 2022, 15, 4–10. [Google Scholar] [CrossRef]
- Dubekova, S.; Sarbaev, A.; Yessimbekova, M.; Morgounov, A.; Yesserkenov, A. Winter wheat resistance to yellow rust in Southeast Kazakhstan. SABRAO J. Breed. Genet. 2023, 55, 1910–1919. [Google Scholar] [CrossRef]
- Amil, R.E.; de Vallavieille Pope, C.; Leconte, M.; Nazari, K. Diversity of genes for resistance to stripe rust in wheat elite lines, commercial varieties and landraces from Lebanon and Syria. Phytopathol. Mediterr. 2019, 58, 607–627. [Google Scholar] [CrossRef]
- Rsaliyev, A.S.; Gultyaeva, E.I.; Shaydayuk, E.L.; Kovalenko, N.M.; Moldazhanova, R.A.; Pahratdinova, Z.U. Chracteristic of perspective common spring wheat accessions for resistance to foliar diseases. Plant Biotechnol. Breed. 2019, 2, 14–23. (In Russian) [Google Scholar] [CrossRef]
- Gultyaeva, E.L.; Shaydayuk, A.S.; Rsaliyev, A.R. Identification of leaf rust resistance genes in spring soft wheat samples developed in Russia and Kazakhstan. Plant Prot. News 2019, 3, 41–49. (In Russian) [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Shaydayuk, E.L.; Veselova, V.V.; Levitin, M.M. Genetic diversity of promising accessions of spring soft wheat of Russian and Kazakh breeding for resistance to leaf and yellow rust. Russ. Agric. Sci. 2024, 2, 43–48. (In Russian) [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Shaydayuk, E.L.; Kosman, E.G. Regional and temporal differentiation of virulence phenotypes of Puccinia triticina from common wheat in Russia during the period 2001–2018. Plant Pathol. 2020, 69, 860–871. [Google Scholar] [CrossRef]
- Gultyaeva, E.; Shaydayuk, E.; Kosman, E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture 2022, 12, 1957. [Google Scholar] [CrossRef]
- Skolotnevaa, E.S.; Kelbina, V.N.; Morgunov, A.I.; Boikova, N.I.; Shamanin, V.P.; Salina, E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mikol. Fitopatol. 2020, 54, 49–58. (In Russian) [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Shaydayuk, E.L. Resistance of modern Russian winter wheat cultivars to yellow rust. Plants 2023, 12, 3471. [Google Scholar] [CrossRef]
- Mas Wheat. Available online: https://maswheat.ucdavis.edu/ (accessed on 12 August 2024).
- Gultyaeva, E.I.; Shaydayuk, E.L.; Shamanin, V.P.; Akhmetova, A.K.; Tyunin, V.A.; Shreyder, E.R.; Kashina, I.V.; Eroshenko, L.A.; Sereda, G.A.; Morgunov, A.I. Genetic structure of Russian and Kazakhstani leaf rust causative agent Puccinia triticina Erikss. Populations as assessed by virulence profiles and SSR markers. Agric. Biol. 2018, 53, 85–95. (In Russian) [Google Scholar] [CrossRef]
- Mago, R.; Spielmeyer, W.; Lawrence, G.J.; Lagudah, E.S.; Ellis, J.G.; Pryor, A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1R of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002, 104, 1317–1324. [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Sibikeev, S.N.; Druzhin, A.E.; Shaydayuk, E.L. Enlargement of genetic diversity of spring bread wheat resistance to leaf rust (Puccinia triticina Eriks.) in lower Volga region. Agric. Biol. 2020, 55, 27–44. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An Atlas of Resistance Genes; CSIRO: Canberra, Australia, 1995. [Google Scholar]
- State Register of Breeding Achievements Recommended for Use in the Republic of Kazakhstan. Available online: https://sortcom.kz (accessed on 12 July 2024). (In Kazakh and Russian).
- FGBNU. State Register for Selection Achievements Admitted for Usage; Nathional List; Plants Varieties: Moscow, Russia, 2023; Volume 1, 631p, Available online: https://gossortrf.ru/publication/reestry.php (accessed on 12 July 2024). (In Russian)
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Raupp, W.J.V. Catalogue of gene symbols for wheat: 2022 supplement. Annu. Wheat Newsl. 2022, 68, 68–81. Available online: https://wheat.pw.usda.gov/ggpages/awn/68/AWN (accessed on 12 August 2024).
- Kushnirenko, I.; Shreyder, E.; Bondarenko, N.; Shaydayuk, E.; Kovalenko, N.; Titova, J.; Gultyaeva, E. Genetic Protection of soft wheat from diseases in the southern Ural of Russia and virulence variability of foliar pathogens. Agriculture 2021, 11, 703. [Google Scholar] [CrossRef]
- Adonina, I.G.; Leonova, I.N.; Badaeva, E.D.; Salina, E.A. Genotyping of hexaploid wheat varieties from different Russian regions. Vavilov. J. Genet. Breed. 2016, 20, 44–50. (In Russian) [Google Scholar] [CrossRef]
- Cherukuri, D.P.; Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Singh, R.B.; Haq, Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 2005, 143, 19–26. [Google Scholar] [CrossRef]
- Mago, R.; Zhang,, P.; Bariana, H.S.; Verlin, D.C.; Bansal, U.K.; Ellis, J.G.; Dundas, I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet. 2009, 124, 65–70. [Google Scholar] [CrossRef]
- Gold, J.; Harder, D.; Townley-Smith, F.; Aung, T.; Procunier, J. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron. J. Biotechnol. 1999, 2, 35–40. [Google Scholar] [CrossRef]
- Helguera, M.; Khan, I.A.; Dubcovsky, J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 2000, 101, 625–631. [Google Scholar] [CrossRef]
- Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005, 45, 728–734. [Google Scholar] [CrossRef]
- Marais, G.F.; Bekker, T.A.; Eksteen, A.; McCallum, B.; Fetch, T.; Marais, A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 2010, 171, 71–85. [Google Scholar] [CrossRef]
- Sibikeev, S.N.; Druzhin, A.E.; Badaeva, E.D.; Shishkina, A.A.; Dragovich, A.Y.; Gultyaeva, E.I.; Kroupin, P.Y.; Karlov, G.I.; Khuat, T.M.; Divashuk, M.G. Comparative analysis of Agropyron intermedium (Host) Beauv. 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017, 53, 314–324. [Google Scholar]
- Sharma-Poudyal, D.; Chen, X.M.; Wan, A.M.; Zhan, G.M.; Kang, Z.S.; Cao, S.Q.; Jin, S.L.; Morgounov, A.; Akin, B.; Mert, Z.; et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013, 97, 379–386. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Rathan, N.D.; Sehgal, D.; Malysheva, A.; Kumarbayeva, M.; Nurzhuma, M.; Bolatbekova, A.; Krishnappa, G.; Gultyaeva, E.; Kokhmetova, A.; et al. QTL mapping for seedling and adult plant resistance to stripe and leaf rust in two winter wheat populations. Front. Genet. 2023, 14, 1265859. [Google Scholar] [CrossRef]
- Rosewarne, G.; Bonnett, D.; Rebetzke, G.; Lonergan, P.; Larkin, P.J. The potential of Lr19 and Bdv2 translocations to improve yield and disease resistance in the high rainfall wheat zones of Australia. Agronomy 2015, 5, 55–70. [Google Scholar] [CrossRef]
- Howell, T.; Hale, I.; Jankuloski, L.; Bonafede, M.; Gilbert, M.; Dubcovsky, J. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 2014, 127, 2695–2709. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.P.; Calderini, D.F.; Condon, A.G.; Rajaram, S. Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron Elongatum. Euphytica 2001, 119, 139–144. [Google Scholar] [CrossRef]
- Dorokhov, D.B.; Cloquet, E.A. Rapid and economic technique for RAPD analysis of plant genomes Fast and economical technology of RAPD analysis of plant genomes. Russ. J. Genet. 1997, 33, 358–365. [Google Scholar]
- Qiu, J.W.; Schürch, A.C.; Yahiaoui, N.; Dong, L.L.; Fan, H.J.; Zhang, Z.J.; Keller, B.; Ling, H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 2007, 115, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; William, M.; Rosewarne, G.; Djurle, A.; Yuen, J. Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Sci. 2007, 47, 1459–1466. [Google Scholar] [CrossRef]
- Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Haq, Q.M.R. Affiliations expand development and validation of molecular markers linked to an Aegilops umbellulata–derived leaf rust resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 2005, 48, 823–830. [Google Scholar] [CrossRef]
- Chelkowski, J.; Golka, L.; Stepien, L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 2003, 44, 323–338. [Google Scholar]
- Fritz, A. Leaf Rust Resistance Gene Lr21. Available online: https://maswheat.ucdavis.edu/protocols/Lr21/ (accessed on 12 August 2024).
- Procunier, J.D.; Townley-Smith, T.F.; Fox, S.; Prashar, S.; Gray, M.; Kim, W.K.; Czarnecki, E.; Dyck, P.L. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J. Genet. Breed. 1995, 49, 87–92. [Google Scholar]
- Brown-Guedira, G.; Singh, S. Leaf Rust Resistance Gene Lr39. Available online: https://maswheat.ucdavis.edu/protocols/Lr39/ (accessed on 12 August 2024).
- Stripe Rust Resistance Gene Yr5. Available online: https://maswheat.ucdavis.edu/protocols/Yr5/ (accessed on 12 August 2024).
- Bariana, H.S.; Brown, G.N.; Ahmed, N.U.; Khatkar, S.; Conner, R.L.; Wellings, C.R.; Haley, S.; Sharp, P.J.; Laroche, A. Characterization of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor. Appl. Genet. 2002, 104, 315–320. [Google Scholar] [CrossRef]
- Stripe Rust Resistance Gene Yr15. Available online: https://maswheat.ucdavis.edu/protocols/Yr15/ (accessed on 12 August 2024).
- Rani, R.; Singh, R.; Yadav, N.R. Evaluating stripe rust resistance in Indian wheat genotypes and breeding lines using molecular markers. Comptes Rendus Biol. 2019, 342, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Charpe, A.; Prabhu, K.W.; Haque, O.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 2006, 113, 1027–1036. [Google Scholar] [CrossRef]
- Neu, C.; Stein, N.; Keller, B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 2002, 45, 737–744. [Google Scholar] [CrossRef]
- Mago, R.; Bariana, H.S.; Dundas, I.S. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor. Appl. Genet. 2005, 111, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Azhaguvel, P.; Devkota, R.N.; Rudd, J.C. PCR based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breed. 2007, 126, 482–486. [Google Scholar] [CrossRef]
- Lagudah, E.S.; McFadden, H.; Singh, R.P.; Huerta-Espino, J.; Bariana, H.S.; Spielmeyer, W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 2006, 114, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Helguera, M.; Khan, I.A.; Kolmer, J.; Lijavetzky, D.; Zhong-qi, L.; Dubcovsky, J. PCR assays for the Lr37–Yr17–Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2003, 43, 1839–1847. [Google Scholar] [CrossRef]
- Gultyaeva, E.I. Genetic Structure of Puccinia triticina Populations in Russia and Its Variability under the Influence of Host Plant. Ph.D. Thesis, All-Russian Institute of Plant Protection, St. Petersburg, Russia, 2018; 312p. (In Russian). [Google Scholar]
- Long, D.L.; Kolmer, J.A. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 1989, 79, 525–529. [Google Scholar] [CrossRef]
- GRRC—Global Rust Reference Center. Available online: https://agro.au.dk/forskning/internationale-platforme/wheatrust. (accessed on 12 August 2024).
- Mains, E.B.; Jackson, H.S. Physiologic specialization in the leaf rust of wheat Puccinia triticina Erikss. Phytopathology 1926, 16, 89–120. [Google Scholar]
- Stakman, E.C.; Levin, M.N. The determination of biologic forms of Puccinia graminis on Triticum spp. Minn. Agt. Exp. Star. Tech. Bull. 1922, 8, 38–41. [Google Scholar]
- Gassner, G.; Straib, W. Untersuchungen über die infektionsbedingungen von Puccinia glumarum und Puccinia graminis. Arb. Biol. Reichsanst. Land. Forstwirtsch. 1928, 16, 609–629. [Google Scholar]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; D.F. CIMMYT: El Batan, Mexico, 1992. [Google Scholar]
- Pietragallam, J.; Pask, A. Grain yield and yield components. In Physiological Breeding II: A Field Guide to Wheat Phenotyping, 18th ed.; Pask, A.J.D., Pietragalla, J., Mullan, D.M., Reynolds, M.P., Eds.; CIMMYT: El Batan, Mexico, 2000; pp. 95–105. [Google Scholar]
Entry | Reaction Type to Rust Isolates at the Seedling Stage | Identified Rust Resistance Genes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. triticina | P. graminis | P. striiformis | |||||||||||
PtK1 | PtK2 | PtK3 | PtK4 | PgK1 | PgK2 | PstK1 | PstK2 | PstK3 | PstK4 | PstK5 | |||
1 | Line 201m/22 | S | S | S | S | S | S | S | S | S | S | S | Lr3 Lr10 Lr21 |
2 | Line 334m/22 | MR | MR | MR | MR | MS | MS | R | MR | R | S | MS | - |
3 | Line 337m/22 | MR | MR | S | MR | S | S | S | S | S | S | S | Lr10 |
4 | Line 55/08 | S | S | S | S | MS-S | S | S | S | S | S | S | Lr3 |
5 | Line 143/09 | S | S | S | S | S | S | S | S | S | S | S | - |
6 | Line 42/93-09-1 | R | R | MR | R | S | S | S | S | S | S | MS | Lr3 |
7 | Line 1205-09-8 | S | S | S | S | MS-S | S | R | MR | S | S | MR | - |
8 | Lutescens 54 190/09 | MR | MR | MS | S | MR | MR | S | S | S | S | S | Lr26 Sr31 Yr9 |
9 | Lutescens 20 161/08 | S | S | S | S | MS-S | S | R | S | S | S | S | - |
10 | Kudesnitsa | R | R | R | R | MR | MR | S | S | S | S | S | - |
11 | Lutescence 2216 | S | S | S | S | S | S | S | S | S | S | S | Lr3 |
12 | Lutescence 2222 | S | S | S | S | MS-S | MS | S | S | S | S | S | - |
13 | Saru Akca 27 | S | S | S | S | S | S | S | S | S | S | S | Lr1 Lr3 |
14 | Line 218/10 | S | S | S | S | S | S | S | S | S | S | S | Lr1 Lr3 |
15 | PCIb12I453 | R | R | S | S | MR | MR | S | S | S | S | S | Lr3 Lr20 Lr26 Sr15 Sr31 Yr9 |
16 | PCIb12I I189 | S | S | S | S | MR | MR | S | S | S | S | S | Lr1 Lr3 |
17 | Line 98-A-2 | S | S | S | S | S | MS | S | S | S | S | S | Lr3 Lr10 |
18 | Line 155-A-1 | S | S | S | S | S | S | S | S | S | S | S | Lr10 |
19 | Line 249-A-25 | R | R | S | S | MS | MS | S | S | S | S | S | Lr3 Lr10 |
20 | L-407/ChT | R | R | R | R | MR | MR | R | R | R | R | R | Lr10 Lr34 Sr57 Yr18 |
21 | L-6/SM | R | R | S | S | R-MR | R-MR | S | R | R | S | S | Lr3 Lr26 Sr31 Yr9 |
22 | L-235/PT | R,S | R | MR | R, S | MR S | MR, S | R | R | MR | R | R | Lr9 Lr24 Sr24 1AL/1RS |
23 | KS 39/08-7 | S | S | S | S | S | S | S | S | S | S | S | - |
24 | KS 29/17y | R | R | S | S | R-MR | R-MR | S | S | S | S | S | Lr1 Lr26 Yr31 Yr9 |
25 | Lutescens 1485 | R | R | R | R | MR | MR | R | R | R | MR | R | Lr6Agi2 |
26 | Lutescens 1510 | R | R | R | R | R | R | MR | MR | S | S | MS | Lr19 Lr26 Sr25 Sr31 Yr9 |
27 | Lutescens 1535 | R | S | R | R | R | R | S | MS | S | S | S | Lr3 Lr19 Sr25 |
28 | Line 1616ae14 | R | R | R | R | R | R | S | R | R | S | S | Lr19 Lr26 Yr9 Sr25 Sr31 |
29 | L373 | R | R | R | R | R | R | R | S | MR | R | R | Lr3 Lr10 Lr19 Lr21 Lr26 Sr25 Sr31 Yr9 |
30 | L447 | R | R | R | R | R | R | R | R | R | R | R | Lr3 Lr10 Lr26 Lr6Agi1 Sr31 Yr9 |
31 | L2203 | S | S | S | S | S | S | S | S | S | S | S | - |
32 | L1353 | R | R | MR | R | MS | MS | S | S | S | S | S | Lr1 Lr3 Lr10 |
33 | Kasibovskaya 2 | R | R | S | S | R-MR | R-MR | MR | MR | S | S | MS | Lr1 Lr26 Sr31 Yr9 |
34 | Lutescens 34–16 | S | R | R | R | MR | MR | S | S | S | S | S | Lr9 AL.1RS |
35 | Lutescens 205/12-5 | R | R | R | R | R | R | S | S | S | S | S | Lr1 Lr3 Lr19 Lr26 Sr25 Sr31 Yr9 |
36 | Lutescens 242/13-10 | R | R | R | R | R | R | S | S | S | S | S | Lr3 Lr19 Lr26 Sr25 Sr31 Yr9 |
37 | Lutescens 74/16-1 | R | R | R | R | R | R | S | S | S | S | S | Lr19 Lr26 Sr25 Sr31 Yr9 |
38 | Pamyaty Tynina | R | R | R | R | R-MR | R-MR | S | S | S | S | S | Lr3 LrAsp |
39 | Zagadka | R | R | S | S | MR | MR | S | S | S | S | S | Lr1 Lr10 Lr26 Sr31 Yr9 |
40 | Erythrospermum 26464 | R | R | R | R | MR | MR | S | S | S | S | S | Lr1 Lr3 LrAsp |
No. | Entry | Leaf Rust Severity and Reaction Type in the Field | 1000-Grain Weight, g | Grain Yield, t/ha |
---|---|---|---|---|
1 | Line 201m/22 | 1 MR | 38.0 | 3.19 |
2 | Line 334m/22 | 1 MS | 38.5 | 3.88 |
3 | Line 337m/22 | 1 MS | 38.3 | 4.00 |
4 | Line 55/08 | 30 S | 37.1 | 3.83 |
5 | Line 143/09 | 50 S | 37.6 | 3.68 |
6 | Line 42/93-09-1 | 5 S | 36.2 | 4.28 |
7 | Line 1205-09-8 | 10–20 S | 35.1 | 3.93 |
8 | Lutescens 54 190/09 | 1 S | 33.4 | 3.20 |
9 | Lutescens 20 161/08 | 0 | 35.6 | 3.45 |
10 | Kudesnica | 0 | 34.2 | 3.20 |
11 | Lutescence 2216 | 5 S | 36.6 | 3.61 |
12 | Lutescence 2222 | 0 | 36.1 | 3.25 |
13 | Saru Akca 27 | 5 MS | 32.6 | 3.55 |
14 | Line 218/10 | 50 S | 42.0 | 2.56 |
15 | PCIb12I453 | 20 S | 37.6 | 3.24 |
16 | PCIb12I I189 | 1 S | 38.8 | 3.65 |
17 | Line 98-A-2 | 50 MS | 39.7 | 5.01 |
18 | Line 155-A-1 | 40 MS | 40.8 | 3.03 |
19 | Line 249-A-25 | 50 S | 38.8 | 4.55 |
20 | L-407/ChT | 0 | 34.6 | 2.06 |
21 | L-6/SM | 10–20 S | 37.9 | 3.57 |
22 | L-235/PT | 0, 10 S | 35.7 | 3.65 |
23 | KS 39/08-7 | 50 S | 35.2 | 2.47 |
24 | KS 29/17y | 1 S | 44.1 | 3.68 |
25 | Lutescens 1485 | 0 | 33.8 | 3.58 |
26 | Lutescens 1510 | 0 | 38.2 | 4.02 |
27 | Lutescens 1535 | 1–5 MS | 41.4 | 4.00 |
28 | Line 1616ae14 | 0 | 39.0 | 3.71 |
29 | L373 | 0 | 36.3 | 4.05 |
30 | L447 | 0 | 33.9 | 3.34 |
31 | L2203 | 0 | 39.0 | 3.48 |
32 | L1353 | 1 MR | 36.8 | 3.42 |
33 | Kasibovskaya 2 | 1 S | 36.3 | 3.67 |
34 | Lutescens 34-16 | 1 MR | 38.7 | 2.98 |
35 | Lutescens 205/12-5 | 0 | 38.6 | 3.24 |
36 | Lutescens 242/13-10 | 0 | 37.7 | 3.67 |
37 | Lutescens 74/16-1 | 0 | 33.8 | 3.36 |
38 | Pamyaty Tynina | 0 | 37.0 | 4.39 |
39 | Zagadka | 0 | 35.9 | 3.44 |
40 | Erythrospermum 26464 | 0 | 34.1 | 3.48 |
St | Pamyati Azieva | 10 S | 36.8 | 3.04 |
St | Tertsiya | 40–50 MS | 36.3 | 3.38 |
St | Omskaya 35 | 20 S | 42.7 | 2.73 |
St | Saratovskaya 29 | 40 S | 39.5 | 3.22 |
LSD, p < 0.5 | 0.12 | 0.58 |
No. | Entry | Origin | Organization |
---|---|---|---|
1. | Line 201m/22 | KZ: Aktyubinsk | Aktobe Agricultural Experimental Station |
2. | Line 334m/22 | ||
3. | Line 337m/22 | ||
4. | Line 55/08 | KZ: Shortandu | Scientific and Production Center of Grain Farming named after A. I. Barayev |
5. | Line 143/09 | ||
6. | Line 42/93-09-1 | KZ: Pavlodar | Pavlodar Agricultural Experimental Station |
7. | Line 1205-09-8 | ||
8. | Lutescens 54 190/09 | KZ: Karabalyk | Karabalyk Agricultural Experimental Station |
9. | Lutescens 20 161/08 | ||
10. | Kudesnica | ||
11. | Lutescence 2216 | KZ: Karaganda | Karaganda Agricultural Experimental Station named after Khristenko |
12. | Lutescence 2222 | ||
13. | Saru Akca 27 | ||
14. | Line 218/10 | KZ: Akkaiyn | North Kazakhstan Agricultural Experimental Station |
15. | PCIb12I 453 | ||
16. | PCIb12I I189 | ||
17. | Line 98-A-2 | KZ: Ust-Kamenogorsk | Pilot farm of oil plants |
18. | Line 155-A-1 | ||
19. | Line 249-A-25 | ||
20. | L-407/ChT | RU: Kurgan | Kurgan Agricultural Research Institute |
21. | L-6/SM | ||
22. | L-235/PT | ||
23. | KS 39/08-7 | RU: Kurgan | Research and Production Agroholding «Kurgansemena» |
24. | KS 29/17y | ||
25. | Lutescens 1485 | RU: Samara | N.M. Tulaikov Research Institute of Agriculture |
26. | Lutescens 1510 | ||
27. | Lutescens 1535 | ||
28 | Line 1616ae14 | ||
29. | L373 | RU: Saratov | Federal Agrarian Scientific Centre of the South-East |
30 | L447 | ||
31. | L2203 | RU: Novosibirsk | Siberian Research Institute of Plant Cultivation and Breeding—Branch of Institute of Cytology and Genetics |
32. | L1353 | ||
33. | Kasibovskaya 2 | RU: Omsk | Omsk State Agrarian University |
34. | Lutescens 34-16 | ||
35. | Lutescens 205/12-5 | RU: Omsk | Omsk Agrarian Centre |
36. | Lutescens 242/13-10 | ||
37 | Lutescens 74/16-1 | ||
38 | Pamyaty Tynina | RU: Chelyabinsk | Chelyabinsk Research Institute of Agriculture |
39 | Zagadka | ||
40 | Erythrospermum 26464 |
Gene | Marker | Primer Sequence | Allele Size, bp | References |
---|---|---|---|---|
Lr1 | WR003 F/R | F: GGGACAGAGACCTTGGTGGA R: GACGATGATGATTTGCTGCTGG | 760 | [40] |
Lr3a | Xmwg798 | F: GGCTGTCTACATCTTCTGCA R: CAAGTGTTGAGAAGGAGAGT | 365 | [41] |
Lr9 | SCS5 | F: TGCGCCCTTCAAAGGAAG R: TGCGCCCTTCTGAACTGTAT | 550 | [42] |
Lr10 | F1.2245/Lr10-6/r2 | F: GTGTAATGCATGCAGGTTCC R: AGGTGTGAGTGAGTTATGTT | 310 | [43] |
Lr21 | Lr21F/R | F: CGCTTTTACCGAGATTGGTC R: TCTGGTATCTCACGAAGCCTT | 669 | [44] |
Lr25 | Lr25F20/R19 | F: CCACCCAGAGTATACCAGAG R: CCACCCAGAGCTCATAGAA | 1800 | [45] |
Lr28 | SCS421 | F: ACAAGGTAAGTCTCCAACCA R: AGTCGACCGAGATTTTAACC | 570 | [27] |
Lr29 | Lr29F24 | F: GTGACCTCAGGCAATGCACACAGT R: GTGACCTCAGAACCGATGTCCATC | 900 | [45] |
Lr41(39) | GDM35 | F: CCTGCTCTGCCCTAGATACG R: ATGTGAATGTGATGCATGCA | 190 | [46] |
Lr47 | PS10 | F: GCTGATGACCCTGACCGGT R: TCTTCATGCCCGGTCGGGT | 282 | [30] |
Lr51 | S30-13L/AGA7-759 | F: GCATCAACAAGATATTCGTTATGACC R: TGGCTGCTCAGAAAACTGGAC | 783, 422 | [31] |
Lr66(Asp) | S13-R16 | F: GGTGAACGCTAAACCCAGGTAACC R: CAACCTGGGAAGATGCTGAG | 695 | [32] |
Yr5 | STS7/8 | F: GTA CAA TTC ACC TAG AGT R GCA AGT TTT CTC CCT ATT | 478 | [47] |
STS9/10 | F: AAA GAA TAC TTT AAT GAA R: CAA ACT TAT CAG GAT TAC | 439 | ||
Yr10 | Xpsp3000 | F: GCAGACCTGTGTCATTGGTC R: GATATAGTGGCAGCAGGATACG | 220, 260 | [48] |
Yr15 | Xbarc8 | F: GCGGGAATCATGCATAGGA R: GCGGGGGCGAAACATACACATAAAAACA | 96 | [49] |
Yr24 | Barc181 | F: CGCTGGAGGGGGTAAGTCATCAC R: CGCAAATCAAGAACACGGGAGAAAGAA | 180 | [50] |
Lr19, Sr25 | SCS265 | F: GGCGGATAAGCAGAGCAGAG R: GGCGGATAAGTGGGTTATGG | 512 | [51] |
Lr20, Sr15 | STS638 | F: ACAGCGATGAAGCAATGAAA R: GTCCAGTTGGTTGATGGAAT | 542 | [52] |
Lr24, Sr24 | Sr24≠12 | F: CACCCGTGACATGCTCGTA R: AACAGGAAATGAGCAACGATGT | 500 | [53] |
Sr24≠50 | F: CCCAGCATCGGTGAAAGAA R: ATGCGGAGCCTTCACATTTT | 200 | ||
Lr26, Sr31, Yr9 | SCM9 | F: TGACAACCCCCTTTCCCTCGT R: TCATCGACGCTAAGGAGGACCC | 207(1BL.1RS) 228(1AL.1RS) | [54] |
Lr34, Sr57, Yr18 | csLV34 | F: GTTGGTTAAGACTGGTGATGG R: TGCTTGCTATTGCTGAATAGT | 150 | [55] |
Lr35, Sr39 | Sr39#22r | F: AGAGAAGATAAGCAGTAAACATG R: TGCTGTCATGAGAGGAACTCTG | 487 | [28] |
Sr39F2/R3 | F: AGAGAGAGTAGAAGAGCT R: AGAGAGAGAGCATCCACC | 900 | [29] | |
Lr37, Sr38, Yr17 | Ventriup/LN2 | F: AGGGGCTACTGACCAAGGCT R: TGCAGCTACAGCAGTATGTACACAAAA | 259 | [56] |
Lr_Yr6Agi2 | MF2/MR1r2 | F: GATGTCG-AGGAGCATTTTC R: GTGGTAGATTACTAGAGTTCAAGTG | 347 | [6] |
Lr6Agi1 | j09/1 + F2 j09/1 + 4a | Not published–confidential Not published–confidential | 272 269 | [57] [57] |
Isolate | Origination | Virulence to Genes | Avirulence to Genes (Reaction Type) |
---|---|---|---|
Puccinia triticina | |||
PtK1 | Chelyabinsk, 2022 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 9,10, 14a, 14b, 15, 17, 18, 20, 30 | Lr: 19 (R), 16 (R), 24(R), 26(R), 28(R), 29(R), 47(R), 51(R) |
PtK2 | Saratov, 2021 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 10, 14a, 14b, 15, 16, 17, 18, 19, 20, 30 | Lr: 9(R), 24(R), 26(R), 28(R), 29(R), 47(R), 51(R) |
PtK3 | Novosibirsk 2021 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 10, 14a, 14b, 15, 16, 17, 18, 20, 26, 30 | Lr: 9(R), 19(R), 24(R), 28(R), 29(R), 47(R), 51(R) |
PtK4 | Chelyabinsk, 2022 | Lr: 1, 3a, 3bg, 3ka, 10, 14a, 14b, 16, 17, 18, 20, 26, 30 | Lr: 2a(R), 2b(R), 2c(MR), 9(R), 15(R), 19(R), 24(R), 28(R), 29(R), 47(R), 51(R) |
Puccinia graminis | |||
PgK1 | Chelyabinsk, 2022 | Sr: 5, 6, 7b, 8a, 9a, 9b, 9g, 9e, 9d, 10, 11, 17, 21, 30, 38, Tmp, McN | Sr: 24(MR), 25(R), 24 + 31(R), 24 + 36(R), 31(MR), 36(R) |
PgK2 | Chelyabinsk, 2019 | Sr: 5, 6, 7b, 8a, 9a, 9b, 9e, 10, 11, 21, 38, Tmp, McN | Sr: 9d(MR), 9g(MR), 17(MR), 24(R), 25(R), 24 + 31(R), 24 + 36(R), 30(R), 31(MR), 36(R) |
Puccinia striiformis | |||
PstK1 | Saratov, 2023 | Yr: 1, 2, 3, 4, 6, 8, 9, 27, ND | Yr: 5(R), 7(MR), 10(R), 15(R), 17(MR), 24(R), SP(R), SD(MR) |
PstK2 | St Petersburg, 2022 | Yr: 2, 3, 4, 6, 8, 9, 27 | Yr: 1(R), 5(R), 7(MR), 10(R), 15(R), 17(MR), 24(MR), SP(R), SD(MR), ND(R) |
PstK3 | Krasnodar, 2022 | Yr: 1, 2, 3, 4, 6, 7, 8, 9, | Yr: 5(R), 10(R), 15(R), 17(R), 24(R), 27(R), SP(R), SD(R), ND(MR) |
PstK4 | Dagestan, 2023 | Yr: 2, 3, 4, 6, 7, 8, 9, 27, SD, ND | Yr: 1(R), 5(R), 10(R), 15(R), 17(MR), 24(R), SP(R) |
PstK5 | Novosibirsk, 2021 | Yr: 1, 2, 3, 6, 8, 9, 27, SD | Yr: 4(MR), 5(R), 7(MR), 10(R), 15(R), 17(R), 24(R), SP(R), ND(MR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gultyaeva, E.; Shaydayuk, E.; Shreyder, E.; Kushnirenko, I.; Shamanin, V. Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance. Plants 2024, 13, 2469. https://doi.org/10.3390/plants13172469
Gultyaeva E, Shaydayuk E, Shreyder E, Kushnirenko I, Shamanin V. Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance. Plants. 2024; 13(17):2469. https://doi.org/10.3390/plants13172469
Chicago/Turabian StyleGultyaeva, Elena, Ekaterina Shaydayuk, Ekaterina Shreyder, Igor Kushnirenko, and Vladimir Shamanin. 2024. "Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance" Plants 13, no. 17: 2469. https://doi.org/10.3390/plants13172469