Consistency of Bacterial Triggers in the Pathogenesis of Hidradenitis Suppurativa
Abstract
:1. Introduction
2. Methods
3. Microbes and HS: Evidence to Date
3.1. Biofilm
3.2. The Peripheral Blood Bacterial Compostion
3.3. The Gut Bacterial Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosi, E.; Fastame, M.T.; Scandagli, I.; Di Cesare, A.; Ricceri, F.; Pimpinelli, N.; Prignano, F. Insights into the Pathogenesis of HS and Therapeutical Approaches. Biomedicines 2021, 9, 1168. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.B.; Nassif, A.; Ramesh, M.S.; Schultz, G.; Piguet, V.; Alavi, A.; Lowes, M.A. Are Bacteria Infectious Pathogens in Hidradenitis Suppurativa? Debate at the Symposium for Hidradenitis Suppurativa Advances Meeting, November 2017. J. Invest. Dermatol. 2019, 139, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, M.; Mariottoni, P.; Corcoran, D.L.; Kirshner, H.F.; Jaleel, T.; Brown, D.A.; Brooks, S.R.; Murray, J.; Morasso, M.I.; MacLeod, A.S. The Skin Transcriptome in Hidradenitis Suppurativa Uncovers an Antimicrobial and Sweat Gland Gene Signature Which Has Distinct Overlap with Wounded Skin. PLoS ONE 2019, 14, e02162492019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugam, V.K.; Jones, D.; McNish, S.; Bendall, M.L.; Crandall, K.A. Transcriptome Patterns in Hidradenitis Suppurativa: Support for the Role of Antimicrobial Peptides and Interferon Pathways in Disease Pathogenesis. Clin. Exp. Dermatol. 2019, 44, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Chopra, D.; Arens, R.A.; Amornpairoj, W.; Lowes, M.A.; Tomic-Canic, M.; Strbo, N.; Lev-Tov, H.; Pastar, I. Innate Immunity and Microbial Dysbiosis in Hidradenitis Suppurativa—Vicious Cycle of Chronic Inflammation. Front. Immunol. 2022, 13, 960488. [Google Scholar] [CrossRef]
- Williams, S.C.; Frew, J.W.; Krueger, J.G. A Systematic Review and Critical Appraisal of Metagenomic and Culture Studies in Hidradenitis Suppurativa. Exp. Dermatol. 2021, 30, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Ring, H.C.; Mikkelsen, P.R.; Miller, I.M.; Jenssen, H.; Fuursted, K.; Saunte, D.M.; Jemec, G.B.E. The Bacteriology of Hidradenitis Suppurativa: A Systematic Review. Exp. Dermatol. 2015, 24, 727–731. [Google Scholar] [CrossRef]
- Nikolakis, G.; Join-Lambert, O.; Karagiannidis, I.; Guet-Revillet, H.; Zouboulis, C.C.; Nassif, A. Bacteriology of Hidradenitis Suppurativa/Acne Inversa: A Review. J. Am. Acad. Dermatol. 2015, 73, S12–S18. [Google Scholar] [CrossRef]
- Ring, H.C.; Emtestam, L. The Microbiology of Hidradenitis Suppurativa. Dermatol. Clin. 2016, 34, 29–35. [Google Scholar] [CrossRef]
- Wark, K.J.L.; Cains, G.D. The Microbiome in Hidradenitis Suppurativa: A Review. Dermatol. Ther. 2021, 11, 39–52. [Google Scholar] [CrossRef]
- Schell, S.L.; Schneider, A.M.; Nelson, A.M. Yin and Yang: A Disrupted Skin Microbiome and an Aberrant Host Immune Response in Hidradenitis Suppurativa. Exp. Dermatol. 2021, 30, 1453–1470. [Google Scholar] [CrossRef] [PubMed]
- Luck, M.E.; Tao, J.; Lake, E.P. The Skin and Gut Microbiome in Hidradenitis Suppurativa: Current Understanding and Future Considerations for Research and Treatment. Am. J. Clin. Dermatol. 2022, 23, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Mintoff, D.; Borg, I.; Pace, N.P. The Clinical Relevance off the Microbiome in Hidradenitis Suppurativa: A Systematic Review. Vaccines 2021, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Highet, A.S.; Warren, R.E.; Weekes, A.J. Bacteriology and Antibiotic Treatment of Perineal Suppurative Hidradenitis. Arch. Dermatol. 1988, 124, 1047–1051. [Google Scholar] [CrossRef]
- Jemec, G.B.; Faber, M.; Gutschik, E.; Wendelboe, P. The Bacteriology of Hidradenitis Suppurativa. Dermatology 1996, 193, 203–206. [Google Scholar] [CrossRef]
- Katoulis, A.; Koumaki, V.; Efthymiou, O.; Koumaki, D.; Dimitroulia, E.; Voudouri, M.; Voudouri, A.; Bozi, E.; Tsakris, A. Staphylococcus Aureus Carriage Status in Patients with Hidradenitis Suppurativa: An Observational Cohort Study in a Tertiary Referral Hospital in Athens, Greece. Dermatology 2020, 236, 31–36. [Google Scholar] [CrossRef]
- Dinh, K.M.; Erikstrup, L.T.; Andersen, R.K.; Andersen, P.S.; Mikkelsen, S.; Kjerulff, B.D.; Burgdorf, K.S.; Hansen, T.F.; Nielsen, K.R.; Hjalgrim, H.; et al. Cross-Sectional Study Identifies Lower Risk of Staphylococcus Aureus Nasal Colonization in Danish Blood Donors with Hidradenitis Suppurativa Symptoms. Br. J. Dermatol. 2020, 183, 387–389. [Google Scholar] [CrossRef]
- Stergianou, D.; Tzanetakou, V.; Argyropoulou, M.; Kanni, T.; Bagos, P.G.; Giamarellos-Bourboulis, E.J. Staphylococcus Aureus Carriage in Hidradenitis Suppurativa: Impact on Response to Adalimumab. Dermatology 2021, 237, 372–377. [Google Scholar] [CrossRef]
- Hsu, T.-J.; Yeh, H.-H.; Lee, C.-H.; Tseng, H.-C. The Temporal Evolution of Distinct Skin Surface Microbiome in Asian Patients with Severe Hidradenitis Suppurativa during Effective Adalimumab Treatment. J. Invest. Dermatol. 2022, 142, 740–743. [Google Scholar] [CrossRef]
- Corazza, M.; Borghi, A.; Bettoli, V.; Pora, R.; Bononi, I.; Mazzoni, E.; Mazzola, E.; Saraceni, S.; Maritati, M.; Contini, C. Irrelevance of Panton-Valentine Leukocidin in Hidradenitis Suppurativa: Results from a Pilot, Observational Study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 77–83. [Google Scholar] [CrossRef]
- Guenin-Macé, L.; Morel, J.-D.; Doisne, J.-M.; Schiavo, A.; Boulet, L.; Mayau, V.; Goncalves, P.; Duchatelet, S.; Hovnanian, A.; Bondet, V.; et al. Dysregulation of Tryptophan Catabolism at the Host-Skin Microbiota Interface in Hidradenitis Suppurativa. JCI Insight 2020, 5, e140598. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Frazier, E.H. Aerobic and Anaerobic Microbiology of Axillary Hidradenitis Suppurativa. J. Med. Microbiol. 1999, 48, 103–105. [Google Scholar] [CrossRef]
- Lapins, J.; Jarstrand, C.; Emtestam, L. Coagulase-Negative Staphylococci Are the Most Common Bacteria Found in Cultures from the Deep Portions of Hidradenitis Suppurativa Lesions, as Obtained by Carbon Dioxide Laser Surgery. Br. J. Dermatol. 1999, 140, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartorius, K.; Killasli, H.; Oprica, C.; Sullivan, A.; Lapins, J. Bacteriology of Hidradenitis Suppurativa Exacerbations and Deep Tissue Cultures Obtained during Carbon Dioxide Laser Treatment. Br. J. Dermatol. 2012, 166, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, Ł.; Bieniek, A.; Szepietowski, J.C. Bacteriology of Hidradenitis Suppurativa—Which Antibiotics Are the Treatment of Choice? Acta Derm. Venereol. 2014, 94, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Katoulis, A.C.; Koumaki, D.; Liakou, A.I.; Vrioni, G.; Koumaki, V.; Kontogiorgi, D.; Tzima, K.; Tsakris, A.; Rigopoulos, D. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases. Ski. Appendage Disord. 2015, 1, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Guet-Revillet, H.; Coignard-Biehler, H.; Jais, J.-P.; Quesne, G.; Frapy, E.; Poirée, S.; Le Guern, A.-S.; Le Flèche-Matéos, A.; Hovnanian, A.; Consigny, P.-H.; et al. Bacterial Pathogens Associated with Hidradenitis Suppurativa, France. Emerg. Infect. Dis. 2014, 20, 1990–1998. [Google Scholar] [CrossRef]
- Ardon, C.B.; Prens, E.P.; Fuursted, K.; Ejaz, R.N.; Shailes, J.; Jenssen, H.; Jemec, G.B.E. Biofilm Production and Antibiotic Susceptibility of Staphylococcus Epidermidis Strains from Hidradenitis Suppurativa Lesions. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Ardon, C.B.; Prens, E.P.; Tkadlec, J.; Fuursted, K.; Abourayale, S.; Jemec, G.B.E.; Jenssen, H. Virulent Staphylococcus Lugdunensis with Limited Genetic Diversity in Hidradenitis Suppurativa Lesions. J. Eur. Acad. Dermatol. Venereol. 2019, 33, e248–e2502019. [Google Scholar] [CrossRef]
- Nikolakis, G.; Liakou, A.I.; Bonovas, S.; Seltmann, H.; Bonitsis, N.; Join-Lambert, O.; Wild, T.; Karagiannidis, I.; Zolke-Fischer, S.; Langner, K.; et al. Bacterial Colonization in Hidradenitis Suppurativa/Acne Inversa: A Cross-Sectional Study of 50 Patients and Review of the Literature. Acta Derm. Venereol. 2017, 97, 493–498. [Google Scholar] [CrossRef]
- Benzecry, V.; Grancini, A.; Guanziroli, E.; Nazzaro, G.; Barbareschi, M.; Marzano, A.V.; Muratori, S.; Veraldi, S. Hidradenitis Suppurativa/Acne Inversa: A Prospective Bacteriological Study and Review of the Literature. G. Ital. Dermatol. Venereol. 2020, 155, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.B.; Jo, J.-H.; Paul, M.; Kong, H.H. Skin Microbiota Perturbations Are Distinct and Disease Severity-Dependent in Hidradenitis Suppurativa. J. Invest. Dermatol. 2020, 140, 922–925. [Google Scholar] [CrossRef]
- Riverain-Gillet, É.; Guet-Revillet, H.; Jais, J.-P.; Ungeheuer, M.-N.; Duchatelet, S.; Delage, M.; Lam, T.; Hovnanian, A.; Nassif, A.; Join-Lambert, O. The Surface Microbiome of Clinically Unaffected Skinfolds in Hidradenitis Suppurativa: A Cross-Sectional Culture-Based and 16S RRNA Gene Amplicon Sequencing Study in 60 Patients. J. Invest. Dermatol. 2020, 140, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Hessam, S.; Sand, M.; Georgas, D.; Anders, A.; Bechara, F.G. Microbial Profile and Antimicrobial Susceptibility of Bacteria Found in Inflammatory Hidradenitis Suppurativa Lesions. Ski. Pharmacol. Physiol. 2016, 29, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, J.; Nasrin, S.; Farnoosh, N. Microbial Profile and Antibiotic Susceptibility of Bacteria Isolated from Patients with Hidradenitis Suppurativa. Iran. J. Dermatol. 2019, 22, 25–29. [Google Scholar] [CrossRef]
- Guet-Revillet, H.; Jais, J.-P.; Ungeheuer, M.-N.; Coignard-Biehler, H.; Duchatelet, S.; Delage, M.; Lam, T.; Hovnanian, A.; Lortholary, O.; Nassif, X.; et al. The Microbiological Landscape of Anaerobic Infections in Hidradenitis Suppurativa: A Prospective Metagenomic Study. Clin. Infect. Dis. 2017, 65, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Ring, H.C.; Sigsgaard, V.; Thorsen, J.; Fuursted, K.; Fabricius, S.; Saunte, D.M.; Jemec, G.B. The Microbiome of Tunnels in Hidradenitis Suppurativa Patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1775–1780. [Google Scholar] [CrossRef]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.; Nielsen, H.V.; Miller, I.M.; et al. The Follicular Skin Microbiome in Patients with Hidradenitis Suppurativa and Healthy Controls. JAMA Dermatol. 2017, 153, 897–905. [Google Scholar] [CrossRef]
- Schneider, A.M.; Cook, L.C.; Zhan, X.; Banerjee, K.; Cong, Z.; Imamura-Kawasawa, Y.; Gettle, S.L.; Longenecker, A.L.; Kirby, J.S.; Nelson, A.M. Loss of Skin Microbial Diversity and Alteration of Bacterial Metabolic Function in Hidradenitis Suppurativa. J. Invest. Dermatol. 2020, 140, 716–720. [Google Scholar] [CrossRef]
- Antal, D.; Janka, E.A.; Szabó, J.; Szabó, I.L.; Szegedi, A.; Gáspár, K.; Bai, P.; Szántó, M. Culture-Based Analyses of Skin Bacteria in Lesional Moist, and Unaffected Dry and Sebaceous Skin Regions of Hidradenitis Suppurativa Patients. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e731–e7332022. [Google Scholar] [CrossRef]
- Bettoli, V.; Manfredini, M.; Massoli, L.; Carillo, C.; Barozzi, A.; Amendolagine, G.; Ruina, G.; Musmeci, D.; Libanore, M.; Curtolo, A.; et al. Rates of Antibiotic Resistance/Sensitivity in Bacterial Cultures of Hidradenitis Suppurativa Patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Jahns, A.C.; Killasli, H.; Nosek, D.; Lundskog, B.; Lenngren, A.; Muratova, Z.; Emtestam, L.; Alexeyev, O.A. Microbiology of Hidradenitis Suppurativa (Acne Inversa): A Histological Study of 27 Patients. APMIS 2014, 122, 804–809. [Google Scholar] [CrossRef]
- Okoye, G.A.; Vlassova, N.; Olowoyeye, O.; Agostinho, A.; James, G.; Stewart, P.S.; Leung, S.; Lazarus, G. Bacterial Biofilm in Acute Lesions of Hidradenitis Suppurativa. Br. J. Dermatol. 2017, 176, 241–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ring, H.C.; Bay, L.; Nilsson, M.; Kallenbach, K.; Miller, I.M.; Saunte, D.M.; Bjarnsholt, T.; Tolker-Nielsen, T.; Jemec, G.B. Bacterial Biofilm in Chronic Lesions of Hidradenitis Suppurativa. Br. J. Dermatol. 2017, 176, 993–1000. [Google Scholar] [CrossRef]
- Ring, H.C.; Bay, L.; Kallenbach, K.; Miller, I.M.; Prens, E.; Saunte, D.M.; Bjarnsholt, T.; Jemec, G.B.E. Normal Skin Microbiota Is Altered in Pre-Clinical Hidradenitis Suppurativa. Acta Derm. Venereol. 2017, 97, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjaersgaard Andersen, R.; Ring, H.C.; Kallenbach, K.; Eriksen, J.O.; Jemec, G.B.E. Bacterial Biofilm Is Associated with Higher Levels of Regulatory T Cells in Unaffected Hidradenitis Suppurativa Skin. Exp. Dermatol. 2019, 28, 312–316. [Google Scholar] [CrossRef]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.; Nielsen, H.V.; Miller, I.M.; et al. Moderate to Severe Hidradenitis Suppurativa Patients Do Not Have an Altered Bacterial Composition in Peripheral Blood Compared to Healthy Controls. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 125–128. [Google Scholar] [CrossRef]
- Hispán, P.; Murcia, O.; Gonzalez-Villanueva, I.; Francés, R.; Giménez, P.; Riquelme, J.; Betlloch, I.; Pascual, J.C. Identification of Bacterial DNA in the Peripheral Blood of Patients with Active Hidradenitis Suppurativa. Arch. Dermatol. Res. 2020, 312, 159–163. [Google Scholar] [CrossRef]
- Kam, S.; Collard, M.; Lam, J.; Alani, R.M. Gut Microbiome Perturbations in Patients with Hidradenitis Suppurativa: A Case Series. J. Invest. Dermatol. 2021, 141, 225–228. [Google Scholar] [CrossRef]
- Eppinga, H.; Weiland, C.J.S.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.C.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar Depletion of Protective Faecalibacterium Prausnitzii in Psoriasis and Inflammatory Bowel Disease, but Not in Hidradenitis Suppurativa. J. Crohns Colitis 2016, 10, 1067–1075. [Google Scholar] [CrossRef]
- Lam, S.Y.; Radjabzadeh, D.; Eppinga, H.; Nossent, Y.R.A.; van der Zee, H.H.; Kraaij, R.; Konstantinov, S.R.; Fuhler, G.M.; Prens, E.P.; Thio, H.B.; et al. A Microbiome Study to Explore the Gut-Skin Axis in Hidradenitis Suppurativa. J. Dermatol. Sci. 2021, 101, 218–220. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.; Barrett, M.; Kirthi, S.; Pellanda, P.; Vlckova, K.; Tobin, A.-M.; Murphy, M.; Shanahan, F.; O’Toole, P.W. Altered Skin and Gut Microbiome in Hidradenitis Suppurativa. J. Invest. Dermatol. 2022, 142, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J. Staphylococcus Aureus and Host Interaction in the Flare-Ups of Hidradenitis Suppurativa. Br. J. Dermatol. 2019, 181, 892–893. [Google Scholar] [CrossRef]
- Ring, H.C.; Thorsen, J.; Fuursted, K.; Bjarnsholt, T.; Bay, L.; Egeberg, A.; Ingham, A.C.; Vedel Nielsen, H.; Frew, J.W.; Saunte, D.M.L.; et al. Amplicon Sequencing Demonstrates Comparable Follicular Mycobiomes in Patients with Hidradenitis Suppurativa Compared with Healthy Controls. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e580–e583. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, A.-H.R.; Thomsen, S.F.; Karmisholt, K.E.; Ring, H.C. Clinical, Microbiological, Immunological and Imaging Characteristics of Tunnels and Fistulas in Hidradenitis Suppurativa and Crohn’s Disease. Exp. Dermatol. 2020, 29, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Ring, H.C.; Thorsen, J.; Jørgensen, A.H.; Bay, L.; Bjarnsholt, T.; Fuursted, K.; Thomsen, S.F.; Jemec, G.B. Predictive Metagenomic Analysis Reveals a Role of Cutaneous Dysbiosis in the Development of Hidradenitis Suppurativa. J. Invest. Dermatol. 2020, 140, 1473–1476. [Google Scholar] [CrossRef]
- Schneider, A.M.; Cook, L.C.; Zhan, X.; Banerjee, K.; Cong, Z.; Imamura-Kawasawa, Y.; Gettle, S.L.; Longenecker, A.L.; Kirby, J.S.; Nelson, A.M. Response to Ring et al.: In Silico Predictive Metagenomic Analyses Highlight Key Metabolic Pathways Impacted in the Hidradenitis Suppurativa Skin Microbiome. J. Invest. Dermatol. 2020, 140, 1476–1479. [Google Scholar] [CrossRef]
- Ring, H.C.; Thorsen, J.; Fuursted, K.; Bjarnsholt, T.; Bay, L.; Saunte, D.M.; Thomsen, S.F.; Jemec, G.B. Probiotics in Hidradenitis Suppurativa: A Potential Treatment Option? Clin. Exp. Dermatol. 2022, 47, 139–141. [Google Scholar] [CrossRef]
- Maraki, S.; Evangelou, G.; Stafylaki, D.; Scoulica, E. Actinotignum Schaalii Subcutaneous Abscesses in a Patient with Hidradenitis Suppurativa: Case Report and Literature Review. Anaerobe 2017, 43, 43–46. [Google Scholar] [CrossRef]
- Bonifaz, A.; Fernández-Samar, D.; Tirado-Sánchez, A.; Vázquez-González, D.; Mercadillo-Pérez, P. Hidradenitis Suppurativa Associated with Actinomycosis Owing to Actinomyces Meyeri. Br. J. Dermatol. 2021, 184, e123–e1242021. [Google Scholar] [CrossRef]
- Kathju, S.; Lasko, L.-A.; Stoodley, P. Considering Hidradenitis Suppurativa as a Bacterial Biofilm Disease. FEMS Immunol. Med. Microbiol. 2012, 65, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus Epidermidis Esp Inhibits Staphylococcus Aureus Biofilm Formation and Nasal Colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Molnar, J.; Mallonee, C.J.; Stanisic, D.; Homme, R.P.; George, A.K.; Singh, M.; Tyagi, S.C. Hidradenitis Suppurativa and 1-Carbon Metabolism: Role of Gut Microbiome, Matrix Metalloproteinases, and Hyperhomocysteinemia. Front. Immunol. 2020, 11, 1730. [Google Scholar] [CrossRef]
- Naik, H.B.; Piguet, V. Standardizing Hidradenitis Suppurativa Skin Microbiome Research: The Methods Matter. J. Invest. Dermatol. 2020, 140, 1688–1690. [Google Scholar] [CrossRef] [PubMed]
- Langan, E.A.; Recke, A.; Bokor-Billmann, T.; Billmann, F.; Kahle, B.K.; Zillikens, D. The Role of the Cutaneous Microbiome in Hidradenitis Suppurativa-Light at the End of the Microbiological Tunnel. Int. J. Mol. Sci. 2020, 21, 1205. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer-van der Kolk, T.; van der Wall, H.E.C.; Balmforth, C.; Van Doorn, M.B.A.; Rissmann, R. A Systematic Literature Review of the Human Skin Microbiome as Biomarker for Dermatological Drug Development. Br. J. Clin. Pharmacol. 2018, 84, 2178–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delage, M.; Guet-Revillet, H.; Duchatelet, S.; Hovnanian, A.; Nassif, X.; Nassif, A.; Join-Lambert, O. Deciphering the Microbiology of Hidradenitis Suppurativa: A Step Forward towards Understanding an Enigmatic Inflammatory Skin Disease. Exp. Dermatol. 2015, 24, 736–737. [Google Scholar] [CrossRef] [Green Version]
- Callewaert, C.; Knödlseder, N.; Karoglan, A.; Güell, M.; Paetzold, B. Skin Microbiome Transplantation and Manipulation: Current State of the Art. Comput. Struct. Biotechnol. J. 2021, 19, 624–631. [Google Scholar] [CrossRef]
Reference | Type of Study | Study Participants | Most Common Bacteria and Other Relevant Findings |
---|---|---|---|
[14] | Culture study | 32 HS patients | Streptococcus milleri; Staphylococcus aureus; anaerobic streptococci; Bacteroides spp.; Coliform bacteria; Proteus spp. |
[15] | Culture study Serological study | 41 HS patients | Staphylococcus epidermidis; S. aureus; S. milleri; polymicrobial |
[16] | Culture study | 68 HS patients | S. aureus carriage rate (25%); (35% MRSA) |
[17] | NA | 5218 blood donors (117 HS patients and 5101 healthy controls) | S. aureus nasal carriage rate: 33.3% HS vs. 41.4% healthy controls |
[18] | Culture study | 39 HS patients treated with adalimumab | Carriage for S. aureus was detected in 5 (50%) patients who failed to achieve HiSCR at 12 weeks |
[19] | Sequencing study | 22 HS patients 12 healthy controls | Prevotella spp. and Peptoniphilus spp. at HS lesional sites Paucibacter spp. and Caulobacter spp. in healthy controls Not significant temporal evolution of microbiome during adalimumab treatment |
[20] | Culture study PCR analysis | 30 HS patients | S. aureus; CNS; Peptostreptococcaceae; Enterobacteriaceae |
[21] | Sequencing study | 8 HS patients 9 healthy controls | Corynebacterium spp. and anaerobic bacteria |
[22] | Culture study | 17 HS patients | S. aureus; Streptococcus pyogenes; Pseudomonas aeruginosa; Peptostreptococcus; Prevotella |
[23] | Culture study | 25 HS patients | S. Aureus; CNS; Peptostreptococcus spp.; Propionibacterium acnes |
[24] | Culture study | 10 HS patients | CNS; Corynebacterium spp.; Anaerobic Gram-positive cocci; Micrococci; Clostridium spp. |
[25] | Culture study | 28 HS patients | S. epidermidis; Proteus mirabilis; S. aureus; Enterococcus faecalis; Escherichia coli |
[26] | Culture study | 22 HS patients | P. mirabilis; Staphylococcus haemolyticus; Staphylococcus lugdunensis; Dermacoccus nishinomiyaensis and Propionibacterium granulosum |
[27] | Culture study Sequencing study | 82 HS patients | Gram-positive cocci; Prevotella spp.; Porphyromonas spp.; Bacteroides spp.; Fusobacterium spp. |
[28] | Culture study | 26 HS patients | S. epidermidis (89% isolates were strong biofilm producers in vitro) |
[29] | Culture study | 26 HS patients 1 healthy control | S. lugdunensis (100% strong biofilm producers) |
[30] | Culture study | 50 HS patients | Anaerobic non-Enterobacteriaceae; Enterobacteriaceae; Coagulase-positive staphylococci; CNS; Anaerobic enterococci |
[31] | Culture study | 46 HS patients | Enterobacteriaceae; Streptococcus spp.; Corynebacterium spp.; Staphylococcus spp.; Anaerobic Gram-positive and Gram-negative bacteria |
[32] | Sequencing study | 12 HS patients, 5 healthy controls | Increased relative abundance of Gram-negative anaerobes Increased relative abundance of Gram-positive anaerobes Decreased relative abundance of Cutibacterium spp. |
[33] | Culture study Sequencing study | 60 HS patients 17 healthy controls | Increased abundance of anaerobes Decreased abundance of skin commensals |
[34] | Culture study | 113 HS patients | CNS; S. aureus; P. mirabilis; E. coli; Corynebacterium spp.; Enterococcus spp., Viridans streptococci; polymicrobial (45.1%) |
[35] | Culture study | 26 HS patients | S. aureus; Diphtheroid; E. coli |
[36] | Culture study | 65 HS patients | Anaerobes; Streptococcus anginosus, Actinomyces spp.; S. aureus |
[37] | Sequencing study | 32 HS patients | 5 microbiome types identified: Porphyromonas spp. (type I) Corynebacterium spp. (type II) Staphylococcus spp. (type III) Prevotella spp. (type IV) Acinetobacter spp. (Type V) |
[38] | Sequencing study | 30 HS patients 24 healthy controls | 5 microbiome types identified: Corynebacterium species (type I) Acinetobacter and Moraxella species (type II) S. epidermidis (type III) Porphyromonas and Peptoniphilus species (type IV) P. acnes (type V) |
[39] | Sequencing study | 11 HS patients 10 normal subjects | Decreased relative abundance of skin commensals and increased abundance of opportunistic anaerobic pathogens |
[40] | Culture study | 11 HS patients 14 age- and sex-matched healthy controls | Decreased presence of Lactobacillus spp.; Cutibacterium acnes and Staphylococcus caprae Increased abundance of E. faecalis |
[41] | Culture study | 137 HS patients | Proteus spp.; E. coli; S. epidermidis; Streptococcus agalactiae |
[42] | Immunolabelling study | 27 HS patients | Untyped small coccoidal bacteria; P. acnes; biofilm-like structures 1/5 of HS patients |
[43] | Epifluorescence microscopy | 10 HS patients | Biofilms found in 2 of the acute HS lesions and not in any of the uninvolved skin samples |
[44] | PNA- FISH in combination with CLSM | 42 HS patients | Biofilm found in 67 % of the lesional samples and 75% of the perilesional samples Cocci-like bacteria |
[45] | PNA-FISH probes in combination with CLSM | 24 HS patients 24 healthy controls | 12% of the HS samples were categorized as positive for small aggregates or single scattered cells Predominant morphology cocci and rod shape |
[46] | Histologic material stained for CD4, CD8, CD25, FoxP3 and IL17 | 16 HS patients 21 healthy controls | 12.5% of HS patients had bacterial biofilm in their axilla vs. 85% of the healthy controls |
[47] | Culture study Sequencing study | 27 HS patients 26 healthy controls | No different bacterial composition between HS patients and healthy controls (blood) |
[48] | Sequencing study | 50 patients with HS 50 matched controls | E. coli; Klebsiella pneumoniae and Gram-positive cocci (blood) |
[49] | Sequencing study | 3 HS patients 3 healthy controls | Increased abundance of Bilophila and Holdemania Decreased abuncance of Lachnobacterium and Veillonella (gut) |
[50] | Sequencing study | 34 HS patients (17 with concomitant IBD) 42 psoriasis patients (13 with IBD) 31 IBD patients 33 healthy controls | No depletion of Faecalibacterium prausnitzii (gut) |
[51] | Sequencing study | 17 HS patients 20 healthy controls | Robinsoniella peoriensis and Sellimonas (gut) |
[52] | Sequencing study | 59 HS patients 30 healthy controls (fecal samples) 20 healthy controls (nasal and skin swabs) | Ruminococcus gnavus and Clostridium ramosum (gut) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosi, E.; Guerra, P.; Silvi, G.; Nunziati, G.; Scandagli, I.; Di Cesare, A.; Prignano, F. Consistency of Bacterial Triggers in the Pathogenesis of Hidradenitis Suppurativa. Vaccines 2023, 11, 179. https://doi.org/10.3390/vaccines11010179
Rosi E, Guerra P, Silvi G, Nunziati G, Scandagli I, Di Cesare A, Prignano F. Consistency of Bacterial Triggers in the Pathogenesis of Hidradenitis Suppurativa. Vaccines. 2023; 11(1):179. https://doi.org/10.3390/vaccines11010179
Chicago/Turabian StyleRosi, Elia, Prisca Guerra, Gianmarco Silvi, Giulia Nunziati, Ilaria Scandagli, Antonella Di Cesare, and Francesca Prignano. 2023. "Consistency of Bacterial Triggers in the Pathogenesis of Hidradenitis Suppurativa" Vaccines 11, no. 1: 179. https://doi.org/10.3390/vaccines11010179