Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,018)

Search Parameters:
Keywords = biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3533 KiB  
Article
The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity
by Ruoyu Mao, Qingyi Zhao, Haiqiang Lu, Na Yang, Yuanyuan Li, Da Teng, Ya Hao, Xinxi Gu and Jianhua Wang
Mar. Drugs 2024, 22(10), 463; https://doi.org/10.3390/md22100463 (registering DOI) - 8 Oct 2024
Abstract
American Oyster Defensin (AOD) is a marine peptide that is derived from North American mussels. It has been demonstrated to exhibit potent antimicrobial activity and high safety in both in vitro and in vivo models. In this study, to facilitate synthesis, mutants of [...] Read more.
American Oyster Defensin (AOD) is a marine peptide that is derived from North American mussels. It has been demonstrated to exhibit potent antimicrobial activity and high safety in both in vitro and in vivo models. In this study, to facilitate synthesis, mutants of AOD with fewer disulfide bonds were designed and subjected to structural, antimicrobial, and anti-biofilm analysis. The antimicrobial activity of AOD-derived peptides decreased after reduction in the disulfide bond, and among its three derivatives, only AOD-1 inhibited very few bacteria with a MIC value of 64 μg/mL, whereas the others had no inhibitory effect on pathogenic bacteria. The findings demonstrated that full disulfide bonds are indispensable for bactericidal activity, with the α-helix playing a pivotal role in inhibiting bacterial membranes. Furthermore, the results of the ATP, ROS, membrane potential, and membrane fluidity assays demonstrated that intracellular ATP, reactive oxygen species, and membrane fluidity were all increased, while membrane potential was reduced. This indicated that AOD resulted in the impairment of membrane fluidity and induced metabolic disorders, ultimately leading to bacterial death. The inhibitory effect of AOD on the biofilm of S. epidermidis G-81 was determined through the crystal violet and confocal microscopy. The results demonstrated that AOD exhibited a notable inhibitory impact on the biofilm of S. epidermidis G-81. The minimum biofilm inhibitory concentration of AOD on S. epidermidis G-81 was 16 μg/mL, and the minimum biofilm scavenging concentration was 32 μg/mL, which exhibited superior efficacy compared to that of lincomycin. The inhibitory effect on the primary biofilm was 90.3%, and that on the mature biofilm was 82.85%, with a dose-dependent inhibition effect. Concurrently, AOD cleared intra-biofilm organisms and reduced the number of biofilm-holding bacteria by six orders of magnitude. These data indicate that disulfide bonds are essential to the structure and activity of AOD, and AOD may potentially become an effective dual-action antimicrobial and anti-biofilm agent. Full article
(This article belongs to the Special Issue Marine Natural Products with Antifouling Activity, 3rd Edition)
Show Figures

Figure 1

17 pages, 13470 KiB  
Article
Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation
by Nicola Lovecchio, Roberto Giuseppetti, Lucia Bertuccini, Sandra Columba-Cabezas, Valentina Di Meo, Mario Figliomeni, Francesca Iosi, Giulia Petrucci, Michele Sonnessa, Fabio Magurano and Emilio D’Ugo
Biosensors 2024, 14(10), 484; https://doi.org/10.3390/bios14100484 (registering DOI) - 8 Oct 2024
Abstract
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water–oil interface, creating a distinct environment for [...] Read more.
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water–oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm’s natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system’s power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm’s electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications)
Show Figures

Figure 1

18 pages, 1835 KiB  
Article
Anti-Fungal (Aspergillus fumigatus) Activity of Pseudomonas aeruginosa in Cystic Fibrosis Synthetic Sputum
by Gabriele Sass, Satya Kethineni and David A. Stevens
Pathogens 2024, 13(10), 875; https://doi.org/10.3390/pathogens13100875 - 7 Oct 2024
Viewed by 215
Abstract
Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are pathogens inhabiting the lungs of persons with cystic fibrosis (CF), or immune-compromised patients, causing or aggravating disease. We previously investigated their microbial interaction as well as susceptibility to anti-fungal drugs using RPMI medium (contains undetectable [...] Read more.
Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are pathogens inhabiting the lungs of persons with cystic fibrosis (CF), or immune-compromised patients, causing or aggravating disease. We previously investigated their microbial interaction as well as susceptibility to anti-fungal drugs using RPMI medium (contains undetectable iron concentrations), as is standard for susceptibility testing. Here we investigated microbial interaction in synthetic sputum medium (SSPM), a complex mixture designed to mimic the milieu in CF lungs. SSPM contains Fe2+. Pa laboratory strain PA14 or PA14 siderophore mutant planktonic culture filtrate, prepared in RPMI or SSPM, were compared for inhibition of Af biofilm formation. SSPM enhanced bacterial and fungal growth and the production of the Pa molecules pyoverdine, phenazines, and rhamnolipids. Af was more susceptible to these molecules in SSPM (with the exception of pyoverdine). SSPM interfered with fungal susceptibility to pyoverdine. Studies with the mutant helped to reveal that the reduced anti-fungal activity of pyoverdine in SSPM appears to be compensated by higher production of other anti-fungal molecules, e.g., rhamnolipids, phenazines, and PQS, and higher Af sensitivity to these molecules. In summary, SSPM better defines Pa–Af intermicrobial competition in the milieu of CF lungs. Full article
(This article belongs to the Section Fungal Pathogens)
11 pages, 1882 KiB  
Article
Antifungal Ability of Novel Silane on Titanium Implant Surface
by Xiaotian Liu, Shuyang Chen, Hao Ding and James Kit Hon Tsoi
Coatings 2024, 14(10), 1277; https://doi.org/10.3390/coatings14101277 - 7 Oct 2024
Viewed by 278
Abstract
Titanium and its alloys are commonly used in dentistry for implants due to their strength, lightweight nature, durability, corrosion resistance, and biocompatibility. These implants can osseointegrate after surface treatments such as SLA, plasma-spray, and nanotubes, providing a stable foundation for prostheses. However, Candida [...] Read more.
Titanium and its alloys are commonly used in dentistry for implants due to their strength, lightweight nature, durability, corrosion resistance, and biocompatibility. These implants can osseointegrate after surface treatments such as SLA, plasma-spray, and nanotubes, providing a stable foundation for prostheses. However, Candida albicans, an opportunistic fungal pathogen, can threaten the success of titanium dental implants, causing oral infections in vulnerable individuals. A dual novel silane blend of 3-acryloxypropyltrimethoxysilane (ACPS) and bis-1,2-(triethoxysilyl)ethane (BTSE) has been shown to improve the shear bond strength in resin cement bonds with titanium and ceramics. This study evaluated the effects of Candida albicans colonization on blended silane-coated SLA-Ti surfaces compared to non-coated SLA-Ti (positive control) and flat titanium (negative control). Candida albicans biofilms were cultured on all surfaces, and it was found that silane-coated SLA-Ti had significantly lower CFU counts than non-coated SLA-Ti. However, no significant differences were observed in the RT-PCR results. In conclusion, a combination of 1.0 vol% ACPS and 0.3 vol% BTSE shows promise as a silane coupling agent with potential antifungal properties for inhibiting Candida albicans proliferation. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments, 2nd Edition)
Show Figures

Figure 1

19 pages, 1048 KiB  
Review
Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions
by Kuok Ho Daniel Tang and Ronghua Li
Antibiotics 2024, 13(10), 941; https://doi.org/10.3390/antibiotics13100941 - 6 Oct 2024
Viewed by 611
Abstract
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well [...] Read more.
Background: Microplastic aging affects the dynamics of antibiotic resistance genes (ARGs) on microplastics, yet no review presents the effects of microplastic aging on the associated ARGs. Objectives: This review, therefore, aims to discuss the effects of different types of microplastic aging, as well as the other pollutants on or around microplastics and the chemicals leached from microplastics, on the associated ARGs. Results: It highlights that microplastic photoaging generally results in higher sorption of antibiotics and ARGs due to increased microplastic surface area and functional group changes. Photoaging produces reactive oxygen species, facilitating ARG transfer by increasing bacterial cell membrane permeability. Reactive oxygen species can interact with biofilms, suggesting combined effects of microplastic aging on ARGs. The effects of mechanical aging were deduced from studies showing larger microplastics anchoring more ARGs due to rough surfaces. Smaller microplastics from aging penetrate deeper and smaller places and transport ARGs to these places. High temperatures are likely to reduce biofilm mass and ARGs, but the variation of ARGs on microplastics subjected to thermal aging remains unknown due to limited studies. Biotic aging results in biofilm formation on microplastics, and biofilms, often with unique microbial structures, invariably enrich ARGs. Higher oxidative stress promotes ARG transfer in the biofilms due to higher cell membrane permeability. Other environmental pollutants, particularly heavy metals, antibacterial, chlorination by-products, and other functional genes, could increase microplastic-associated ARGs, as do microplastic additives like phthalates and bisphenols. Conclusions: This review provides insights into the environmental fate of co-existing microplastics and ARGs under the influences of aging. Further studies could examine the effects of mechanical and thermal MP aging on their interactions with ARGs. Full article
Show Figures

Figure 1

23 pages, 7344 KiB  
Review
Application of Decentralized Wastewater Treatment Technology in Rural Domestic Wastewater Treatment
by Xinyu Li, Xu Zhang, Min Zhao, Xiangyong Zheng, Zhiquan Wang and Chunzhen Fan
Sustainability 2024, 16(19), 8635; https://doi.org/10.3390/su16198635 - 5 Oct 2024
Viewed by 552
Abstract
The management of domestic wastewater in rural areas has always been challenging due to characteristics such as the wide distribution and dispersion of rural households. There are numerous domestic sewage discharge methods used in rural areas, and it is difficult to treat the [...] Read more.
The management of domestic wastewater in rural areas has always been challenging due to characteristics such as the wide distribution and dispersion of rural households. There are numerous domestic sewage discharge methods used in rural areas, and it is difficult to treat the sewage. To address this problem, decentralized wastewater treatment systems (DWTSs) have been installed around the globe to reuse and recycle wastewater for non-potable uses such as firefighting, toilet flushing, and landscape irrigation. This study compares the currently implemented treatment processes by investigating them from the point of view of their performance and their advantages and disadvantages to provide new ideas for the development of rural wastewater treatment technologies. According to conventional treatment technologies including activated sludge (OD, A/O, A/A/O, SBR), biofilm (biofilter, MBBR, biological contact oxidation, biofluidized bed) and biogas digesters, natural biological treatment technologies including artificial wetlands (surface flow, vertical flow, horizontal submerged flow artificial wetlands), soil percolation systems (slow, fast, subsurface percolation and surface diffusion) and stabilization pond technology and combined treatment technologies are categorized and further described. Full article
Show Figures

Figure 1

15 pages, 5085 KiB  
Article
Pentadecanoic Acid-Releasing PDMS: Towards a New Material to Prevent S. epidermidis Biofilm Formation
by Caterina D'Angelo, Serena Faggiano, Paola Imbimbo, Elisabetta Viale, Angela Casillo, Stefano Bettati, Diana Olimpo, Maria Luisa Tutino, Daria Maria Monti, Maria Michela Corsaro, Luca Ronda and Ermenegilda Parrilli
Int. J. Mol. Sci. 2024, 25(19), 10727; https://doi.org/10.3390/ijms251910727 - 5 Oct 2024
Viewed by 310
Abstract
Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We [...] Read more.
Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We previously reported the antibiofilm activity against S. epidermidis of pentadecanoic acid (PDA) deposited by drop-casting on the silicon-based polymer poly(dimethyl)siloxane (PDMS). This material exerted an antibiofilm activity by releasing PDA; however, a toxic effect on bacterial cells was observed, which could potentially favor the emergence of resistant strains. To develop a PDA-functionalized material for medical use and overcome the problem of toxicity, we produced PDA-doped PDMS by either spray-coating or PDA incorporation during PDMS polymerization. Furthermore, we created a strategy to assess the kinetics of PDA release using ADIFAB, a very sensitive free fatty acids fluorescent probe. Spray-coating resulted in the most promising strategy as the concentration of released PDA was in the range 0.8–1.5 μM over 21 days, ensuring long-term effectiveness of the antibiofilm molecule. Moreover, the new coated material resulted biocompatible when tested on immortalized human keratinocytes. Our results indicate that PDA spray-coated PDMS is a promising material for the production of medical devices endowed with antibiofilm activity. Full article
Show Figures

Figure 1

16 pages, 5285 KiB  
Article
Effects of Tooth Desensitizers on Streptococcus mutans Biofilm Formation Using a Modified Robbins Device Flow Cell System
by Niraya Kornsombut, Shoji Takenaka, Jutharat Manuschai, Maki Sotozono, Ryoko Nagata, Takako Ida, Risako Sato, Rui Saito, Ryouhei Takahashi, Daichi Sato and Yuichiro Noiri
Int. J. Mol. Sci. 2024, 25(19), 10703; https://doi.org/10.3390/ijms251910703 - 4 Oct 2024
Viewed by 400
Abstract
This study aimed to assess the antibiofilm effects of dentin desensitizers using a modified Robbins device flow cell system. The test desensitizers were Saforide, Caredyne Shield, and Clinpro White Varnish. Standardized dentin specimens were prepared from human single-rooted premolars, treated with one of [...] Read more.
This study aimed to assess the antibiofilm effects of dentin desensitizers using a modified Robbins device flow cell system. The test desensitizers were Saforide, Caredyne Shield, and Clinpro White Varnish. Standardized dentin specimens were prepared from human single-rooted premolars, treated with one of the materials, and mounted on the modified Robbins device flow cell system. Streptococcus mutans biofilms were developed for 24 h at 37 °C under anaerobic conditions. Scanning electron microscopy, fluorescence confocal laser scanning microscopy, viable and total cell counts, acid production, and gene expression analyses were performed. A wavelength-dispersive X-ray spectroscopy electron probe microanalyzer was used to analyze the ion incorporations. Clinpro White Varnish showed the greatest inhibition, suggesting its suppression of bacterial adherence and transcription of genes related to biofilm formation. Saforide reduced only the number of viable bacteria, but other results showed no significant difference. The antibiofilm effects of Caredyne Shield were limited. The uptake of ions released from a material into dentin varies depending on the element. Clinpro White Varnish is effective for the short-term treatment of tooth sensitivity due to dentin demineralization. It prioritizes remineralization by supplying calcium and fluoride ions while resisting biofilm formation. Full article
(This article belongs to the Special Issue Multifunctional Application of Biopolymers and Biomaterials 2.0)
Show Figures

Figure 1

18 pages, 19579 KiB  
Review
Fermented Feed in Broiler Diets Reduces the Antinutritional Factors, Improves Productive Performances and Modulates Gut Microbiome—A Review
by Nicoleta Corina Predescu, Georgeta Stefan, Mihaela Petronela Rosu and Camelia Papuc
Agriculture 2024, 14(10), 1752; https://doi.org/10.3390/agriculture14101752 - 4 Oct 2024
Viewed by 573
Abstract
The aim of this review is to highlight the most beneficial effects of dietary fermented feed in correlation with decreasing the antinutrient concentration in vegetal matrices usually used for broiler nutrition. Rational feed formulation is critical for animals because it improves animal performance, [...] Read more.
The aim of this review is to highlight the most beneficial effects of dietary fermented feed in correlation with decreasing the antinutrient concentration in vegetal matrices usually used for broiler nutrition. Rational feed formulation is critical for animals because it improves animal performance, and provides the animal with the necessary nutrients to develop strong bones, muscles and tissues, and a properly functioning immune system. Fermentation of animal feed is useful as compounds with high molecular mass are converted into energy and compounds with lower molecular mass in the presence of enzymes produced mainly by bacteria and yeasts. Fermentation products contain probiotic compounds with beneficial effects on the health of the animal microbiome. Feed fermentation has other roles such as converting antinutrients into beneficial substances for animal organisms, and some studies have shown that fermentation of feed decreases the risk of antinutrient components presence. For the bibliographic research, different platforms were used (PubMed, Science Direct, MDPI resources), and numerous words or combinations of terms were used to find the latest information. Fermented feed utilization has been shown to enhance growth performance while promoting a healthier gut microbiome in animals. Full article
(This article belongs to the Special Issue Rational Use of Feed to Promote Animal Healthy Feeding)
Show Figures

Figure 1

23 pages, 3358 KiB  
Review
Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review
by Radka Hulankova
Plants 2024, 13(19), 2784; https://doi.org/10.3390/plants13192784 - 4 Oct 2024
Viewed by 552
Abstract
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the [...] Read more.
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the content of which depends on many factors—not just the plant genus, species, or subspecies, but also chemotype, locality, climatic conditions, phase of vegetation, method of extraction, and others. Due to this fact, there is still much to study, with antimicrobial effect being one of the key properties of EOs. There are many methods that have been frequently used by researchers for in vitro evaluation; however, although the research has been going on for decades, an internationally accepted standard is still missing. Most of methods are based on time-proven standards used for the testing of antibiotics. Due to the specific properties of EOs and their components, such as volatility and hydrophobicity, many modifications of these standard procedures have been adopted. The aim of this review is to describe the most common methods and their modifications for the testing of antimicrobial properties of EOs and to point out the most controversial variables which can potentially affect results of the assays. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Essential Oils)
Show Figures

Figure 1

10 pages, 7307 KiB  
Article
Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study
by Gabrijela Kapetanović Petričević, Antonio Perčinić, Ana Budimir, Anja Sesar, Ivica Anić and Ivona Bago
Bioengineering 2024, 11(10), 999; https://doi.org/10.3390/bioengineering11100999 - 4 Oct 2024
Viewed by 438
Abstract
In this in vitro study, we aimed to evaluate and compare the antibacterial efficacy of a novel erbium-doped yttrium aluminum garnet laser modality, shock wave enhanced emission of photoacoustic streaming (SWEEPS), ultrasonically activated irrigation (UAI), and single needle irrigation (SNI) against old bacterial [...] Read more.
In this in vitro study, we aimed to evaluate and compare the antibacterial efficacy of a novel erbium-doped yttrium aluminum garnet laser modality, shock wave enhanced emission of photoacoustic streaming (SWEEPS), ultrasonically activated irrigation (UAI), and single needle irrigation (SNI) against old bacterial biofilm. A two-week-old Enterococcus faecalis biofilm was cultivated on transversal dentinal discs made from the middle third of the roots of single-rooted, single-canal premolars. Biofilm growth was confirmed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The dentine samples were randomly distributed into three experimental groups and one control group based on the irrigation protocol used: Group 1, SWEEPS; Group 2, UAI; and Group 3, SNI. The root canals were irrigated with a 3% sodium hypochlorite solution. Antibacterial efficacy was evaluated quantitatively through bacterial culture and qualitatively through CLSM and SEM. Both SWEEPS and UAI demonstrated a statistically significant reduction in Enterococcus faecalis colony-forming units (CFUs) (p < 0.001), while SNI did not show a statistically significant reduction (p = 0.553). No significant difference was observed between the efficacy of SWEEPS and UAI (p > 0.05). The SWEEPS and UAI techniques were equally effective in eliminating mature E. faecalis biofilm. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

18 pages, 5556 KiB  
Article
Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans
by Yuhong Chen, Ying Gao and Junfeng Yin
Int. J. Mol. Sci. 2024, 25(19), 10661; https://doi.org/10.3390/ijms251910661 - 3 Oct 2024
Viewed by 268
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our [...] Read more.
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0–80 mmol/L) on the anti-C. albicans effect of theasaponins (0–1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant. Full article
(This article belongs to the Special Issue Antifungal Drug Discovery: Progresses, Challenges, Opportunities)
Show Figures

Figure 1

16 pages, 1077 KiB  
Article
Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections
by Eric Monroy-Pérez, Jennefer Paloma Herrera-Gabriel, Elizabeth Olvera-Navarro, Lorena Ugalde-Tecillo, Luis Rey García-Cortés, Moisés Moreno-Noguez, Héctor Martínez-Gregorio, Felipe Vaca-Paniagua and Gloria Luz Paniagua-Contreras
Pathogens 2024, 13(10), 868; https://doi.org/10.3390/pathogens13100868 (registering DOI) - 3 Oct 2024
Viewed by 350
Abstract
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and [...] Read more.
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and community infections in Mexico have been poorly studied. In this study, we analyzed the different molecular profiles associated with the virulence genotypes related to multidrug resistance and the genotypes of multidrug efflux pumps (mex) in P. aeruginosa causing clinically critical infections isolated from Mexican patients with community- and hospital-acquired infections. Susceptibility to 12 antibiotics was determined using the Kirby–Bauer method. The identification of P. aeruginosa and the detection of virulence and efflux pump system genes were performed using conventional PCR. All strains isolated from patients with hospital-acquired (n = 67) and community-acquired infections (n = 57) were multidrug resistant, mainly to beta-lactams (ampicillin [96.7%], carbenicillin [98.3%], cefalotin [97.5%], and cefotaxime [87%]), quinolones (norfloxacin [78.2%]), phenicols (chloramphenicol [91.9%]), nitrofurans (nitrofurantoin [70.9%]), aminoglycosides (gentamicin [75%]), and sulfonamide/trimethoprim (96.7%). Most strains (95.5%) isolated from patients with hospital- and community-acquired infections carried the adhesion (pilA) and biofilm formation (ndvB) genes. Outer membrane proteins (oprI and oprL) were present in 100% of cases, elastases (lasA and lasB) in 100% and 98.3%, respectively, alkaline protease (apr) and alginate (algD) in 99.1% and 97.5%, respectively, and chaperone (groEL) and epoxide hydrolase (cif) in 100% and 97.5%, respectively. Overall, 99.1% of the strains isolated from patients with hospital- and community-acquired infections carried the efflux pump system genes mexB and mexY, while 98.3% of the strains carried mexF and mexZ. These findings show a wide distribution of the virulome related to the genotypic and phenotypic profiles of antibiotic resistance and the origin of the strains isolated from patients with hospital- and community-acquired infections, demonstrating that these molecular mechanisms may play an important role in high-pathogenicity infections caused by P. aeruginosa. Full article
(This article belongs to the Special Issue Bacterial Infections: Surveillance, Prevention and Control)
Show Figures

Figure 1

25 pages, 4471 KiB  
Article
Escherichia coli and Enterobacteriaceae Counts, Virulence Gene Profile, Antimicrobial Resistance, and Biofilm Formation Capacity during Pig Slaughter Stages
by Madalena Maria Saldanha Coelho, Emilia Fernanda Agostinho Davanzo, Rebecca Lavarini dos Santos, Virgílio Hipólito de Lemos Castro, Hayanna Maria Boaventura da Costa, Bruno Stéfano Lima Dallago, Simone Perecmanis and Angela Patrícia Santana
Life 2024, 14(10), 1261; https://doi.org/10.3390/life14101261 - 3 Oct 2024
Viewed by 481
Abstract
This study aimed to count Enterobacteriaceae and Escherichia coli in different locations on pig carcasses (shank, loin, abdomen, shoulder, and jowl) from two slaughterhouses (A and B) between September 2019 and July 2021 during different slaughter stages (after bleeding, after passing through the [...] Read more.
This study aimed to count Enterobacteriaceae and Escherichia coli in different locations on pig carcasses (shank, loin, abdomen, shoulder, and jowl) from two slaughterhouses (A and B) between September 2019 and July 2021 during different slaughter stages (after bleeding, after passing through the epilator machine, after manual toileting in the dirty area, before and after evisceration, and after the final washing), as well as verify antimicrobial resistance and biofilm formation capacity. The main points of Enterobacteriaceae and E. coli contamination were identified in the two slaughterhouses through three collections. The stages with the highest counts were post-bleeding and evisceration in both slaughterhouses and after manual toileting in slaughterhouse B in the first collection. Most E. coli isolates were resistant to multiple antimicrobials, with higher resistance frequencies to amoxicillin, ampicillin, chloramphenicol, sulfonamides, and streptomycin. The virulence genes eae, stx1, and stx2 were also detected. Three isolates had all three genes and exhibited resistance to at least six antimicrobial classes (β-lactams, macrolides, aminoglycosides, sulfonamides, amphenicols, and quinolones). E. coli isolates also showed a high frequency of strains with moderate and strong in vitro biofilm-forming capacity. This is the first study to characterize microbial contamination by pig slaughter stage in the Federal District region, demonstrating the critical points for hygienic production. E. coli was isolated from the surface of pig carcasses, as well as the virulence genes stx1, stx2, and eae were detected. The multi-antimicrobial resistant isolates also had a moderate-to-strong biofilm formation capacity, thus demonstrating risks to public health. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

60 pages, 1160 KiB  
Review
Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study
by Fulvia Pinzari
Reactions 2024, 5(4), 680-739; https://doi.org/10.3390/reactions5040035 (registering DOI) - 2 Oct 2024
Viewed by 253
Abstract
Zinc oxide and titanium dioxide are materials with strong photocatalytic and antimicrobial activity. This activity is greater when the material is in nanocrystalline form. It has been seen that these properties are also present in the ZnO-TiO2 nanocomposite material, and the extent [...] Read more.
Zinc oxide and titanium dioxide are materials with strong photocatalytic and antimicrobial activity. This activity is greater when the material is in nanocrystalline form. It has been seen that these properties are also present in the ZnO-TiO2 nanocomposite material, and the extent depends on multiple factors, such as crystallinity, structural composition, crystallite size, and morphology. These structural properties can be varied by acting on the synthesis of the material, obtaining a wide variety of composites: random nanoparticles, nanorods, nanowires, nanotubes, nanofibers, tetrapods, core–shell, hollow spheres, inverse opal structures (IOSs), hierarchical structures, and films. When an interface between nanocrystallites of the two oxides is created, the composite system manages to have photocatalytic activity greater than that of the two separate oxides, and in certain circumstances, even greater than P25. The antimicrobial activity results also improved for the composite system compared to the two separate oxides. These two aspects make these materials interesting in various fields, such as wastewater and air treatment, energy devices, solar filters, and pharmaceutical products and in the context of the restoration of monumental cultural assets, in which their use has a preventive purpose in the formation of biofilms. In this review we analyse the synthesis techniques of ZnO-TiO2 nanocomposites, correlating them to the shape obtained, as well as the photocatalytic and antimicrobial activity. It is also illustrated how ZnO-TiO2 nanocomposites can have a less negative impact on toxicity for humans and the environment compared to the more toxic ZnO nanoparticles or ZnO. Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
Show Figures

Scheme 1

Back to TopTop