The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity
Abstract
:1. Introduction
2. The Protein Adduct Malondialdehyde-Lysine
3. Methods to Detect and Quantify MDALys in Proteins
4. The MDA-Lipoxidized Proteome
5. Metabolism of MDA-Modified Proteins
6. Cytotoxic Effects of MDALys Adducts
7. Protein Lipoxidation by MDA in Physiological and Pathological Models
8. Malondialdehyde-Lysine in Aging and Longevity
8.1. Changes in MDALys During Aging
8.2. MDALys and Animal Longevity
8.3. MDALys in Experimental Studies of Longevity Extension by Nutritional and Pharmacological Interventions
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyer, R. Posttranslational modification of proteins: Expanding nature’s inventory. Christopher T. Walsh, Roberts & Company Publishers, Greenwood Village, CO, 2005, 576 pp., ISBN 0-9747077-3-2, $98.00. Biochem. Mol. Biol. Educ. 2006, 34, 461–462. [Google Scholar] [CrossRef]
- Lothrop, A.P.; Torres, M.P.; Fuchs, S.M. Deciphering post-translational modification codes. FEBS Lett. 2013, 587, 1247–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabakaran, S.; Lippens, G.; Steen, H.; Gunawardena, J. Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 565–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.L.; Lindner, A.B. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxid. Med. Cell. Longev. 2017, 2017, 5716409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, S.R.; Baynes, J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids 2003, 25, 275–281. [Google Scholar] [CrossRef]
- Golubev, A.; Hanson, A.D.; Gladyshev, V.N. Non-enzymatic molecular damage as a prototypic driver of aging. J. Biol. Chem. 2017, 292, 6029–6038. [Google Scholar] [CrossRef] [Green Version]
- Jové, M.; Pradas, I.; Mota-Martorell, N.; Cabré, R.; Ayala, V.; Ferrer, I.; Pamplona, R. Succination of Protein Thiols in Human Brain Aging. Front. Aging Neurosci. 2020, 12, 52. [Google Scholar] [CrossRef]
- Chio, K.S.; Tappel, A.L. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry 1969, 8, 2827–2832. [Google Scholar] [CrossRef]
- Chio, K.S.; Tappel, A.L. Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 1969, 8, 2821–2826. [Google Scholar] [CrossRef]
- Kikugawa, K.; Beppu, M. Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem. Phys. Lipids 1987, 44, 277–296. [Google Scholar] [CrossRef]
- Requena, J.R.; Fu, M.X.; Ahmed, M.U.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem. J. 1997, 322 Pt 1, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Inagi, R.; Asahi, K.; Yamada, Y.; Horie, K.; Sakai, H.; Uchida, K.; Kurokawa, K. Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids. FEBS Lett. 1998, 437, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Slatter, D.A.; Murray, M.; Bailey, A.J. Formation of a dihydropyridine derivative as a potential cross-link derived from malondialdehyde in physiological systems. FEBS Lett. 1998, 421, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, H.H.; Tsai, L.; Stadtman, E.R. Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl. Acad. Sci. USA 2000, 97, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingues, R.M.; Domingues, P.; Melo, T.; Pérez-Sala, D.; Reis, A.; Spickett, C.M. Lipoxidation adducts with peptides and proteins: Deleterious modifications or signaling mechanisms? J. Proteomics 2013, 92, 110–131. [Google Scholar] [CrossRef]
- Nalr, V.; Offerman, R.J.; Turner, G.A.; Pryor, A.N.; Baenzlger, N.C. Fluorescent 1.4-Dihydropyridines: The Malondlaldehyde connection. Tetrahedron 1988, 44, 2793–2803. [Google Scholar] [CrossRef]
- Itakura, K.; Uchida, K.; Osawa, T. A novel fluorescent malondialdehyde-lysine adduct. Chem. Phys. Lipids 1996, 84, 75–79. [Google Scholar] [CrossRef]
- Slatter, D.A.; Avery, N.C.; Bailey, A.J. Identification of a new cross-link and unique histidine adduct from bovine serum albumin incubated with malondialdehyde. J. Biol. Chem. 2004, 279, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Pamplona, R. Advanced lipoxidation end-products. Chem. Biol. Interact. 2011, 192, 14–20. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zimniak, P. Relationship of electrophilic stress to aging. Free Radic. Biol. Med. 2011, 51, 1087–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamplona, R. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. Biochim. Biophys. Acta 2008, 1777, 1249–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldini, G.; Dalle-Donne, I.; Facino, R.M.; Milzani, A.; Carini, M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med. Res. Rev. 2007, 27, 817–868. [Google Scholar] [CrossRef]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res. 2013, 47 (Suppl. 1), 3–27. [Google Scholar] [CrossRef] [Green Version]
- Marnett, L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002, 181–182, 219–222. [Google Scholar] [CrossRef]
- Marnett, L.J.; Riggins, J.N.; West, J.D. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Investig. 2003, 111, 583–593. [Google Scholar] [CrossRef]
- Wauchope, O.R.; Mitchener, M.M.; Beavers, W.N.; Galligan, J.J.; Camarillo, J.M.; Sanders, W.D.; Kingsley, P.J.; Shim, H.-N.; Blackwell, T.; Luong, T.; et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 2018, 46, 3458–3467. [Google Scholar] [CrossRef] [Green Version]
- Naudí, A.; Jové, M.; Ayala, V.; Cabré, R.; Portero-Otín, M.; Pamplona, R. Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int. J. Mol. Sci. 2013, 14, 3285–3313. [Google Scholar] [CrossRef] [Green Version]
- Hartley, D.P.; Kroll, D.J.; Petersen, D.R. Prooxidant-initiated lipid peroxidation in isolated rat hepatocytes: Detection of 4-hydroxynonenal- and malondialdehyde-protein adducts. Chem. Res. Toxicol. 1997, 10, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K. Lipofuscin-like fluorophores originated from malondialdehyde. Free Radic. Res. 2006, 40, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Padilla, P.; Carvalho, L.; Martín, L.; Carrapiso, A.; Delgado, J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol. 2019, 26, 101277. [Google Scholar] [CrossRef] [PubMed]
- Dei, R.; Takeda, A.; Niwa, H.; Li, M.; Nakagomi, Y.; Watanabe, M.; Inagaki, T.; Washimi, Y.; Yasuda, Y.; Horie, K.; et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol. 2002, 104, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Dalfó, E.; Portero-Otín, M.; Ayala, V.; Martínez, A.; Pamplona, R.; Ferrer, I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol. 2005, 64, 816–830. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Kumazawa, S.; Sakurai, T.; Nakayama, T.; Uchida, K. Mass spectroscopic characterization of protein modification by malondialdehyde. Chem. Res. Toxicol. 2006, 19, 122–129. [Google Scholar] [CrossRef]
- Pamplona, R.; Portero-Otín, M.; Sanz, A.; Ayala, V.; Vasileva, E.; Barja, G. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate. Age (Dordr) 2005, 27, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Muntané, G.; Dalfó, E.; Martínez, A.; Rey, M.J.; Avila, J.; Pérez, M.; Portero, M.; Pamplona, R.; Ayala, V.; Ferrer, I. Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick’s disease. J. Neurochem. 2006, 99, 177–185. [Google Scholar] [CrossRef]
- Kichev, A.; Ilieva, E.V.; Piñol-Ripoll, G.; Podlesniy, P.; Ferrer, I.; Portero-Otín, M.; Pamplona, R.; Espinet, C. Cell death and learning impairment in mice caused by in vitro modified pro-NGF can be related to its increased oxidative modifications in Alzheimer disease. Am. J. Pathol. 2009, 175, 2574–2585. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, E.V.; Kichev, A.; Naudí, A.; Ferrer, I.; Pamplona, R.; Portero-Otín, M. Mitochondrial dysfunction and oxidative and endoplasmic reticulum stress in argyrophilic grain disease. J. Neuropathol. Exp. Neurol. 2011, 70, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-González, M.; Puigpinós, M.; Jové, M.; Naudi, A.; Portero-Otín, M.; Pamplona, R.; Ferrer, I. Regional vulnerability to lipoxidative damage and inflammation in normal human brain aging. Exp. Gerontol. 2018, 111, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Dalfó, E.; Ayala, V.; Bellmunt, M.J.; Prat, J.; Ferrer, I.; Portero-Otín, M. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 2005, 280, 21522–21530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, K.; Sakai, K.; Itakura, K.; Osawa, T.; Toyokuni, S. Protein modification by lipid peroxidation products: Formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch. Biochem. Biophys. 1997, 346, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Choudhuri, S.; Roy, P.K.; Mitra, B.; Sen, S.; Sarkar, R.; Das, M.; Biswas, D.; Ghosh, P.; Biswas, A.; Chakraborty, S.; et al. Hyperlipidemia-Mediated Increased Advanced Lipoxidation End Products Formation, an Important Factor Associated with Decreased Erythrocyte Glucose-6-Phosphate Dehydrogenase Activity in Mild Nonproliferative Diabetic Retinopathy. Can. J. diabetes 2017, 41, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weißer, J.; Ctortecka, C.; Busch, C.J.; Austin, S.R.; Nowikovsky, K.; Uchida, K.; Binder, C.J.; Bennett, K.L. A Comprehensive Analytical Strategy To Identify Malondialdehyde-Modified Proteins and Peptides. Anal. Chem. 2017, 89, 3847–3852. [Google Scholar] [CrossRef]
- Gomez, A.; Ferrer, I. Involvement of the cerebral cortex in Parkinson disease linked with G2019S LRRK2 mutation without cognitive impairment. Acta Neuropathol. 2010, 120, 155–167. [Google Scholar] [CrossRef]
- Yarian, C.S.; Rebrin, I.; Sohal, R.S. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem. Biophys. Res. Commun. 2005, 330, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Dalfó, E.; Ferrer, I. Early alpha-synuclein lipoxidation in neocortex in Lewy body diseases. Neurobiol. Aging 2008, 29, 408–417. [Google Scholar] [CrossRef]
- Requena, J.R.; Fu, M.X.; Ahmed, M.U.; Jenkins, A.J.; Lyons, T.J.; Thorpe, S.R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial. Transplant. 1996, 11 (Suppl. 5), 48–53. [Google Scholar] [CrossRef]
- Yamada, S.; Kumazawa, S.; Ishii, T.; Nakayama, T.; Itakura, K.; Shibata, N.; Kobayashi, M.; Sakai, K.; Osawa, T.; Uchida, K. Immunochemical detection of a lipofuscin-like fluorophore derived from malondialdehyde and lysine. J. Lipid Res. 2001, 42, 1187–1196. [Google Scholar]
- Vay, D.; Parodi, M.; Rolla, R.; Mottaran, E.; Vidali, M.; Bellomo, G.; Albano, E. Circulating antibodies recognizing malondialdehyde-modified proteins in healthy subjects. Free Radic. Biol. Med. 2001, 30, 277–286. [Google Scholar] [CrossRef]
- Lopes-Virella, M.F.; Hunt, K.J.; Baker, N.L.; Virella, G. VADT Group of Investigators High levels of AGE-LDL, and of IgG antibodies reacting with MDA-lysine epitopes expressed by oxLDL and MDA-LDL in circulating immune complexes predict macroalbuminuria in patients with type 2 diabetes. J. Diabetes Complicat. 2016, 30, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.C.; Portero–Otín, M.; Pamplona, R.; Requena, J.R.; Prat, J.; Lafarga, M.A.; Borràs, M.; Bellmunt, M.J. Chemical and Immunological Characterization of Oxidative Nonenzymatic Protein Modifications in Dialysis Fluids. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2003, 23, 23–32. [Google Scholar] [CrossRef]
- Tiku, M.L.; Allison, G.T.; Naik, K.; Karry, S.K. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthr. Cartil. 2003, 11, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Hagen, R.M.; Rodriguez-Cuenca, S.; Vidal-Puig, A. An allostatic control of membrane lipid composition by SREBP1. FEBS Lett. 2010, 584, 2689–2698. [Google Scholar] [CrossRef] [Green Version]
- Pamplona, R.; Costantini, D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R843–R863. [Google Scholar] [CrossRef] [Green Version]
- Pamplona, R.; Barja, G. Highly resistant macromolecular components and low rate of generation of endogenous damage: Two key traits of longevity. Ageing Res. Rev. 2007, 6, 189–210. [Google Scholar] [CrossRef]
- Barja, G. The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci. 2014, 127, 1–27. [Google Scholar] [CrossRef]
- Jové, M.; Mota-Martorell, N.; Pradas, I.; Galo-Licona, J.D.; Martín-Gari, M.; Obis, È.; Sol, J.; Pamplona, R. The Lipidome Fingerprint of Longevity. Molecules 2020, 25, 4343. [Google Scholar] [CrossRef]
- Echtay, K.S.; Esteves, T.C.; Pakay, J.L.; Jekabsons, M.B.; Lambert, A.J.; Portero-Otín, M.; Pamplona, R.; Vidal-Puig, A.J.; Wang, S.; Roebuck, S.J.; et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003, 22, 4103–4110. [Google Scholar] [CrossRef] [Green Version]
- Conrad, M.; Schneider, M.; Seiler, A.; Bornkamm, G.W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem. 2007, 388, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Maher, J.; Yamamoto, M. The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2. Toxicol. Appl. Pharmacol. 2010, 244, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Casañas-Sánchez, V.; Pérez, J.A.; Fabelo, N.; Quinto-Alemany, D.; Díaz, M.L. Docosahexaenoic (DHA) modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4) gene expression to ensure self-protection from oxidative damage in hippocampal cells. Front. Physiol. 2015, 6, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siu, G.M.; Draper, H.H. Metabolism of malonaldehyde in vivo and in vitro. Lipids 1982, 17, 349–355. [Google Scholar] [CrossRef]
- Marnett, L.J.; Buck, J.; Tuttle, M.A.; Basu, A.K.; Bull, A.W. Distribution and oxidation of malondialdehyde in mice. Prostaglandins 1985, 30, 241–254. [Google Scholar] [CrossRef]
- Caro, P.; Gómez, J.; Sanz, A.; Portero-Otín, M.; Pamplona, R.; Barja, G. Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria. Biogerontology 2007, 8, 1–11. [Google Scholar] [CrossRef]
- Sanz, A.; Gredilla, R.; Pamplona, R.; Portero-Otín, M.; Vara, E.; Tresguerres, J.A.F.; Barja, G. Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology 2005, 6, 15–26. [Google Scholar] [CrossRef]
- Pamplona, R.; Portero-Otín, M.; Ruiz, C.; Bellmunt, M.J.; Requena, J.R.; Thorpe, S.R.; Baynes, J.W.; Romero, M.; López-Torres, M.; Barja, G. Thyroid status modulates glycoxidative and lipoxidative modification of tissue proteins. Free Radic. Biol. Med. 1999, 27, 901–910. [Google Scholar] [CrossRef]
- Mahmoodi, H.; Hadley, M.; Chang, Y.X.; Draper, H.H. Increased formation and degradation of malondialdehyde-modified proteins under conditions of peroxidative stress. Lipids 1995, 30, 963–966. [Google Scholar] [CrossRef]
- Mcgirr, L.G.; Hadley, M.; Draper, H.H. Identification of N alpha-acetyl-epsilon-(2-propenal) lysine as a urinary metabolite of malondialdehyde. J. Biol. Chem. 1985, 260, 15427–15431. [Google Scholar]
- Draper, H.H.; McGirr, L.G.; Hadley, M. The metabolism of malondialdehyde. Lipids 1986, 21, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wee, J.J.; Hadley, M.; Draper, H.H. Identification of a deoxyguanosine-malondialdehyde adduct in rat and human urine. Lipids 1994, 29, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Mol, M.; Degani, G.; Coppa, C.; Baron, G.; Popolo, L.; Carini, M.; Aldini, G.; Vistoli, G.; Altomare, A. Advanced lipoxidation end products (ALEs) as RAGE binders: Mass spectrometric and computational studies to explain the reasons why. Redox Biol. 2019, 23, 101083. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, N.; Figarola, J.L.; Li, Y.; Swiderski, P.M.; Rahbar, S.; Natarajan, R. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 2008, 57, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Liu, C.; Sun, L.; Gao, H.; Liu, J. Neuronal mitochondrial toxicity of malondialdehyde: Inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem. Res. 2009, 34, 786–794. [Google Scholar] [CrossRef]
- Caro, P.; Gomez, J.; Sanchez, I.; Naudi, A.; Ayala, V.; López-Torres, M.; Pamplona, R.; Barja, G. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res. 2009, 12, 421–434. [Google Scholar] [CrossRef]
- Pamplona, R.; Portero-Otín, M.; Requena, J.R.; Thorpe, S.R.; Herrero, A.; Barja, G. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech. Ageing Dev. 1999, 106, 283–296. [Google Scholar] [CrossRef]
- Sanz, A.; Caro, P.; Ayala, V.; Portero-Otin, M.; Pamplona, R.; Barja, G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006, 20, 1064–1073. [Google Scholar] [CrossRef]
- Gómez, A.; Sánchez-Roman, I.; Gomez, J.; Cruces, J.; Mate, I.; Lopez-Torres, M.; Naudi, A.; Portero-Otin, M.; Pamplona, R.; De la Fuente, M.; et al. Lifelong treatment with atenolol decreases membrane fatty acid unsaturation and oxidative stress in heart and skeletal muscle mitochondria and improves immunity and behavior, without changing mice longevity. Aging Cell 2014, 13, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.D.; Pamplona, R.; Portero-Otín, M.; Requena, J.R.; Roebuck, S.J.; Buckingham, J.A.; Clapham, J.C.; Cadenas, S. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem. J. 2002, 368, 597–603. [Google Scholar] [CrossRef]
- Naudí, A.; Caro, P.; Jové, M.; Gómez, J.; Boada, J.; Ayala, V.; Portero-Otín, M.; Barja, G.; Pamplona, R. Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuvenation Res. 2007, 10, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.C.; Ayala, V.; Portero-Otín, M.; Requena, J.R.; Barja, G.; Pamplona, R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech. Ageing Dev. 2005, 126, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cisuelo, V.; Gómez, J.; García-Junceda, I.; Naudí, A.; Cabré, R.; Mota-Martorell, N.; López-Torres, M.; González-Sánchez, M.; Pamplona, R.; Barja, G. Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. Exp. Gerontol. 2016, 83, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Pradas, I.; Jové, M.; Cabré, R.; Ayala, V.; Mota-Martorell, N.; Pamplona, R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019, 9, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portero-Otín, M.; Requena, J.R.; Bellmunt, M.J.; Ayala, V.; Pamplona, R. Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon. Exp. Gerontol. 2004, 39, 1527–1535. [Google Scholar] [CrossRef]
- Jacobson, J.; Lambert, A.J.; Portero-Otín, M.; Pamplona, R.; Magwere, T.; Miwa, S.; Driege, Y.; Brand, M.D.; Partridge, L. Biomarkers of aging in Drosophila. Aging Cell 2010, 9, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sochaski, M.A.; Bartfay, W.J.; Thorpe, S.R.; Baynes, J.W.; Bartfay, E.; Lehotay, D.C.; Liu, P.P. Lipid peroxidation and protein modification in a mouse model of chronic iron overload. Metabolism. 2002, 51, 645–651. [Google Scholar] [CrossRef]
- Zagol-Ikapite, I.; Sosa, I.R.; Oram, D.; Judd, A.; Amarnath, K.; Amarnath, V.; Stec, D.; Oates, J.A.; Boutaud, O. Modification of platelet proteins by malondialdehyde: Prevention by dicarbonyl scavengers. J. Lipid Res. 2015, 56, 2196–2205. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Fu, M.X.; Kurokawa, K.; van Ypersele de Strihou, C.; Thorpe, S.R.; Baynes, J.W. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: Is there oxidative stress in uremia? Kidney Int. 1998, 54, 1290–1295. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Sugiyama, S.; Suzuki, D.; Inagi, R.; Kurokawa, K. Increased carbonyl modification by lipids and carbohydrates in diabetic nephropathy. Kidney Int. Suppl. 1999, 71, S54–S56. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Taylor, W.R.; Parthasarathy, S. Demonstration of the presence of lipid peroxide-modified proteins in human atherosclerotic lesions using a novel lipid peroxide-modified anti-peptide antibody. Atherosclerosis 1999, 143, 335–340. [Google Scholar] [CrossRef]
- Gonen, A.; Hansen, L.F.; Turner, W.W.; Montano, E.N.; Que, X.; Rafia, A.; Chou, M.-Y.; Wiesner, P.; Tsiantoulas, D.; Corr, M.; et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: Implications for development of an atheroprotective vaccine. J. Lipid Res. 2014, 55, 2137–2155. [Google Scholar] [CrossRef] [Green Version]
- Freixes, M.; Rodríguez, A.; Dalfó, E.; Ferrer, I. Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol. Aging 2006, 27, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Fourcade, S.; López-Erauskin, J.; Galino, J.; Duval, C.; Naudi, A.; Jove, M.; Kemp, S.; Villarroya, F.; Ferrer, I.; Pamplona, R.; et al. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum. Mol. Genet. 2008, 17, 1762–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morató, L.; Galino, J.; Ruiz, M.; Calingasan, N.Y.; Starkov, A.A.; Dumont, M.; Naudí, A.; Martínez, J.J.; Aubourg, P.; Portero-Otín, M.; et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 2013, 136, 2432–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchida, M.; Miura, T.; Aibara, K. Lipofuscin and lipofuscin-like substances. Chem. Phys. Lipids 1987, 44, 297–325. [Google Scholar] [CrossRef]
- Terman, A.; Brunk, U.T. Lipofuscin. Int. J. Biochem. Cell Biol. 2004, 36, 1400–1404. [Google Scholar] [CrossRef]
- Draper, H.H.; Agarwal, S.; Nelson, D.E.; Wee, J.J.; Ghoshal, A.K.; Farber, E. Effects of peroxidative stress and age on the concentration of a deoxyguanosine-malondialdehyde adduct in rat DNA. Lipids 1995, 30, 959–961. [Google Scholar] [CrossRef]
- Laganiere, S.; Yu, B.P. Anti-lipoperoxidation action of food restriction. Biochem. Biophys. Res. Commun. 1987, 145, 1185–1191. [Google Scholar] [CrossRef]
- Yu, B.P.; Suescun, E.A.; Yang, S.Y. Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: Modulation by dietary restriction. Mech. Ageing Dev. 1992, 65, 17–33. [Google Scholar] [CrossRef]
- Laganiere, S.; Yu, B.P. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 1993, 39, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.P. Membrane alteration as a basis of aging and the protective effects of calorie restriction. Mech. Ageing Dev. 2005, 126, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J.; Pamplona, R.; Buffenstein, R.; Buttemer, W.A. Life and death: Metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 2007, 87, 1175–1213. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Barja, G.; Portero-Otín, M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: A homeoviscous-longevity adaptation? Ann. N. Y. Acad. Sci. 2002, 959, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.J.; Portero-Otin, M.; Pamplona, R.; Merry, B.J. Effect of ageing and caloric restriction on specific markers of protein oxidative damage and membrane peroxidizability in rat liver mitochondria. Mech. Ageing Dev. 2004, 125, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Ayala, V.; Vasileva, E.; Fernández, E.; Modol, M.T.; Bellmunt, M.J.; Prat, J.; Requena, J.R.; Portero-Otín, M.; Pamplona, R. Lesión oxidativa de proteínas de hígado y corazón de rata durante el proceso de envejecimiento. Rev. Esp. Geriatr. Gerontol. 2006, 41, 48–54. [Google Scholar] [CrossRef]
- Sanchez-Roman, I.; Gómez, A.; Pérez, I.; Sanchez, C.; Suarez, H.; Naudí, A.; Jové, M.; Lopez-Torres, M.; Pamplona, R.; Barja, G. Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 2012, 13, 399–411. [Google Scholar] [CrossRef]
- Arranz, L.; Naudí, A.; De la Fuente, M.; Pamplona, R. Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Age (Dordr) 2013, 35, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Pamplona, R.; Barja, G. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 2011, 12, 409–435. [Google Scholar] [CrossRef]
- Sanz, A.; Soikkeli, M.; Portero-Otín, M.; Wilson, A.; Kemppainen, E.; McIlroy, G.; Ellilä, S.; Kemppainen, K.K.; Tuomela, T.; Lakanmaa, M.; et al. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc. Natl. Acad. Sci. USA 2010, 107, 9105–9110. [Google Scholar] [CrossRef] [Green Version]
- Gubina, N.; Naudi, A.; Stefanatos, R.; Jove, M.; Scialo, F.; Fernandez-Ayala, D.J.; Rantapero, T.; Yurkevych, I.; Portero-Otin, M.; Nykter, M.; et al. Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. J. Gerontol. A. Biol. Sci. Med. Sci. 2019, 74, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Shmookler Reis, R.J.; Xu, L.; Lee, H.; Chae, M.; Thaden, J.J.; Bharill, P.; Tazearslan, C.; Siegel, E.; Alla, R.; Zimniak, P.; et al. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany. NY) 2011, 3, 125–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, N.; Hulbert, A.J.; Brenner, G.C.; Brown, S.H.J.; Mitchell, T.W.; Else, P.L. Honey bee caste lipidomics in relation to life-history stage and the long life of the queen. J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [PubMed]
- Munro, D.; Blier, P.U. The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 2012, 11, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Portero-Otín, M.; Riba, D.; Requena, J.R.; Thorpe, S.R.; López-Torres, M.; Barja, G. Low fatty acid unsaturation: A mechanism for lowered lipoperoxidative modification of tissue proteins in mammalian species with long life spans. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, B286–B291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, A.; Portero-Otín, M.; Bellmunt, M.J.; Pamplona, R.; Barja, G. Effect of the degree of fatty acid unsaturation of rat heart mitochondria on their rates of H2O2 production and lipid and protein oxidative damage. Mech. Ageing Dev. 2001, 122, 427–443. [Google Scholar] [CrossRef]
- Portero-Otin, M.; Bellmunt, M.J.; Requena, J.R.; Pamplona, R. Protein modification by advanced Maillard adducts can be modulated by dietary polyunsaturated fatty acids. Biochem. Soc. Trans. 2003, 31, 1403–1405. [Google Scholar] [CrossRef]
- Pamplona, R.; Portero-Otin, M.; Sanz, A.; Requena, J.; Barja, G. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp. Gerontol. 2004, 39, 725–733. [Google Scholar] [CrossRef]
- Pamplona, R.; Barja, G. Mitochondrial oxidative stress, aging and caloric restriction: The protein and methionine connection. Biochim. Biophys. Acta 2006, 1757, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Jové, M.; Ayala, V.; Ramírez-Núñez, O.; Naudí, A.; Cabré, R.; Spickett, C.M.; Portero-Otín, M.; Pamplona, R. Specific lipidome signatures in central nervous system from methionine-restricted mice. J. Proteome Res. 2013, 12, 2679–2689. [Google Scholar] [CrossRef]
- Enesco, H.E.; Kruk, P. Dietary restriction reduces fluorescent age pigment accumulation in mice. Exp. Gerontol. 1981, 16, 357–361. [Google Scholar] [CrossRef]
- De, A.K.; Chipalkatti, S.; Aiyar, A.S. Some biochemical parameters of ageing in relation to dietary protein. Mech. Ageing Dev. 1983, 21, 37–48. [Google Scholar] [CrossRef]
- Rao, G.; Xia, E.; Nadakavukaren, M.J.; Richardson, A. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr. 1990, 120, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Gerstbrein, B.; Stamatas, G.; Kollias, N.; Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 2005, 4, 127–137. [Google Scholar] [CrossRef]
- Gómez, J.; Caro, P.; Naudí, A.; Portero-Otin, M.; Pamplona, R.; Barja, G. Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver. Biogerontology 2007, 8, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Portero-Otín, M.; Requena, J.; Gredilla, R.; Barja, G. Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls. Mech. Ageing Dev. 2002, 123, 1437–1446. [Google Scholar] [CrossRef]
- Pamplona, R.; Portero-Otín, M.; Bellmun, M.J.; Gredilla, R.; Barja, G. Aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxyethyl)lysine and Nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins. Free Radic. Res. 2002, 36, 47–54. [Google Scholar] [CrossRef]
- Jové, M.; Naudí, A.; Ramírez-Núñez, O.; Portero-Otín, M.; Selman, C.; Withers, D.J.; Pamplona, R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014, 13, 828–837. [Google Scholar] [CrossRef]
- Ayala, V.; Naudí, A.; Sanz, A.; Caro, P.; Portero-Otin, M.; Barja, G.; Pamplona, R. Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 352–360. [Google Scholar] [CrossRef]
- Caro, P.; Gómez, J.; López-Torres, M.; Sánchez, I.; Naudí, A.; Jove, M.; Pamplona, R.; Barja, G. Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 2008, 9, 183–196. [Google Scholar] [CrossRef]
- Caro, P.; Gomez, J.; Sanchez, I.; Garcia, R.; López-Torres, M.; Naudí, A.; Portero-Otin, M.; Pamplona, R.; Barja, G. Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver. Biogerontology 2009, 10, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Roman, I.; Gomez, A.; Gomez, J.; Suarez, H.; Sanchez, C.; Naudi, A.; Ayala, V.; Portero-Otin, M.; Lopez-Torres, M.; Pamplona, R.; et al. Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart. J. Bioenerg. Biomembr. 2011, 43, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Roman, I.; Gomez, A.; Naudí, A.; Jove, M.; Gómez, J.; Lopez-Torres, M.; Pamplona, R.; Barja, G. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J. Bioenerg. Biomembr. 2014, 46. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Yun, J.; Guoyao, W.; Kaiji, S.; Zhaolai, D.; Zhenlong, W. Dietary L-methionine restriction decreases oxidative stress in porcine liver mitochondria. Exp. Gerontol. 2015, 65, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.; Sanz, A.; Gómez, J.; Pamplona, R.; Portero-Otín, M.; Gredilla, R.; Barja, G. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic. Res. 2006, 40, 339–347. [Google Scholar] [CrossRef]
- Caro, P.; Gómez, J.; López-Torres, M.; Sánchez, I.; Naudi, A.; Portero-Otín, M.; Pamplona, R.; Barja, G. Effect of every other day feeding on mitochondrial free radical production and oxidative stress in mouse liver. Rejuvenation Res. 2008, 11, 621–629. [Google Scholar] [CrossRef]
- Gomez, J.; Caro, P.; Sanchez, I.; Naudi, A.; Jove, M.; Portero-Otin, M.; Lopez-Torres, M.; Pamplona, R.; Barja, G. Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J. Bioenerg. Biomembr. 2009, 41, 309–321. [Google Scholar] [CrossRef]
- Gomez, A.; Gomez, J.; Lopez Torres, M.; Naudi, A.; Mota-Martorell, N.; Pamplona, R.; Barja, G. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction. J. Bioenerg. Biomembr. 2015, 47, 199–208. [Google Scholar] [CrossRef]
- Sanchez-Roman, I.; Gomez, J.; Naudi, A.; Ayala, V.; Portero-Otín, M.; Lopez-Torres, M.; Pamplona, R.; Barja, G. The β-blocker atenolol lowers the longevity-related degree of fatty acid unsaturation, decreases protein oxidative damage, and increases extracellular signal-regulated kinase signaling in the heart of C57BL/6 mice. Rejuvenation Res. 2010, 13, 683–693. [Google Scholar] [CrossRef]
Protein | Species | Tissue | Main Location | Biological Process | Reference |
---|---|---|---|---|---|
alpha-Enolase | Human | Brain | Cytosol, cell membrane, nucleus | Energy metabolism (glycolysis) | [42] |
gamma-Enolase | Human | Brain | Cytosol, cell membrane | Energy metabolism (glycolysis) | [42] |
Gamma-Enolase | Human | Brain | Cytosol, cell membrane | Energy metabolism (glycolysis) | [46] |
Aconitase | Mouse | Heart | Mitochondrion | Energy metabolism (TCA cycle) | [47] |
Glutamate dehydrogenase 1 | Human | Brain | Mitochondrion | Energy metabolism (TCA cycle) | [42] |
alpha-ketoglutarate dehydrogenase | Mouse | Heart | Energy metabolism (TCA cycle) | [47] | |
Ubiquinol-cytochrome c reductase complex core protein 1 | Human | Brain | Mitochondrion | Energy metabolism (ETC) | [42] |
ATP synthase subunit beta | Human | Brain | Mitochondrion | Energy metabolism (OxPhos) | [42] |
ATP synthase | Mouse | Heart | Mitochondrion | Energy metabolism (OxPhos) | [47] |
Creatine kinase B-type | Human | Brain | Cytosol | Energy metabolism (energy transduction) | [42] |
Very long chain acyl coenzyme A dehydrogenase | Mouse | Heart | Mitochondrion | Energy metabolism (Mitochondrial fatty acid beta-oxidation) | [47] |
Dihydropyrimidinase-related protein 2 | Human | Brain | Cytosol, cytoskeleton, membrane | Neurotransmission | [42] |
Glutamine synthetase | Human | Brain | Cytosol, mitochondrion | Neurotransmission | [42] |
Alpha-Synuclein | Human | Brain | Nucleus, cytoplasm, membrane, synapse, secreted | Neurotansmission | [48] |
beta-Actin | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [42] |
Glial fibrillary acidic protein | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [42] |
Glial fibrillary acidic protein | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [46] |
Glial fibrillary acidic protein | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [38] |
Neurofilament light polypeptide | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [42] |
Tubulin alpha 1B chain | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [42] |
Tubulin beta chain | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [42] |
Tubulin beta chain | Human | Brain | Cytosol (cytoskeleton) | Cytoskeleton | [46] |
Vimentin | Human | Brain | Cytosol (cytoskeleton), nucleus | Cytoskeleton | [42] |
Heat shock protein 60 KDa | Human | Brain | Mitochondrion | Proteostasis | [42] |
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta1 | Human | Brain | Not described | Signal transduction | [42] |
Low density lipoproteins (LDL) | Human | Plasma | Extracellular (plasma) | Lipid metabolism | [11,49,50,51,52] |
Albumin | Human | Plasma | Extracellular (plasma) | Transport | [51] |
Albumin | Human | Peritoneal dialysis fluid | Extracellular (plasma) | Transport | [53] |
Collagen | Human | Cartilage | Extracellular matrix | Structural | [54] |
Collagen | Human | Vascular system | Extracellular matrix | Structural | [8] |
Fjbrinogen | Human | Plasma | Extracellular (plasma) | Coagulation | [51] |
Biological System | Animal Species | Concentration | Reference |
---|---|---|---|
Mitochondria (Brain) | Rat | 571 ± 30 | [76] |
Mitochondria (Heart) | Pigeon | 74 ± 5 | [77] |
Mitochondria (Heart) | Rat | 452 ± 17 | [78] |
Mitochondria (Heart) | Rat | 366 ± 18 | [77] |
Mitochondria (Heart) | Mouse | 805 ± 60 | [79] |
Mitochondria (Kidney) | Rat | 427 ± 17 | [76] |
Mitochondria (Liver) | Rat | 387 ± 14 | [78] |
Mitochondria (S. Muscle) | Mouse | 2357 ± 110 | [80] |
Mitochondria (S. Muscle) | Mouse | 392 ± 29 | [79] |
Brain (whole) | Mouse | 374 ± 23 | [37] |
Brain (whole) | Parakeet | 305 ± 27 | [37] |
Brain (whole) | Canary | 259 ± 22 | [37] |
Brain (whole) | Rat | 337 ± 18 | [81] |
Brain (Amygdala) | Human | 431 ± 32 | [81] |
Brain (Cerebellum) | Human | 203 ± 20 | [81] |
Brain (Entorhinal cortex) | Human | 283 ± 28 | [81] |
Brain (Frontal cortex) | Human | 185 ± 12 | [81] |
Brain (Hippocampus) | Human | 221 ± 25 | [81] |
Brain (Medulla oblongata) | Human | 340 ± 19 | [81] |
Brain (Occipital cortex) | Human | 219 ± 16 | [81] |
Brain (Spinal cord) | Human | 352 ± 11 | [81] |
Brain (Striatum) | Human | 450 ± 52 | [81] |
Brain (Substantia nigra) | Human | 590 ± 29 | [81] |
Brain (Temporal cortex) | Human | 164 ± 9 | [81] |
Brain (Thalamus) | Human | 481 ± 42 | [81] |
Heart | Mouse | 558 ± 22 | [82] |
Heart | Rat | 381 ± 39 | [82] |
Heart | Guinea Pig | 165 ± 36 | [82] |
Heart | Rabbit | 143 ± 15 | [82] |
Heart | Sheep | 129 ± 7 | [82] |
Heart | Pig | 136 ± 22 | [82] |
Heart | Cow | 113 ± 15 | [82] |
Heart | Horse | 107 ± 7 | [82] |
Liver | Rat | 184 ± 10 | [67] |
Liver | Mouse | 274 ± 11 | [83] |
Kidney | Rat | 228 ± 25 | [84] |
Plasma Low Density Lipoproteins (LDL) | Human | 120 | [11] |
Skeletal muscle | Rat | 282 ± 9 | [85] |
Skeletal muscle | Pigeon | 239 ± 12 | [85] |
Whole fly | D. melanogaster | 121 ± 2 | [86] |
Experimental Model | Tissue | Change in MDALys Concentration with Aging | Method for MDALys Determination | References |
---|---|---|---|---|
Human (young adults vs. elderly subjects) | Hippocampus | Increased | IHQ | [34] |
Rat (young vs. old animals) | Heart mitochondria | Increased | GC/MS | [104] |
Rat (young, middle-age, old animals) | Liver mitochondria | Increased | GC/MS | [105] |
Rat (adult vs. old animals) | Heart, liver | Increased | GC/MS | [106] |
D. melanogaster | Whole fly | Increased | GC/MS | [86] |
Rat (young vs. old) | Liver mitochondria | Increased | GC/MS | [107] |
Mouse (young vs. old animals) | Brain, spleen | Increased | GC/MS | [108] |
Mouse (young vs. old) | Heart mitochondria | Increased | GC/MS | [79] |
Mouse (young vs. old) | Skeletal muscle mitochondria | Increased | GC/MS | [79] |
Mouse (young vs. middle-age) | Liver | Increased | GC/MS | [83] |
Human (adults vs. old subjects) | Frontal cortex Parietal cortex Cingulate gyrus Temporal cortex Entorhinal cortex Hippocampus Thalamus Caudate nucleus Putamen Visual cortex Substantia nigra Vermis | Increased Increased Unchanged Decreased Decreased Increased Increased Increased Increased Unchanged Unchanged Unchanged | WB | [41] |
Rat (adult vs. old animals) | Kidney | Unchanged | GC/MS | [84] |
Animal Species | Longevity | Tissue (or Subcellular Organelle) | MDALys Concentration in Long-Lived Animal Species | References |
---|---|---|---|---|
Rat vs. pigeon | 4 vs. 35 years | Heart mitochondria | Lower | [77] |
7 mammalian species | From 3.5 years to 46 years | Liver | Lower | [115] |
Rat vs. pigeon | 4 vs. 35 years | Skeletal muscle | Lower | [85] |
Mouse, parakeet, canary | 3..5, 21, and 24 years | Brain | Lower | [37] |
8 mammalian species | From 3.5 years to 46 years | Heart | Lower | [82] |
D. melanogaster (long-lived mutant strains) | 71 vs. 87 days | Whole fly and mitochondria | Lower | [110] |
Exceptionally old mice | 28, 76, and 128 weeks | Brain, spleen | Lower | [108] |
D. melanogaster (short-lived Dahomey vs. long-lived Oregon R flies) | 49 vs. 74 days | Whole fly | Lower | [111] |
Species | Tissue | DR Type (%) | DR Duration | Effect on MDALys | References |
---|---|---|---|---|---|
Rat | Liver mitochondria | CR 8.5% | 7 weeks | Decreased | [125] |
Rat | Liver mitochondria | CR 25% | 7 weeks | Decreased | [125] |
Rat | Heart mitochondria | CR 40% | 4 months | Decreased | [126] |
Rat | Heart mitochondria | CR 40% | 1 year | Decreased | [127] |
Rat | Liver mitochondria | CR 40% | 22 months | Decreased | [105] |
Rat | Liver | CR 40% | 6 weeks | Decreased | [67] |
Mouse | Liver | CR 40% | 8 weeks | Decreased | [128] |
Rat | Liver | PR 40% | 7 weeks | Decreased | [129] |
Rat | Liver mitochondria | MetR 40% | 7 weeks | Decreased | [130] |
Rat | Liver mitochondria | MetR 80% | 7 weeks | Decreased | [78,130] |
Rat | Heart mitochondria | MetR 80% | 7 weeks | Decreased | [78] |
Rat | Brain | MetR 80% | 7 weeks | Decreased | [81] |
Rat | Brain mitochondria | MetR 40% | 7 weeks | Decreased | [131] |
Rat | Kidney mitochondria | MetR 40% | 7 weeks | Decreased | [131] |
Rat | Heart mitochondria | MetR 40% | 7 weeks | Decreased | [132] |
Mouse | Brain | MetR 80% | 4 months | Decreased | [120] |
Rat | Liver mitochondria | MetR 40% at old age | 7 weeks | Decreased | [107] |
Rat | Heart mitochondria | MetR 40% | 7 weeks | Decreased | [133] |
Rat | Kidney | MetR 80% at old age | 7 weeks | Unchanged | [84] |
Pig | Liver mitochondria | MetR 30% | 2 weeks | Unchanged | [134] |
Rat | Liver mitochondria | Fasting | 1 week | Increased | [135] |
Mouse | Liver mitochondria | EOD (Every Other Day) | 7 weeks | Decreased | [136] |
Rat | Liver mitochondria | 40% restriction of dietary amino acids (except methionine) | 7 weeks | Decreased | [131] |
Rat | Liver | Methionine dietary supplementation | 7 weeks | Unchanged | [137] |
Rat | Heart | Methionine dietary supplementation | 7 weeks | Unchanged | [137] |
Rat | Liver mitochondria | Cysteine dietary supplementation | 7 weeks | Decreased | [138] |
Rat | Liver | Corticosterone | 4 weeks | Decreased | [66] |
Rat | Liver | Thyroid Hormones | 10 days | Decreased | [68] |
Rat | Liver | Insulin | 2 weeks | Increased | [67] |
Rat | Liver | Growth hormone | 2 weeks | Increased | [67] |
Rat | Heart mitochondria | Atenolol | 7 weeks | Decreased | [133] |
Mouse | Heart mitochondria | Atenolol | 16 months | Decreased | [79] |
Mouse | Skeletal muscle mitochondria | Atenolol | 16 months | Decreased | [79] |
Mouse | Heart | Atenolol | 2 weeks | Decreased | [139] |
Mouse | Brain | Pioglitazone | 2 months | Decreased | [95] |
Mouse | Liver | Rapamycin | 7 weeks | Decreased | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jové, M.; Mota-Martorell, N.; Pradas, I.; Martín-Gari, M.; Ayala, V.; Pamplona, R. The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants 2020, 9, 1132. https://doi.org/10.3390/antiox9111132
Jové M, Mota-Martorell N, Pradas I, Martín-Gari M, Ayala V, Pamplona R. The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants. 2020; 9(11):1132. https://doi.org/10.3390/antiox9111132
Chicago/Turabian StyleJové, Mariona, Natàlia Mota-Martorell, Irene Pradas, Meritxell Martín-Gari, Victoria Ayala, and Reinald Pamplona. 2020. "The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity" Antioxidants 9, no. 11: 1132. https://doi.org/10.3390/antiox9111132