Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,882)

Search Parameters:
Keywords = cytotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1150 KiB  
Article
Assessment of Digestion and Absorption Properties of 1,3-Dipalmitoyl-2-oleoyl Glycerol-Rich Lipids Using an In Vitro Gastrointestinal Digestion and Caco-2 Cell-Mediated Coupled Model
by Hyeon-Jun Chang, A-Young Lee and Jeung-Hee Lee
Molecules 2024, 29(22), 5442; https://doi.org/10.3390/molecules29225442 (registering DOI) - 18 Nov 2024
Abstract
The digestion and absorption properties of 1,3-dipalmitoyl-2-oleoyl glycerol (POP)-rich lipids was evaluated using in vitro gastrointestinal digestion and a Caco-2 cell-mediated coupled model. Caco-2 cell viability and monolayer integrity were assessed by an MTT assay and transepithelial electrical resistance. The IC50 for bile [...] Read more.
The digestion and absorption properties of 1,3-dipalmitoyl-2-oleoyl glycerol (POP)-rich lipids was evaluated using in vitro gastrointestinal digestion and a Caco-2 cell-mediated coupled model. Caco-2 cell viability and monolayer integrity were assessed by an MTT assay and transepithelial electrical resistance. The IC50 for bile salts, pancreatin, and free fatty acid (FFA) were 0.22 mM, 0.22 mg/mL, and 1.47 mM, respectively, and no cytotoxicity was observed for bovine serum albumin (0.01–0.20 mM) or triacylglycerol (1.00–10.00 mM). The in vitro-digested POP-rich lipid containing FFA > 2.95 mM caused the disruption of monolayer tight junctions in Caco-2 cells. The major triacylglycerols (TAG) of POP-rich lipids were POP (50.8%), POO (17.8%), POL/OPL/PLO (7.6%), PPO (7.1%), and PLP (6.8%). Following digestion and uptake into Caco-2 cells, the resynthesized TAGs included PPO (20.6%), PPP (15.9%), POO (14.0%), POL/OPL/PLO (12.2%), POP (10.9%), OOO (7.5%), OPO (7.0%), OOL/OLO (6.7%), PLP (3.1%), and PPL (2.2%). The secreted major TAGs were POL/OPL/PLO (50.8%), PPP (11.1%), and OOL/OLO (8.4%), indicating a diverse TAG profile in newly synthesized lipids. This study provides a coupled model for lowering cytotoxicity and maintaining the monolayer in Caco-2 cells, and for evaluating the digestion and absorption properties of functional lipids containing specific fatty acids incorporated into TAG. Full article
15 pages, 5902 KiB  
Article
In Situ Crosslinked Biodegradable Hydrogels Based on Poly(Ethylene Glycol) and Poly(ε-Lysine) for Medical Application
by Xia Ding, Bing Yang and Zhaosheng Hou
Molecules 2024, 29(22), 5435; https://doi.org/10.3390/molecules29225435 (registering DOI) - 18 Nov 2024
Abstract
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene [...] Read more.
Hydrogels have emerged as promising biomaterials due to their excellent performance; however, their biocompatibility, biodegradability, and absorbability still require improvement to support a broader range of medical applications. This paper presents a new biofunctionalized hydrogel based on in situ crosslinking between maleimide-terminated four-arm-poly(ethylene glycol) (4–arm–PEG–Mal) and poly(ε-lysine) (ε–PL). The PEG/ε–PL hydrogels, named LG–n, were rapidly formed via amine/maleimide reaction by mixing 4–arm–PEG–Mal and ε–PL under physiological conditions. The corresponding dry gels (DLG–n) were obtained through a freeze-drying technique. 1H NMR, FT–IR, and SEM were utilized to confirm the structures of 4–arm–PEG–Mal and LG–n (or DLG–n), and the effects of solid content on the physicochemical properties of the hydrogels were investigated. Although high solid content could increase the swelling ratio, all LG–n samples exhibited a low equilibrium swelling ratio of less than 30%. LG–7, which contained moderate solid content, exhibited optimal compression properties characterized by a compressive fracture strength of 45.2 kPa and a deformation of 69.5%. Compression cycle tests revealed that LG–n demonstrated good anti-fatigue performance. In vitro degradation studies confirmed the biodegradability of LG–n, with the degradation rate primarily governing the drug (ceftibuten) release efficiency, leading to a sustained release duration of four weeks. Cytotoxicity tests, cell survival morphology observation, live/dead assays, and hemolysis tests indicated that LG–n exhibited excellent cytocompatibility and low hemolysis rates (<5%). Furthermore, the broad-spectrum antibacterial activity of LG–n was verified by an inhibition zone method. In conclusion, the developed LG–n hydrogels hold promising applications in the medical field, particularly as drug sustained-release carriers and wound dressings. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Figure 1

23 pages, 3897 KiB  
Article
Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome
by Viresh Krishnan Sukumar, Yee Kit Tai, Ching Wan Chan, Jan Nikolas Iversen, Kwan Yu Wu, Charlene Hui Hua Fong, Joline Si Jing Lim and Alfredo Franco-Obregón
Cancers 2024, 16(22), 3860; https://doi.org/10.3390/cancers16223860 (registering DOI) - 18 Nov 2024
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was [...] Read more.
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
14 pages, 3475 KiB  
Article
Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway
by Umut Sarı, Fuat Zaman, İlhan Özdemir, Şamil Öztürk and Mehmet Cudi Tuncer
Biomedicines 2024, 12(11), 2632; https://doi.org/10.3390/biomedicines12112632 - 18 Nov 2024
Abstract
Background: Cervical cancer is a type of cancer that originates from the endometrium and is more common in developed countries and its incidence is increasing day by day in developing countries. The most commonly prescribed chemotherapeutic drugs limit their use due to serious [...] Read more.
Background: Cervical cancer is a type of cancer that originates from the endometrium and is more common in developed countries and its incidence is increasing day by day in developing countries. The most commonly prescribed chemotherapeutic drugs limit their use due to serious side effects and the development of drug resistance. For this reason, interest in new active ingredients obtained from natural products is increasing. This study aimed to reveal the apoptotic and antiproliferative effects of gallic acid and doxorubicin combination therapy against the HeLa cell line. Methods: We investigated the anti-cancer effects of doxorubicin and gallic acid in the human HeLa cervical cell line by using the MTT test, Nucblue staining for the identification of apoptotic cells due to nuclear condensation using fluorescent substance, and apoptotic markers P53 and Bax for the RT-PCR test. Results: The highest cytotoxic effect obtained in the study, the highest increase in apoptotic induction, and a significant difference in P53/Bax levels were seen in the gallic acid/doxorubicin combination. Additionally, it was determined that gallic acid exhibited an effective cytotoxic effect on HeLa and HaCat cells within 48 and 72 h of application. Conclusions: The obtained findings show that the gallic acid/doxorubicin combination applied to HeLa cells may be an alternative treatment against both the cytotoxic effect size and the side effects of the chemotherapy agent. Full article
(This article belongs to the Collection Feature Papers in Cell Biology and Pathology)
Show Figures

Figure 1

13 pages, 3504 KiB  
Article
Establishment of Dittrichia viscosa L. Hairy Roots and Improvement of Bioactive Compound Production
by Annalisa Paradiso, Miriana Durante, Sofia Caretto and Angelo De Paolis
Plants 2024, 13(22), 3236; https://doi.org/10.3390/plants13223236 (registering DOI) - 18 Nov 2024
Abstract
Dittrichia viscosa is a ruderal plant species growing along roadsides and well adapting to extreme environmental conditions. D. viscosa plant tissues, especially leaves, are known to be a rich source of bioactive metabolites which have antioxidant, cytotoxic, antiproliferative and anticancer properties. Hairy root [...] Read more.
Dittrichia viscosa is a ruderal plant species growing along roadsides and well adapting to extreme environmental conditions. D. viscosa plant tissues, especially leaves, are known to be a rich source of bioactive metabolites which have antioxidant, cytotoxic, antiproliferative and anticancer properties. Hairy root cultures are a suitable biotechnological system for investigating plant metabolic pathways and producing specialized metabolites in in vitro conditions. In this study, D. viscosa hairy root transformed lines induced by Agrobacterium rhizogenes ATCC15834 were obtained using leaf explants, and the integration of rolB and rolC genes in the genomes of transformed hairy roots were confirmed by PCR analysis. Three hairy root D. viscosa lines (DvHrT1, DvHrT4 and DvHrT5) having different phenotypic features were characterized in terms of total phenolics, flavonoids and antioxidant activity. Correlated with antioxidant activity, phenolic and flavonoid content of DvHrT1 was significantly higher than control roots and the other DvHrT lines. Our results suggest that D. viscosa hairy roots can be a valuable tool for producing various bioactive compounds having antioxidant activity and are to be further investigated to produce other specific molecules that could find application in agricultural or pharmaceutical fields. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

9 pages, 3316 KiB  
Article
Lung Toxicity Occurring During Enfortumab Vedotin Treatment: From a Priming Case Report to a Retrospective Analysis
by Grégoire Desimpel, François Zammit, Sarah Lejeune, Guillaume Grisay and Emmanuel Seront
Pharmaceuticals 2024, 17(11), 1547; https://doi.org/10.3390/ph17111547 - 18 Nov 2024
Viewed by 55
Abstract
Background/Objectives: Enfortumab vedotin (EV) is an antibody-drug conjugate (ADC) that combines monomethyl auristatin E (MMAE), a potent cytotoxic agent, with a monoclonal antibody targeting Nectin-4. It has emerged as a promising therapy for metastatic urothelial carcinoma (mUC), either as monotherapy or in combination [...] Read more.
Background/Objectives: Enfortumab vedotin (EV) is an antibody-drug conjugate (ADC) that combines monomethyl auristatin E (MMAE), a potent cytotoxic agent, with a monoclonal antibody targeting Nectin-4. It has emerged as a promising therapy for metastatic urothelial carcinoma (mUC), either as monotherapy or in combination with pembrolizumab, improving significantly the overall survival of these patients. EV is associated with common adverse events, including skin reactions, glucose imbalance, and peripheral neuropathy, which are usually mild in severity and easily manageable. Methods: Following an initial case of pleuro-pneumopathy occurring in a patient treated with EV, we conducted a retrospective analysis of EV effects on pulmonary imaging. Results: In a cohort of 20 all-comers mUC patients, we identified three cases of potentially EV-related lung toxicity, resulting in a pleuro-pneumopathy rate of 15%. Two of these cases appeared highly symptomatic and required high steroid doses, with a rapid resolution of symptoms and normalization of radiological findings. In one patient, rechallenge of EV was associated with reoccurrence of pneumopathy. We described the clinical and radiological features of these cases, as well as their evolution after EV discontinuation and rechallenge. Conclusions: This case series underscores the importance of close pulmonary monitoring during EV treatment. Full article
(This article belongs to the Special Issue The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology)
Show Figures

Figure 1

18 pages, 7600 KiB  
Article
Effects of Two Decellularization Protocols on the Mechanical Behavior and Structural Properties of the Human Urethra
by Marcela Kuniakova, Zuzana Varchulova Novakova, Daniel Haspinger, Justyna Anna Niestrawska, Martin Klein, Paulina Galfiova, Jan Kovac, Michal Palkovic, Lubos Danisovic, Niels Hammer and Stanislav Ziaran
Int. J. Mol. Sci. 2024, 25(22), 12361; https://doi.org/10.3390/ijms252212361 - 18 Nov 2024
Viewed by 102
Abstract
This study evaluates the effects of two decellularization protocols, enzyme-detergent (ED) and detergent-detergent (DD), on the structural and biomechanical properties of human urethral tissue. Urethral samples from 18 individuals were divided into ED (n = 7) and DD (n = 11) [...] Read more.
This study evaluates the effects of two decellularization protocols, enzyme-detergent (ED) and detergent-detergent (DD), on the structural and biomechanical properties of human urethral tissue. Urethral samples from 18 individuals were divided into ED (n = 7) and DD (n = 11) groups, with native samples (n = 3) serving as controls. Histological and ultrastructural analyses confirmed that both protocols effectively removed cellular content while preserving essential extracellular matrix (ECM) elements, such as collagen and elastic fibers. Immunohistochemical staining for collagen IV and fibronectin revealed no significant differences between decellularized and native tissues, indicating intact ECM structure. Biomechanical testing demonstrated that DD-treated tissues had significantly lower Cauchy stress (1494.8 ± 518.4 kPa) when compared to native tissues (2439.7 ± 578.7 kPa, p = 0.013), while ED-treated tissues were similar to both groups. Both decellularized groups exhibited reduced stretch at failure and elastic modulus compared to native tissues. Cytotoxicity assays using adipose-derived stem cells demonstrated no signs of toxicity in either protocol. Overall, both ED and DD protocols effectively preserved the urethral ECM structure and mechanical properties, making them suitable for potential use in tissue-engineered grafts and for biobanking purposes. Further research is needed to refine and optimize decellularization methods to improve scaffold recellularization and ensure clinical safety and efficacy. Full article
(This article belongs to the Special Issue Novel Insights into Regenerative Medicine)
Show Figures

Figure 1

24 pages, 3148 KiB  
Article
Nitroxyl Hybrids with Curcumin and Stilbene Scaffolds Display Potent Antioxidant Activity, Remodel the Amyloid Beta Oligomer, and Reverse Amyloid Beta-Induced Cytotoxicity
by Madhu S. Budamagunta, Hidetoshi Mori, Joshua Silk, Ryan R. Slez, Balázs Bognár, Ulises Ruiz Mendiola, Tamás Kálai, Izumi Maezawa and John C. Voss
Antioxidants 2024, 13(11), 1411; https://doi.org/10.3390/antiox13111411 - 18 Nov 2024
Viewed by 87
Abstract
The disorder and heterogeneity of low-molecular-weight amyloid-beta oligomers (AβOs) underlie their participation in multiple modes of cellular dysfunction associated with the etiology of Alzheimer’s disease (AD). The lack of specified conformational states in these species complicates efforts to select or design small molecules [...] Read more.
The disorder and heterogeneity of low-molecular-weight amyloid-beta oligomers (AβOs) underlie their participation in multiple modes of cellular dysfunction associated with the etiology of Alzheimer’s disease (AD). The lack of specified conformational states in these species complicates efforts to select or design small molecules to targeting discrete pathogenic states. Furthermore, targeting AβOs alone may be therapeutically insufficient, as AD progresses as a multifactorial, self-amplifying cascade. To address these challenges, we have screened the activity of seven new candidates that serve as Paramagnetic Amyloid Ligand (PAL) candidates. PALs are bifunctional small molecules that both remodel the AβO structure and localize a potent antioxidant that mimics the activity of SOD within live cells. The candidates are built from either a stilbene or curcumin scaffold with nitroxyl moiety to serve as catalytic antioxidants. Measurements of PAL AβO binding and remolding along with assessments of bioactivity allow for the extraction of useful SAR information from screening data. One candidate (HO-4450; PMT-307), with a six-membered nitroxyl ring attached to a stilbene ring, displays the highest potency in protecting against cell-derived Aβ. A preliminary low-dose evaluation in AD model mice provides evidence of modest treatment effects by HO-4450. The results for the curcumin PALs demonstrate that the retention of the native curcumin phenolic groups is advantageous to the design of the hybrid PAL candidates. Finally, the PAL remodeling of AβO secondary structures shows a reasonable correlation between a candidate’s bioactivity and its ability to reduce the fraction of antiparallel β-strand. Full article
Show Figures

Figure 1

18 pages, 7999 KiB  
Article
Development of Antioxidant-Active Sericin–Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application
by Rungnapha Yamdech, Vareesa Terahsongkran, Varis Terahsongkran, Sarocha Cherdchom and Pornanong Aramwit
Polymers 2024, 16(22), 3197; https://doi.org/10.3390/polym16223197 - 18 Nov 2024
Viewed by 95
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS–Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound [...] Read more.
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS–Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS–Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS–Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration. Full article
(This article belongs to the Special Issue Polymeric Membrane Science and Surface Modification Technologies)
Show Figures

Figure 1

29 pages, 7806 KiB  
Article
Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery
by Eunice Maureen Steenekamp, Wilna Liebenberg, Hendrik J. R. Lemmer and Minja Gerber
Pharmaceutics 2024, 16(11), 1466; https://doi.org/10.3390/pharmaceutics16111466 - 18 Nov 2024
Viewed by 159
Abstract
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. [...] Read more.
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. Since the late 2000s, this bio-inspired active pharmaceutical ingredient (API) gained renewed interest for its diverse therapeutic capabilities. However, producing ivermectin formulations does remain challenging due to its poor water solubility, resulting in low bioavailability after oral administration. Therefore, the transdermal drug delivery of ivermectin was considered to overcome these challenges, which are observed after oral administration. Methods: Ivermectin was incorporated in a nano-emulsion, nano-emulgel and a colloidal suspension as ivermectin-loaded nanoparticles. The nano-drug delivery vehicles were optimized, characterized and evaluated through in vitro membrane release studies, ex vivo skin diffusion studies and tape-stripping to determine whether ivermectin was successfully released from its vehicle and delivered transdermally and/or topically throughout the skin. This study concluded with cytotoxicity tests using the methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on both human immortalized epidermal keratinocytes (HaCaT) and human immortalized dermal fibroblasts (BJ-5ta). Results: Ivermectin was successfully released from each vehicle, delivered transdermally and topically throughout the skin and demonstrated little to no cytotoxicity at concentrations that diffused through the skin. Conclusions: The type of nano-drug delivery vehicle used to incorporate ivermectin influences its delivery both topically and transdermally, highlighting the dynamic equilibrium between the vehicle, the API and the skin. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 5375 KiB  
Article
Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites
by Hannah R. Flaherty, Semra A. Aytur and John P. Bucci
J. Mar. Sci. Eng. 2024, 12(11), 2076; https://doi.org/10.3390/jmse12112076 - 17 Nov 2024
Viewed by 458
Abstract
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new [...] Read more.
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new chemotherapeutic drugs such as those exhibiting cytotoxicity and tumor cell growth-inhibitory properties. As marine genomic research advances, it is apparent that marine-derived sediment harbors uniquely potent bioactive compounds compared to their terrestrial counterparts. The Streptomyces genus in particular produces more than 30% of all secondary metabolites currently approved for human health, thus harboring unexplored reservoirs of chemotherapeutic and antibiotic agents to combat emerging disease. The present study identifies the presence of Streptomyces hygroscopicus and rapamycinicus in environmental sediment at locations within the U.S. Stellwagen Bank National Marine Sanctuary (SBNMS) from 2017 to 2022. Sequencing and bioinformatics methods catalogued biosynthetic gene clusters (BGCs) that drive cytotoxic and antibiotic biochemical processes in samples collected from sites permittable and protected to fishing activity. Poisson regression models confirmed that Sites 1 and 3 had significantly higher occurrences of rapamycinicus than other sites (p < 0.01). Poisson regression models confirmed that Sites 1, 2 and 3 had significantly higher occurrence for Streptomyces hygroscopicus across sites (p < 0.05). Interestingly, permitted fishing sites showed a greater prevalence of both species. Statistical analyses showed a significant difference in aligned hits with polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) by site and between species with hygroscopicus showing a greater quantity than rapamycinicus among Streptomyces spp. (p < 0.05; F = 4.7 > F crit). Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

15 pages, 5867 KiB  
Article
Using Computer Modeling and Experimental Methods to Screen for Aptamers That Bind to the VV-GMCSF-LACT Virus
by Maya Dymova, Natalia Vasileva, Daria Malysheva, Alisa Ageenko, Irina Shchugoreva, Polina Artyushenko, Felix Tomilin, Anna S. Kichkailo, Elena Kuligina and Vladimir Richter
Molecules 2024, 29(22), 5424; https://doi.org/10.3390/molecules29225424 (registering DOI) - 17 Nov 2024
Viewed by 365
Abstract
Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of [...] Read more.
Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of the viral particle are used. Aptamers that specifically bind to the JX-594 strain of the vaccinia virus were developed earlier. However, the parameters for binding to the recombinant virus VV-GMCSF-Lact, developed based on the LIVP strain of the vaccinia virus, may differ due its different repertoire of antigenic determinants on its membrane compared to JX-594. In this work, the spatial atomic structures of aptamers to JX-594 and bifunctional aptamers were determined using molecular modeling. The efficiency of viral particles binding to the aptamers (EC50), as well as the cytotoxicity and stability of the aptamers were studied. The synergistic effect of the VV-GMCSF-Lact combination with the aptamers in the presence of serum was investigated using human glioblastoma cells. This proposed approach allowed us to conduct a preliminary screening of sequences using in silico modeling and experimental methods, and identified potential candidates that are capable of shielding VV-GMCSF-Lact from virus-neutralizing antibodies. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 5717 KiB  
Article
Exploring the Biological Potential of Mountain Germander Polyphenolic Extract on Cellular Model Macromolecules, Human Cell Lines, and Microbiome Representatives
by Ana Mandura Jarić, Ksenija Durgo, Ana Huđek Turković, Petra Petek, Andrea Petrinić, Danijela Šeremet, Aleksandra Vojvodić Cebin and Draženka Komes
Appl. Sci. 2024, 14(22), 10602; https://doi.org/10.3390/app142210602 - 17 Nov 2024
Viewed by 538
Abstract
In the context of revitalizing the use of traditional plant species as remarkable sources of bioactive compounds, the determination of their biological effects is of utmost importance. Among Lamiaceae species, Teucrium montanum (Mountain Germander) represents understudied Mediterranean plant species; it is rich in [...] Read more.
In the context of revitalizing the use of traditional plant species as remarkable sources of bioactive compounds, the determination of their biological effects is of utmost importance. Among Lamiaceae species, Teucrium montanum (Mountain Germander) represents understudied Mediterranean plant species; it is rich in polyphenols, which are well-studied biologically active compounds for human disease prevention and the reduction of oxidative stress, i.e., phenolic acids, phenylethanoid glycosides, and flavonoids. For that purpose, the aim of this study was to investigate the antioxidant, cytotoxic, and genotoxic effects of Mountain Germander (MG) polyphenolic extract (0.025, 0.050, 0.150, and 0.500 mg extract mL−1) on the hepatocellular (HepG2), tongue (CAL 27), gastric (AGS), and colorectal (Caco-2) continuous human cancer cell lines, as well as its bacteriostatic potential on representative members of human microbiota. In addition, the antioxidant potential of the MG polyphenolic extract was determined using bovine serum album and DNA plasmid as cellular model macromolecules. In vitro analysis revealed a significant cytotoxic effect of all MG extract concentrations on AGS and Caco-2 cell lines after prolonged treatment (24 h). In addition, treatment with 0.500 mg extract mL−1 showed the most pronounced antioxidant effect under prolonged treatment (24 h) on CAL 27 and HepG2 cell lines. All of the applied MG extract concentrations seem to have a genoprotective effect on DNA plasmid. Furthermore, a significant inhibitory effect on E. coli was detected upon the treatment with 0.150 mg extract mL−1, reducing the cell viability by 56%. Full article
(This article belongs to the Special Issue Natural Products and Bioactive Compounds)
Show Figures

Figure 1

13 pages, 1635 KiB  
Article
Modulation of Urea Transport Attenuates TLR2-Mediated Microglial Activation and Upregulates Microglial Metabolism In Vitro
by Najlaa A. Al-Thani, Dylan Zinck, Gavin S. Stewart and Derek A. Costello
Metabolites 2024, 14(11), 634; https://doi.org/10.3390/metabo14110634 (registering DOI) - 17 Nov 2024
Viewed by 238
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder traditionally characterised by the presence of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain. However, emerging research has highlighted additional metabolic hallmarks of AD pathology. These include the metabolic reprogramming of microglia [...] Read more.
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder traditionally characterised by the presence of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain. However, emerging research has highlighted additional metabolic hallmarks of AD pathology. These include the metabolic reprogramming of microglia in favour of glycolysis over oxidative phosphorylation. This shift is attributed to an ‘M1′-like pro-inflammatory phenotype, which exacerbates neuroinflammation and contributes to neuronal damage. The urea cycle also presents as an altered metabolic pathway in AD, due to elevated urea levels and altered expression of urea cycle enzymes, metabolites, and transporters in the brain. However, to date, these changes remain largely unexplored. Methods: This study focuses on understanding the effects of extracellular urea and urea transporter-B (UT-B) inhibition on inflammatory changes in lipoteichoic acid (LTA)-stimulated BV2 microglia and on the viability of SH-SY5Y neuronal cells under oxidative stress and neurotoxic conditions. Results: In BV2 microglia, UT-B inhibition demonstrated a notable anti-inflammatory effect by reducing the formation of nitric oxide (NO) and the expression of tumour necrosis factor α (TNFα) and CCL2 in response to stimulation with the toll-like receptor (TLR)2 agonist, lipoteichoic acid (LTA). This was accompanied by a reduction in extracellular urea and upregulation of UT-B expression. The application of exogenous urea was also shown to mediate the inflammatory profile of BV2 cells in a similar manner but had only a modest impact on UT-B expression. While exposure to LTA alone did not alter the microglial metabolic profile, inhibition of UT-B upregulated the expression of genes associated with both glycolysis and fatty acid oxidation. Conversely, neither increased extracellular urea nor UT-B inhibition had a significant impact on cell viability or cytotoxicity in SH-SY5Y neurones exposed to oxidative stressors tert-butyl hydroperoxide (t-BHP) and 6-hydroxydopamine (6-OHDA). Conclusions: This study further highlights the involvement of urea transport in regulating the neuroinflammation associated with AD. Moreover, we reveal a novel role for UT-B in maintaining microglial metabolic homeostasis. Taken together, these findings contribute supporting evidence to the regulation of UT-B as a therapeutic target for intervention into neuroinflammatory and neurodegenerative disease. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

19 pages, 2635 KiB  
Article
Association of Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) Genetic Variants with Risk and Outcome of Cutaneous Melanoma
by Ana Maria Castro Ferreira, Juliana Carron, Gabriela Vilas Bôas Gomez, Vinicius de Lima Vazquez, Sergio Vicente Serrano, Gustavo Jacob Lourenço and Carmen Silvia Passos Lima
Int. J. Mol. Sci. 2024, 25(22), 12327; https://doi.org/10.3390/ijms252212327 - 17 Nov 2024
Viewed by 273
Abstract
This study aimed to verify whether germline single nucleotide variants (SNV) in CTLA-4 gene, c.-1765C>T, c.-1661A>G, c.-1577G>A, and c.-1478G>A, influence the risk, clinicopathological aspects, and survival of patients with CM, as well as its functional consequences. A total of 432 patients with CM [...] Read more.
This study aimed to verify whether germline single nucleotide variants (SNV) in CTLA-4 gene, c.-1765C>T, c.-1661A>G, c.-1577G>A, and c.-1478G>A, influence the risk, clinicopathological aspects, and survival of patients with CM, as well as its functional consequences. A total of 432 patients with CM and 504 controls were evaluated. CTLA-4 genotypes were identified by real-time polymerase chain reaction (RT-PCR) and expression of CTLA-4 by quantitative PCR (qPCR) and luciferase assay. Cell cycle, proliferation, apoptosis/necrosis, and migration analyses were performed in SK-MEL-28 and A-375 cell lines modified to present homozygous ancestral or variant genotypes by CRISPR technique. Individuals with the CTLA-4 c.-1577 AA genotype and the combined CTLA-4 c.-1577 and c.-1478 AA + AA genotypes were at 1.60- and 3.12-fold higher risk of developing CM, respectively. The CTLA-4 c.-1577 AA genotype was seen as an independent predictor of worse event-free survival and was also associated with higher gene expression, higher cell proliferation, lower cell apoptosis, and higher cell migration. Our data present, for the first time, evidence that CTLA-4 c.-1577G>A alters the risk and clinical aspects of CM treated with conventional procedures and may be used for selecting individuals for tumor prevention and patients for distinct treatment. Full article
(This article belongs to the Special Issue Genetic and Molecular Susceptibility in Human Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop