Efficacy and Safety of Lidocam Topical Gel (4% Lidocaine—0.3% Meloxicam) for Pain and Inflammation Management during Castration and Tail Docking in Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Efficacy for Pain and Inflammation Control
2.1.1. Animals
2.1.2. Treatment
2.1.3. Castration and Tail Docking
2.1.4. Blood Collection and Analysis
2.1.5. Body Weight
2.1.6. Wound Healing
2.1.7. Wound Inflammation
2.1.8. Electro-Stimulation of Skin before Surgical Procedures
2.1.9. Behavioural Responses
2.1.10. Stress Vocalization
2.1.11. Statistical Analysis
2.2. Tissue Residue Depletion
2.2.1. Animals and Treatment
2.2.2. Tissue Analysis of Meloxicam
2.2.3. Meloxicam Analysis
2.2.4. Statistical Analysis
2.3. Target Animal Safety Study
2.3.1. Animals
2.3.2. Treatment
2.3.3. Blood and Urine Collection
2.3.4. Haematology
2.3.5. Blood Chemistry
2.3.6. Urinalysis
2.3.7. Observations
2.3.8. Electrocardiograph (ECG)
2.3.9. Gross and Microscopic Pathology
3. Results
3.1. Study 1: Efficacy for Pain and Inflammation Control
3.1.1. Drug Administration and Castration/Tail Docking
3.1.2. Electrocutaneous Stimulation of Scrotum and Tail
Electrostimulation of Skin Prior to Castration and Tail Docking
Electrocutaneous Stimulation of Skin Surrounding Castration and Tail Docking Wounds at 4 and 24 h Post-Treatment
3.1.3. Stress Vocalization Tail Docking
3.1.4. Body Weight
3.1.5. Plasma Physiological Markers
Blood Collection
Plasma Cortisol
Plasma Substance P
3.1.6. Visual Behaviour Responses to Castration and Tail Docking
3.1.7. Wound Dimension and Healing/Inflammation Scores
3.2. Study 2: Tissue Residue Depletion
3.2.1. Meloxicam Tissue Concentration (Liver, Kidney, Muscle, Skin/Fat)
3.2.2. Withdrawal Time
Liver
Kidney
Muscle
Skin/Subcutaneous Fat (Application Site)
3.3. Study 3: Target Animal Safety
3.3.1. Observations and Clinical Examinations
3.3.2. Electrocardiogram Recordings
3.3.3. Clinical Chemistry and Hematology
3.3.4. Gross and Histological Pathology
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Farm Animal Care Council (NFACC). Code of Practice for the Care and Handling of Pigs; Canadian Pork Council: Ottawa, ON, Canada; NFACC: Lacombe, AB, Canada, 2014. [Google Scholar]
- Pig Code of Practice Scientific Committee. Code of Practice for the Care and Handling of Pigs: Review of Scientific Research on Priority Issues; National Farm Animal Care Council: Lacombe, AB, Canada, 2012. [Google Scholar]
- Painful Husbandry Procedures-Code of Welfare. Available online: https://www.biosecurity.govt.nz/dmsdocument/36741/direct#:~:text=Draft%20Painful%20Husbandry%20Procedures%20Code%20of%20Welfare%20Summary,considers%20how%20this%20Code%20will%20deal%20with%20mulesing (accessed on 1 March 2024).
- European Declaration on Alternatives to Surgical Castration of Pigs 2010. Available online: https://ec.europa.eu/food/animals/welfare/practice/farm/pigs/castration_alternatives_en (accessed on 22 March 2020).
- Primary Industries Standing Committee. Pigs: Model Code of Practice for the Welfare of Animals. In PISC Report No. 92, 3rd ed.; CSIRO Publishing: Collingwood, VIC, Australia, 2008. [Google Scholar]
- Code of Practice for the Welfare of Pigs, Department for Environment Food and Rural Affairs, March 2020. Available online: www.gov.uk/government/publications (accessed on 1 March 2024).
- Dzikamunhenga, R.S.; Anthony, R.; Coetzee, J.; Gould, S.; Johnson, A.; Karriker, L.; McKean, J.; Millman, S.T.; Niekamp, S.R.; O’Connor, A.M. Pain management in the neonatal piglet during routine management procedures. Part 1: A systematic review of randomized and non-randomized intervention studies. Anim. Health Res. Rev. 2014, 15, 14–38. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Anthony, R.; Bergamasco, L.; Coetzee, H.; Gould, S.; Johnson, A.K.; Karriker, L.A.; Marchant-Forde, J.N.; Martineau, G.S.; McKean, J.; et al. Pain management in the neonatal piglet during routine management procedures. Part 2: Grading the quality of evidence and the strength of recommendations. Anim. Health Res. Rev. 2014, 15, 39–62. [Google Scholar] [CrossRef]
- Aluwé, M.; Millet, S.; Bekaert, K.M.; Tuyttens, F.A.M.; Vanhaecke, L.; De Smet, S.; De Brabander, D.L. Influence of breed and slaughter weight on boar taint prevalence in entire male pigs. Animal 2011, 5, 1283–1289. [Google Scholar] [CrossRef]
- Baumgartner, J.; Laister, S.; Koller, M.; Pfutzner, A.; Grodzycki, M.; Andrews, S.; Schmoll, F. The behaviour of male fattening pigs following either surgical castration or vaccination with a GnRF vaccine. Appl. Anim. Behav. Sci. 2010, 124, 28–34. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Niemi, J.K.; Vosough Ahmadi, B.; Rutherford, K.M.D.; Ison, S.H.; Turner, S.P.; Anker, H.T.; Jensen, T.; Busch, M.E.; Jensen, K.K.; et al. Why are most EU pigs tail docked? Economic and ethical analysis of four pig housing and management scenarios in the light of EU legislation and animal welfare outcomes. Animal 2016, 10, 687–699. [Google Scholar] [CrossRef]
- Zonderland, J.J.; Wolthuis-Fillerup, M.; Van Reenen, C.G.; Bracke, M.B.M.; Kemp, B.; den Hartog, L.A.; Spoolder, H.A.M. Prevention and treatment of tail biting in weaned piglets. Appl. Anim. Behav. Sci. 2008, 110, 269–281. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Tucker, C.B. The long and short of it: A review of tail docking in farm animals. Appl. Anim. Behav. Sci. 2011, 135, 179–191. [Google Scholar] [CrossRef]
- Taylor, N.R.; Main, D.C.J.; Mendl, M.; Edwards, S.A. Tail-biting: A new perspective. Vet. J. 2010, 186, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Harley, S.; More, S.; O’Connell, N.; Hanlon, A.; Teixeira, D.; Boyle, L. Evaluating the prevalence of tail biting and carcass condemnations in slaughter pigs in the Republic and Northern Ireland, and the potential of abattoir meat inspection as a welfare surveillance tool. Vet. Rec. 2012, 171, 621–628. [Google Scholar] [CrossRef] [PubMed]
- McGlone, J.J.; Nicholson, R.I.; Hellman, J.M.; Herzong, D.N. The development of pain in young piglets associated with castration and attempts to prevent castration-induced behavioural changes. J. Anim. Sci. 1993, 71, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Moya, S.L.; Boyle, L.A.; Lynch, P.B.; Arkins, S. Effect of surgical castration on the behavioural and acute phase responses of 5-day-old piglets. Appl. Anim. Behav. Sci. 2008, 111, 133–145. [Google Scholar] [CrossRef]
- Leidig, M.S.; Hertrampf, B.; Failing, K.; Schumann, A.; Reiner, G. Pain and discomfort in male piglets during surgical castration with and without local anaesthesia as determined by vocalization and defense behavior. Appl. Anim. Behav. Sci. 2009, 116, 174–178. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Davis, B.L.; Brooks, T.A.; Coetzee, J.F. The physiological and behavioral response of pigs castrated with and without anesthesia or analgesia. J. Anim. Sci. 2012, 90, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.A.; PJ Bryer, P.J.; Krebs, N.; McGlone, J.J. Tail docking in pigs: Acute physiological and behavioural responses. Animal 2008, 2, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, E.; Valsami, T.; Sardi, L.; Martelli, G. Tail docking in Pigs: A review on its short and long term consequences and effectiveness in preventing tail biting. Italian J. Anim. Sci. 2014, 13, 3095. [Google Scholar] [CrossRef]
- McGlone, J.J.; Sells, J.; Harris, S.; Hurst, R.J. Cannibalism in Growing Pigs: Effects of Tail Docking and Housing Systems on Behavior, Performance and Immune Function; Technical Report T-5-283; Texas Technical University Agricultural Science: Lubbock, TX, USA, 1990. [Google Scholar]
- Taylor, A.A.; Weary, D.M. Vocal responses of piglets to castration: Identifying procedural sources of pain. Appl. Anim. Behav. Sci. 2000, 70, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Torrey, S.; Devillers, N.; Lessard, M.; Farmer, C.; Widowski, T. Effect of age on the behavioral and physiological responses of piglets to tail docking and ear notching. J. Anim. Sci. 2009, 87, 1778–1786. [Google Scholar] [CrossRef]
- Hay, M.; Vulin, A.; Génin, S.; Sales, P.; Prunier, A. Assessment of pain induced by castration in piglets: Behavioral and physiological responses over the subsequent 5 days. Appl. Anim. Behav. Sci. 2003, 82, 201–218. [Google Scholar] [CrossRef]
- Steagall, P.V.; Bustamante, H.; Johnson, C.B.; Turner, P.V. Pain Management in Farm Animals: Focus on Cattle, Sheep and Pigs. Animals 2021, 11, 1483. [Google Scholar] [CrossRef] [PubMed]
- Neary, J.M.; Porter, N.D.; Viscardi, A.V.; Jacobs, L. Recognizing Post-Castration Pain in Piglets: A Survey of Swine Industry Stakeholders and the General Public. Front. Anim. Sci. 2022, 3, 937020. [Google Scholar] [CrossRef]
- Wagner, B.; Royal, K.; Park, R.; Pairis-Garcia, M. Identifying Barriers to Implementing Pain Management for Piglet Castration: A Focus Group of Swine Veterinarians. Animals 2020, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- McGlone, J.J.; Hellman, J.M. Local and general anesthetic effects on behavior and performance of 2 and 7 week old castrated and non-castrated piglets. J. Anim. Sci. 1988, 66, 3049–3058. [Google Scholar] [CrossRef] [PubMed]
- Van Beirendonck, S.; Driessen, B.; Verbeke, G.; Geers, R. Behavior of piglets after castration with or without carbon dioxide anesthesia. J. Anim. Sci. 2011, 89, 3310–3317. [Google Scholar] [CrossRef] [PubMed]
- Hansson, M.; Lundeheim, N.; Nyman, G.; Johansson, G. Effect of local anaesthesia and/or analgesia on pain responses induced by piglet castration. Acta Agric. Scand. 2011, 53, 34. [Google Scholar] [CrossRef] [PubMed]
- Kluivers-Poodt, M.; Houx, B.B.; Robben, S.R.M.; Koop, G.; Lambooij, E.; Hellebrekers, L.J. Effects of a local anaesthetic and NSAID in castration of piglets, on the acute pain responses, growth and mortality. Animal 2012, 6, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Herskin, M.S.; Di Giminiani, P.; Thodberg, K. Effects of administration of a local anaesthetic and/or an NSAID and of docking length on the behaviour of piglets during 5 h after tail docking. Res. Vet. Sci. 2016, 108, 60–67. [Google Scholar] [CrossRef]
- Statas, S.; Johannessen, S.I.; Hoem, N.; Haaland, K.; Sorrensen, D.; Thoresen, M. Lidocaine Pharmacokinetics and toxicity in newborn pigs. Anesth. Analg. 1997, 85, 306–312. [Google Scholar] [CrossRef]
- Haga, H.A.; Ranheim, B. Castration of piglets: The analgesic effects of intratesticular and intrafunicular lidocaine injection. Vet. Anaesth. Analg. 2005, 32, 1–9. [Google Scholar] [CrossRef]
- Christoph, R.A.; Buchanan, L.; Begalla, K.; Schwartz, S. Pain reduction in local anesthetic administration through pH buffering. Ann. Emerg. Med. 1988, 17, 117–120. [Google Scholar] [CrossRef]
- Kluivers-Poodt, M.; Zonderland, J.J.; Verbraak, J.; Lambooij, E.; Hellebrekers, L.J. Pain behaviour after castration of piglets; effect of pain relief with lidocaine and/or meloxicam. Animal 2013, 7, 1158–1162. [Google Scholar] [CrossRef]
- Keita, A.; Pagot, E.; Prunier, A.; Guiarini, C. Pre-emptive meloxicam for postoperative analgesia in piglets undergoing surgical castration. Vet. Anaesth. Analg. 2010, 37, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Viscardi, A.V.; Turner, P.V. Use of Meloxicam or Ketoprofen for Piglet Pain Control Following Surgical Castration. Front. Vet. Sci. 2018, 5, 299. [Google Scholar] [CrossRef] [PubMed]
- Tenbergen, R.; Friendship, R.; Cassar, G.; Amezcua, M.R.; Haley, D. Investigation of the use of meloxicam for reducing pain associated with castration and tail docking and improving performance in piglets. J. Swine Health Prod. 2014, 22, 64–70. [Google Scholar]
- Fuetsch, S.R.; Stewart, L.A.; Imai, D.M.; Beckett, L.A.; Li, Y.; Lloyd, K.C.K.; Grimsrud, K.N. Injection Reactions after Administration of Sustained-release Meloxicam to BALB/cJ, C57BL/6J, and Crl:CD1(ICR) Mice. J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 176–183. [Google Scholar] [CrossRef]
- Jouyban, A.; Fakhree, M.; Shayanfar, A. Review of Pharmaceutical Applications of N-Methyl-2-Pyrrolidone. J. Pharm. Pharm. Sci. 2010, 13, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Leopold, C.S.; Maibach, H.I. Percutaneous penetration of local anesthetic bases: Pharmacodynamic measurements. J. Investig. Dermatol. 1999, 113, 304–307. [Google Scholar] [CrossRef]
- Fierheller, E.E.; Caulkett, N.A.; Haley, D.B.; Florence, D.; Doepel, L. Onset, duration and efficacy of four methods of local anesthesia of the horn bud in calves. Vet. Anaesth. Analg. 2012, 39, 431–435. [Google Scholar] [CrossRef]
- Irwin, R.J.; Hautus, M.J.; Dawson, N.J.; Welch, D.; Bayly, M.F. Discriminability of electrocutaneous stimuli after topical anesthesia: Detection-theory measurement of sensitivity to painful stimuli. Percept. Psychophys. 1994, 55, 125–132. [Google Scholar] [CrossRef]
- Saville, J.W.; Ross, J.A.; Trefz, T.; Schatz, C.; Matheson-Bird, H.; Ralston, B.; Granot, O.; Schmid, K.; Terry, R.; Allan, N.D.; et al. Development and Field Validation of Lidocaine-Loaded Castration Bands for Bovine Pain Mitigation. Animals 2020, 10, 2363. [Google Scholar] [CrossRef]
- White, R.G.; DeShazer, J.A.; Tressler, C.J.; Borcher, G.M.; Davey, S.; Waninge, A.; Parkhurst, A.M.; Milanuk, M.J.; Clemens, E.T. Vocalization and physiological response of pigs during castration with or without a local anesthetic. J. Anim. Sci. 1995, 73, 381–386. [Google Scholar] [CrossRef]
- Marx, G.; Horn, T.; Thielebein, J.; Knubel, B.; von Borell, E. Analysis of pain-related vocalisation in young pigs. J. Sound. Vib. 2003, 266, 687–698. [Google Scholar] [CrossRef]
- Weary, D.M.; Braithwaite, L.A.; Fraser, D. Vocal response to pain in piglets. Appl. Anim. Behav. Sci. 1998, 56, 161–172. [Google Scholar] [CrossRef]
- Manteuffel, G.; Puppe, B.; Schon, P.C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004, 88, 163–182. [Google Scholar] [CrossRef]
- Puppe, B.; Schon, P.C.; Tuchscherer, A.; Manteuffel, G. Castration-induced vocalization in domestic piglets, Sus scrofa: Complex and specific alterations of the vocal quality. Appl. Anim. Behav. Sci. 2005, 95, 67–78. [Google Scholar] [CrossRef]
- Taylor, A.A.; Weary, D.M.; Lessard, M.; Braithwaite, L. Behavioural responses of piglets to castration: The effect of piglet age. Appl. Anim. Behav. Sci. 2001, 73, 35–43. [Google Scholar] [CrossRef]
- Veterinary International Conference on Harmonization (VICH). VICH GL 48 and 49 (R) (MRK)—Metabolism and Residue Kinetcis; Dockets Management, Food and Drug Administration: Rockville, MD, USA, 2015.
- OECD. Principles of Good Laboratory Practice (GLP) and GLP Compliance Monitoring; OECD: Paris, France, 1998. [Google Scholar]
- Chrusch, J.; Lee, S.; Fedeniuk, R.; Boison, J.O. Determination of the performance characteristics of a new multi-residue method for non-steroidal anti-inflammatory drugs, corticosteroids and anabolic steroids in food animal tissues. Food Addit. Contam Chem. Anal. 2008, 25, 1482–1496. [Google Scholar] [CrossRef]
- Veterinary International Conference on Harmonization (VICH). VICH GL43—Target Animal Safety; Dockets Management, Food and Drug Administration: Rockville, MD, USA, 2009. [Google Scholar]
- Bates, J.L.; Karriker, L.A.; Stock, M.L.; Pertzborn, K.M.; Baldwin, L.G.; Wulf, L.W.; Lee, C.J.; Wang, C.; Coetzee, J.F. Impact of transmammary-delivered meloxicam on biomarkers of pain and distress in piglets after castration and tail docking. PLoS ONE 2014, 9, e113678. [Google Scholar] [CrossRef]
- Bonastre, C.; Mitjana, O.; Tejedor, M.T.; Calavia, M.; Yuste, A.G.; Ubeda, J.L.; Falceto, M.V. Acute physiological responses to castration-related pain in piglets: The effect of two local anesthetics with or without meloxicam. Animal 2016, 10, 1474–1481. [Google Scholar] [CrossRef]
- Numberger, J.; Ritzmann, M.; Übel, N.; Eddicks, M.; Reese, S.; Zöls, S. Ear tagging in piglets: The cortisol response with and without analgesia in comparison with castration and tail docking. Animal 2016, 10, 1864–1870. [Google Scholar] [CrossRef]
- Nixon, E.; Carlson, A.R.; Routh, P.A.; Hernandez, L.; Almond, G.W.; Baynes, R.E.; Messenger, K.M. Comparative effects of nonsteroidal anti-inflammatory drugs at castration and tail-docking in neonatal piglets. PLoS ONE 2021, 16, e0254409. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X.; Kun, E.; Guo, X.; Yu, Z.; Zhang, F. Influence of lidocaine forms (salt vs. freebase) on properties of drug-eudragit® L100-55 extrudates prepared by reactive melt extrusion. Int. J. Pharm. 2018, 25, 291–302. [Google Scholar] [CrossRef]
- Jimenez-Kairuz, A.; Allemandi, D.; Manzo, R.H. Mechanism of Lidocaine Release from Carbomer–Lidocaine hydrogels. J. Pharm. Sci. 2002, 91, 267–272. [Google Scholar] [CrossRef]
- Kushla, G.; Zatz, J.L. Influence of pH on lidocaine penetration through human and hairless mouse skin in vitro. Int. J. Pharm. 1991, 71, 167–173. [Google Scholar] [CrossRef]
- Sobanko, J.F.; Miller, C.J.; Alster, T.S. Topical anesthetics for dermatologic procedures: A review. Dermatol. Surg. 2012, 38, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Friedman, P.M.; Mafong, E.A.; Friedman, E.S.; Geronemus, R.G. Topical anesthetics update: ELMA and beyond. Dermatol. Surg. 2001, 27, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Zhang, Y.; Liu, B.; Li, Y.; Chang, Y.; Meng, Z.; Zhang, Y.; Fan, B. Effect and safety profile of topical lidocaine on post-surgical neuropathic pain and quality of life: A systematic review and meta-analysis. J. Clin. Anesth. 2024, 92, 111219. [Google Scholar] [CrossRef] [PubMed]
- Argoff, C.E. Topical analgesics: A review of the recent clinical trials and their application to clinical practice. Adv. Stud. Med. 2003, 3, 5642–5647. [Google Scholar]
- Pierdon, M.K.; Berdahl, S.E. Effect of Topical Spray Containing Lidocaine on Piglet Behaviour Post castration. J. Appl. Anim. Welf. Sci. 2023, 26, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, X.; Li, S.; Wei, X.; Yao, H.; Zhong, D. Pharmacokinetic studies of meloxicam following oral and transdermal administration in Beagles. Acta Pharmacol. Sin. 2009, 30, 1060–1064. [Google Scholar] [CrossRef]
- Tse, S.; Powell, K.D.; MacLennan, S.J.; Moorman, A.R.; Paterson, C.; Bell, R.R. Skin permeability and pharmacokinetics of diclofenac epolamine administered by dermal patch in Yorkshire-Landrace pigs. J. Pain Res. 2012, 5, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Banning, M. Topical diclofenac: Clinical effectiveness and current uses in osteoarthritis of the knee and soft tissue injuries. Expert Opin. Pharmacother. 2008, 9, 2921–2929. [Google Scholar] [CrossRef]
- Rainsford, K.D.; Kean, W.F.; Ehrlich, G.E. Review of the pharmaceutical properties and clinical effects of the topical NSAID formulation, diclofenac epolamine. Curr. Med. Res. Opin. 2008, 24, 2967–2992. [Google Scholar] [CrossRef] [PubMed]
- Burkemper, M.C.; Pairis-Garcia, M.D.; Moraes, L.E.; Park, R.M.; Moeller, S.J. Effects of Oral Meloxicam and Topical Lidocaine on Pain associated Behaviors of Piglets Undergoing Surgical Castration. J. Appl. Anim. Welf. Sci. 2020, 23, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.; Hernández-Jover, M.; Newman, R.; Holyoake, P. Assessment of acute pain experienced by piglets from ear tagging, ear notching and intraperitoneal injectable transponders. Appl. Anim. Behav. Sci. 2010, 127, 86–95. [Google Scholar] [CrossRef]
- Barticciotto, L.S.; Luna, S.P.L.; de Sa Lorena, S.E.R.; Telles, F.G.; Berto, D.A. Weight gain, behavioral and cortisol changes after orchiectomy with or without local anaesthesia in piglets. Semin. Ciências Agrárias 2016, 37, 1307–1316. [Google Scholar] [CrossRef]
- Carroll, J.A.; Berg, E.L.; Strauch, T.A.; Roberts, M.P.; Kattesh, H.G. Hormonal profiles, behavioral responses, and short-term growth performance after castration of pigs at three, six, nine, or twelve days of age. J. Anim. Sci. 2006, 84, 1271–1278. [Google Scholar] [CrossRef]
- Lomax, S.; Harris, C.; Windsor, P.A.; White, P.J. Topical anaesthesia reduces sensitivity of castration wounds in neonatal piglets. PLoS ONE 2017, 12, e0187988. [Google Scholar] [CrossRef]
- Marks, M.A.; Mabry, J.W.; Seerley, R.W.; Rampacek, G.W. Comparison of early castration at day 1, 7 or 14 on growth and carcass traits in swine. Livest. Prod. Sci. 1988, 20, 269–273. [Google Scholar] [CrossRef]
- Friton, G.M.; Philipp, H.; Schneider, T.; Kleemann, R. Investigation on the clinical efficacy and safety of meloxicam (Metacam) in the treatment of non-infectious locomotor disorders in pigs. Berl. Munch. Tierarztl. Wochenschr. 2003, 116, 421–426. [Google Scholar] [PubMed]
- Hirsch, A.C.; Philipp, H.; Kleemann, R. Investigation on the efficacy of meloxicam in sows with mastitis-metritis-agalactia syndrome. J. Vet. Pharmacol. Ther. 2003, 26, 355–360. [Google Scholar] [CrossRef]
- Burkemper, M.C.; Cramer, M.C.; Moeller, S.J.; Pairis-Garcia, M.D. The effect of oral meloxicam on piglet performance in the preweaning period. J. Swine Health Prod. 2019, 27, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Mainau, E.; Ruiz-de-la-Torre, J.L.; Dalmau, A.; Salleras, J.M.; Manteca, X. Effects of meloxicam (Metacam®) on post-farrowing sow behaviour and piglet performance. Animal 2012, 6, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Fosse, T.K.; Haga, H.A.; Hormazabal, V.; Haugejorden, G.; Horsberg, T.E.; Ranheim, B. Pharmacokinetics and pharmacodynamics of meloxicam in piglets. J. Vet. Pharmacol. Ther. 2008, 31, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Nixon, E.; Almond, G.W.; Baynes, R.E.; Messenger, K.M. Comparative Plasma and Interstitial Fluid Pharmacokinetics of Meloxicam, Flunixin, and Ketoprofen in Neonatal Piglets. Front. Vet. Sci. 2020, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- Nixon, E.; Chittenden, J.T.; Baynes, R.E.; Messenger, K.M. Pharmacokinetic/pharmacodynamic modeling of ketoprofen and flunixin at piglet castration and tail-docking. J. Vet. Pharmacol. 2022, 45, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Coutant, M.; Malmkvist, J.; Kaiser, M.; Foldager, L.; Herskin, M.S. Piglets’ acute responses to procaine-based local anesthetic injection and surgical castration: Effects of two volumes of anesthetic. Front. Pain. Res. 2022, 3, 943138. [Google Scholar] [CrossRef]
- Torp, K.D.; Metheny, E.; Simon, L.V. Lidocaine Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482479/ (accessed on 8 December 2022).
- Macfarlane, A.J.R.; Gitman, M.; Bornstein, K.J.; El-Boghdadly, K.; Weinberg, G. Updates in our understanding of local anaesthetic systemic toxicity: A narrative review. Anaesthesia 2021, 76, 27–39. [Google Scholar] [CrossRef]
- Tran, A.N.; Koo, J.Y. Risk of systemic toxicity with topical lidocaine/prilocaine: A review. J. Drugs Dermatol. 2014, 13, 1118–1122. [Google Scholar]
- Rosen, M.R.; Merker, C.; Pippenger, C.E. The effects of lidocaine on the canine ECG and electrophysiologic properties of Purkinje fibers. Am. Heart J. 1976, 91, 191–202. [Google Scholar] [CrossRef]
- European Public MRL Assessment Report (EPMAR) for Lidocaine (Porcine); EMA/CVMP/393160/2020; European Medicines Agency: Amsterdam, The Netherlands, 2021; Available online: https://www.ema.europa.eu/en/documents/mrl-opinion/opinion-cvmp-establishment-maximum-residue-limits-lidocaine-porcine_en.pdf (accessed on 1 March 2024).
- Committee for Veterinary Medicinal Products Meloxicam; Extension to Pigs; EMEA: London, UK, 1999; Available online: https://www.ema.europa.eu/en/documents/mrl-report/meloxicam-summary-report-2-committee-veterinary-medicinal-products_en.pdf (accessed on 1 March 2024).
Control-Treated Animals | LTG-Treated Animals | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Tail 0 h | Scrotum 0 h | Tail 4 h | Scrotum 4 h | Tail 24 h | Scrotum 24 h | Tail 0 h | Scrotum 0 h | Tail 4 h | Scrotum 4 h | Tail 24 h | Scrotum 24 h |
N * | 29 | 29 | 29 | 29 | 29 | 29 | 30 | 30 | 30 | 30 | 30 | 30 |
Mean | 0.9333 | 1.500 | 1.000 | 1.867 | 0.7586 | 1.621 | 0.1667 | 0.5667 | 0.2333 | 0.6667 | 0.1000 | 0.1667 |
SD | 0.6397 | 0.7311 | 0.8710 | 0.9371 | 0.8724 | 0.9416 | 0.3790 | 0.8172 | 0.5040 | 0.8023 | 0.3051 | 0.3790 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||||
N ** | 7 | 4 | 8 | 4 | 14 | 5 | 25 | 19 | 24 | 16 | 27 | 25 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Stress Vocalization during Tail Docking | ||||
---|---|---|---|---|
Control-Treated Piglets | LTG-Treated Piglets | |||
% High Frequency Stress Calls ** | Duration of Stress Calls (s) *** | % High Frequency Stress Calls | Duration of Stress Calls (s) | |
N * | 21 | 21 | 14 | 14 |
Mean | 56.0 | 2.300 | 14.0 | 1.400 |
SD | 12.0 | 2.221 | 10.4 | 0.999 |
p-value | 0.0254 | 0.0317 | ||
Stress Vocalization during Castration | ||||
Control-Treated Piglets | LTG-Treated Piglets | |||
% High Frequency Stress Calls ** | Duration of Calls (s) *** | % High Frequency Stress Calls *** | Duration of Calls (s) *** | |
N * | 29 | 29 | 28 | 28 |
Mean | 56.0 | 12.000 | 46.5 | 9.000 |
SD | 12.0 | 4.420 | 14.3 | 4.141 |
p-value | 0.0054 | 0.0443 |
Control-Treated Animals | LTG-Treated Animals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Day 0 Wt (kg) | Day 6 Wt (kg) | Day 0–6 Wt Change | Day 13 Wt (kg) | Day 0–13 Wt Change | Day 0 Wt (kg) | Day 6 Wt (kg) | Day 0–6 Wt Change | Day 13 Wt (kg) | Day 0–13 Wt Change | ||
N | 30 | 29 | 29 | 29 | 29 | N | 30 | 30 | 30 | 30 | 30 |
Mean | 2.686 | 3.759 | 1.055 | 5.437 | 2.733 | Mean | 2.698 | 3.998 | 1.299 | 5.860 | 3.162 |
SD | 0.6829 | 0.7283 | 0.5089 | 0.7734 | 0.4742 | SD | 0.6685 | 0.7723 | 0.4307 | 0.7594 | 0.4336 |
p-value | 0.983 | 0.2273 | 0.0512 | 0.0385 | 0.0060 |
Plasma Cortisol Levels in Piglets (ηg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control-Treated Animals | LTG-Treated Animals | |||||||||
T = −1 h | T = 3 h | T = 24 h | Diff T-1:T3 | Diff T-1:T24 | T = −1 h | T = 3 h | T = 24 h | Diff T-1:T3 | Diff T-1:T24 | |
N | 29 | 29 | 29 | 29 | 29 | 30 | 30 | 30 | 28 | 28 |
Mean | 5.653 | 5.931 | 6.127 | 0.278 | 0.4989 | 5.497 | 5.597 | 5.941 | 0.095 | 0.4386 |
SD | 0.817 | 0.536 | 0.447 | 0.725 | 0.8114 | 0.703 | 0.494 | 0.5669 | 0.788 | 0.5705 |
p-value | 0.4411 | 0.0150 | 0.1689 | 0.3629 | 0.7475 | |||||
Plasma Substance P Levels in Piglets (ηg/mL) | ||||||||||
Control-Treated Animals | LTG-Treated Animals | |||||||||
T = −1 h | T = 3 h | T = 24 h | Diff T-1:T3 | Diff T-1:T24 | T = −1 h | T = 3 h | T = 24 h | Diff T-1:T3 | Diff T-1:T24 | |
N * | 27 | 27 | 25 | 27 | 25 | 25 | 27 | 26 | 25 | 24 |
Mean | 6.224 | 7.144 | 5.777 | 0.920 | −0.868 | 6.207 | 6.392 | 5.759 | 0.136 | −0.445 |
SD | 0.278 | 0.455 | 1.351 | 0.372 | 1.969 | 0.525 | 0.659 | 0.473 | 0.630 | 0.501 |
p-value | 0.8777 | 0.0001 | 0.9498 | <0.001 | 0.3111 |
Sex | Day | Liver | Kidney | Muscle | Skin/Fat |
---|---|---|---|---|---|
M | 2 | 32.1 | 98.1 | 27.5 | 2160 |
M | 2 | 34.5 | 87.3 | 87.3 | 1900 |
F | 2 | 23.2 | 34.8 | 17.9 | 1020 |
F | 2 | 22.0 | 55.0 | 24.6 | 580 |
F | 4 | 6.2 | 9.1 | 8.9 | 450 |
F | 4 | 4.9 | 8.3 | 4.2 | 646 |
M | 4 | 4.7 | 8.5 | 5.1 | 359 |
M | 4 | 5.5 | 10.6 | 5.2 | 59.1 |
F | 7 | 0.8 | 8.9 | 9.1 | 71.5 |
F | 7 | 0.8 | 1.6 | 0.5 | 71.6 |
M | 7 | 3.3 | 6.8 | 2.5 | 97.3 |
M | 7 | 0.5 | 1.4 | 1.7 | 320 |
F | 10 | <0.5 | <0.5 | 1.2 | 20.2 |
F | 10 | 1.7 | 1.9 | 1.6 | 41.1 |
M | 10 | <0.5 | <0.5 | 1.3 | 231 |
M | 10 | 0.7 | 1.7 | 2.8 | 71.7 |
M | 14 | <0.5 | <0.5 | <0.5 | 21.5 |
F | 14 | <0.5 | <0.5 | 1.1 | 18.8 |
M | 14 | <0.5 | <0.5 | 0.8 | 44.2 |
F | 14 | <0.5 | <0.5 | <0.5 | 21.3 |
M | 21 | <0.5 | <0.5 | <0.5 | 4.1 |
M | 21 | <0.5 | <0.5 | <0.5 | 6.6 |
F | 21 | <0.5 | <0.5 | <0.5 | <0.5 |
F | 21 | <0.5 | <0.5 | <0.5 | 1.4 |
F | 28 | <0.5 | |||
M | 28 | <0.5 | |||
F | 28 | <0.5 | |||
M | 28 | <0.5 |
Group 1 1× | Group 2 2× | Group 3 3× | Group 4 1× + Oral | Group 5 Control | p Value | ||
---|---|---|---|---|---|---|---|
QT Interval (s) | |||||||
Day 0 Pre-Treatment | Mean | 0.157 | 0.154 | 0.149 | 0.156 | 0.162 | 0.8154 |
SD | 0.006 | 0.012 | 0.0147 | 0.026 | 0.035 | ||
Day 0 (1 h Post-Treatment) | Mean | 0.162 | 0.157 | 0.159 | 0.167 | 0.174 | 0.2499 |
SD | 0.0169 | 0.0153 | 0.014 | 0.013 | 0.019 | ||
Day 1 (1 h Post-Treatment) | Mean | 0.159 | 0.161 | 0.161 | 0.144 | 0.173 | 0.0799 |
SD | 0.015 | 0.009 | 0.011 | 0.029 | 0.019 | ||
Day 2 (1 h Post-Treatment) | Mean | 0.146 | 0.158 | 0.154 | 0.155 | 0.155 | 0.7910 |
SD | 0.019 | 0.015 | 0.022 | 0.019 | 0.013 | ||
PR Interval (s) | |||||||
Day 0 Pre-Treatment | Mean | 0.120 | 0.120 | 0.115 | 0.122 | 0.118 | 0.4653 |
SD | 0.008 | 0.007 | 0.006 | 0.011 | 0.011 | ||
Day 0 (1 h Post-Treatment) | Mean | 0.119 | 0.119 | 0.114 | 0.119 | 0.117 | 0.7975 |
SD | 0.008 | 0.010 | 0.006 | 0.007 | 0.015 | ||
Day 1 (1 h Post-Treatment) | Mean | 0.126 | 0.125 | 0.123 | 0.128 | 0.126 | 0.7664 |
SD | 0.009 | 0.012 | 0.003 | 0.007 | 0.009 | ||
Day 2 (1 h Post-Treatment) | Mean | 0.123 | 0.124 | 0.119 | 0.122 | 0.122 | 0.9110 |
SD | 0.009 | 0.013 | 0.009 | 0.007 | 0.010 | ||
QRS Interval (s) | |||||||
Day 0 Pre-Treatment | Mean | 0.031 | 0.031 | 0.031 | 0.032 | 0.033 | 0.4787 |
SD | 0.002 | 0.003 | 0.002 | 0.004 | 0.003 | ||
Day 0 (1 h Post-Treatment) | Mean | 0.033 | 0.029 | 0.033 | 0.032 | 0.032 | 0.1105 |
SD | 0.004 | 0.005 | 0.003 | 0.002 | 0.002 | ||
Day 1 (1 h Post-Treatment) | Mean | 0.034 | 0.034 | 0.037 | 0.034 | 0.033 | 0.1566 |
SD | 0.003 | 0.005 | 0.004 | 0.003 | 0.002 | ||
Day 2 (1 h Post-Treatment) | Mean | 0.035 | 0.036 | 0.035 | 0.035 | 0.032 | 0.3650 |
SD | 0.003 | 0.005 | 0.002 | 0.004 | 0.003 | ||
QQ Interval (s) | |||||||
Day 0 Pre-Treatment | Mean | 0.393 | 0.363 | 0.358 | 0.378 | 0.395 | 0.8195 |
SD | 0.056 | 0.017 | 0.028 | 0.090 | 0.135 | ||
Day 0 (1 h Post-Treatment) | Mean | 0.385 | 0.379 | 0.408 | 0.387 | 0.430 | 0.4875 |
SD | 0.051 | 0.036 | 0.087 | 0.045 | 0.082 | ||
Day 1 (1 h Post-Treatment) | Mean | 0.370 | 0.374 | 0.387 | 0.388 | 0.412 | 0.6269 |
SD | 0.034 | 0.031 | 0.051 | 0.045 | 0.093 | ||
Day 2 (1 h Post-Treatment) | Mean | 0.373 | 0.385 | 0.402 | 0.397 | 0.397 | 0.8944 |
SD | 0.039 | 0.036 | 0.079 | 0.061 | 0.083 | ||
Heart Rate (beats/min) | |||||||
Day 0 Pre-Treatment | Mean | 155 | 166 | 169 | 164 | 162 | 0.7941 |
SD | 19 | 8 | 13 | 27 | 34 | ||
Day 0 (1 h Post-Treatment) | Mean | 158 | 160 | 152 | 157 | 144 | 0.6288 |
SD | 18 | 16 | 28 | 19 | 27 | ||
Day 1 (1 h Post-Treatment) | Mean | 163 | 161 | 157 | 156 | 151 | 0.7764 |
SD | 15 | 14 | 19 | 17 | 29 | ||
Day 2 (1 h Post-Treatment) | Mean | 162 | 157 | 154 | 154 | 155 | 0.9134 |
SD | 16 | 13 | 26 | 19 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagel, D.; Ralston, B.; Hanson, A.; Burwash, L.; Matheson-Bird, H.; Olson, B.; Schatz, C.; Olson, M. Efficacy and Safety of Lidocam Topical Gel (4% Lidocaine—0.3% Meloxicam) for Pain and Inflammation Management during Castration and Tail Docking in Piglets. Animals 2024, 14, 930. https://doi.org/10.3390/ani14060930
Nagel D, Ralston B, Hanson A, Burwash L, Matheson-Bird H, Olson B, Schatz C, Olson M. Efficacy and Safety of Lidocam Topical Gel (4% Lidocaine—0.3% Meloxicam) for Pain and Inflammation Management during Castration and Tail Docking in Piglets. Animals. 2024; 14(6):930. https://doi.org/10.3390/ani14060930
Chicago/Turabian StyleNagel, Denis, Brenda Ralston, Andrea Hanson, Les Burwash, Heather Matheson-Bird, Barbara Olson, Crystal Schatz, and Merle Olson. 2024. "Efficacy and Safety of Lidocam Topical Gel (4% Lidocaine—0.3% Meloxicam) for Pain and Inflammation Management during Castration and Tail Docking in Piglets" Animals 14, no. 6: 930. https://doi.org/10.3390/ani14060930