Cattle Target Segmentation Method in Multi-Scenes Using Improved DeepLabV3+ Method
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition Platform
2.2. Improved DeepLabV3+ Segmentation Model
2.3. MobileNetV2 Network
2.4. Layer-by-Layer Feature Fusion of Decoder
2.5. SENet
3. Test Platform and Model Evaluation Indicators
3.1. Test Platform and Comparison Models
3.2. Evaluation Indicators
4. Results and Analysis
4.1. Segmentation Results of Different Models
4.2. Comparative Analysis of DeepLabV3+ Improved Model
4.3. Segmentation Effect under Different Datasets
4.4. Application Analysis
4.5. Special Case Analysis
4.6. Generalized Application Analysis of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Zhou, Y.; Guo, Y. A brief survey on semantic segmentation with deep learning. Neurocomputing 2020, 406, 302–321. [Google Scholar] [CrossRef]
- Guo, Y.; He, D.; Chai, L. A machine vision-based method for monitoring scene-interactive behaviors of dairy calf. Animals 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Aggrey, S.E.; Wang, P.; Oladeinde, A.; Chai, L. Monitoring Behaviors of Broiler Chickens at Different Ages with Deep Learning. Animals 2022, 12, 3390. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Shin, T.; Kang, R.; Fong, A.; McDonogh, B.; Yoon, S.C. Automated segmentation of foodborne bacteria from chicken rinse with hyperspectral microscope imaging and deep learning methods. Comput. Electron. Agric. 2023, 208, 107802. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, J.; He, Y.; Jia, H.; Liang, Z. RL-DeepLabv3+: A lightweight rice lodging semantic segmentation model for unmanned rice harvester. Comput. Electron. Agric. 2023, 209, 107823. [Google Scholar] [CrossRef]
- Huang, E.; He, Z.; Mao, A.; Ceballos, M.C.; Parsons, T.D.; Liu, K. A semi-supervised generative adversarial network for amodal instance segmentation of piglets in farrowing pens. Comput. Electron. Agric. 2023, 209, 107839. [Google Scholar] [CrossRef]
- Tu, S.; Liu, H.; Li, J.; Huang, J.; Li, B.; Pang, J.; Xue, Y. Instance segmentation based on mask scoring R-CNN for group-housed pigs. In Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 458–462. [Google Scholar]
- Barkema, H.W.; von Keyserlingk, M.A.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, X.; Hu, Z. Cow tail detection method for body condition score using Faster R-CNN. In Proceedings of the 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi’an, China, 22–24 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 347–351. [Google Scholar]
- Guo, Y.; Qiao, Y.; Sukkarieh, S.; Chai, L.; He, D. Bigru-attention based cow behavior classification using video data for precision livestock farming. Trans. ASABE 2021, 64, 1823–1833. [Google Scholar] [CrossRef]
- Qiao, Y.; Guo, Y.; Yu, K.; He, D. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming. Comput. Electron. Agric. 2022, 193, 106650. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Z.; Qiao, Y.; Sukkarieh, S. Deep Learning-Based Cow Tail Detection and Tracking for Precision Livestock Farming. IEEE/ASME Trans. Mechatron. 2022, 28, 1213–1221. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Hsu, J.T.; Ding, S.T.; Rustia, D.J.A.; Lin, T.T. Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system. Biosyst. Eng. 2020, 199, 97–108. [Google Scholar] [CrossRef]
- Arazo, E.; Aly, R.; McGuinness, K. Segmentation Enhanced Lameness Detection in Dairy Cows from RGB and Depth Video. arXiv 2022, arXiv:2206.04449. [Google Scholar]
- Wu, D.; Yin, X.; Jiang, B.; Jiang, M.; Li, Z.; Song, H. Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm. Biosyst. Eng. 2020, 192, 72–89. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, G.; Wang, K.; Si, Y. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Comput. Electron. Agric. 2022, 194, 106738. [Google Scholar] [CrossRef]
- Jia, N.; Kootstra, G.; Koerkamp, P.G. Segmentation of body parts of cows in RGB-depth images based on template matching. Comput. Electron. Agric. 2021, 180, 105897. [Google Scholar] [CrossRef]
- Tebug, S.F.; Missohou, A.; Sabi, S.S.; Juga, J.; Poole, E.J.; Tapio, M.; Marshall, K. Using body measurements to estimate live weight of dairy cattle in low-input systems in Senegal. J. Appl. Anim. Res. 2018, 46, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Truman, M.; Sukkarieh, S. Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Comput. Electron. Agric. 2019, 165, 104958. [Google Scholar] [CrossRef]
- Deng, H.; Zhou, Y.; Xu, T.; Teng, M.; Xu, J. Optimization of cattle’s image semantics segmentation with fully convolutional networks based on RGB-D. Trans. CSAE 2019, 35, 151–160. [Google Scholar]
- Li, X.; Cai, C.; Zhang, R.; Ju, L.; Ju, L.; He, J. Deep cascaded convolutional models for cattle pose estimation. Comput. Electron. Agric. 2019, 164, 104885. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.X.; Wang, W.J.; Zhu, Y.K.; Pang, R.M.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
Input | Operator | t | c | n | s | Rate |
---|---|---|---|---|---|---|
480 × 480 × 3 | Conv2d | - | 32 | 1 | 2 | 1 |
240 × 240 × 32 | Bottleneck | 1 | 16 | 1 | 1 | 1 |
240 × 240 × 16 | Bottleneck | 6 | 24 | 2 | 2 | 1 |
120 × 120 × 24 | Bottleneck | 6 | 32 | 3 | 2 | 1 |
60 × 60 × 32 | Bottleneck | 6 | 64 | 4 | 2 | 1 |
30 × 30 × 64 | Bottleneck | 6 | 96 | 3 | 1 | 1 |
30 × 30 × 96 | Bottleneck | 6 | 160 | 3 | 1 | 1 |
30 × 30 × 160 | Bottleneck | 6 | 320 | 1 | 1 | 2 |
Model | PA | MPA | MIoU | CPA (Cow) | CPA (Beef) | IoU (Cow) | IoU (Beef) |
---|---|---|---|---|---|---|---|
FCN | 99.4 | 97.1 | 94.9 | 95.7 | 95.9 | 92.5 | 93.0 |
LR-ASPP | 99.0 | 95.1 | 92.0 | 94.2 | 91.6 | 88.6 | 88.3 |
U-Net | 94.2 | 69.0 | 59.2 | 48.3 | 61.1 | 44.6 | 38.7 |
DeepLabV3+ | 92.7 | 67.9 | 62.0 | 55.0 | 50.1 | 47.1 | 46.4 |
Imp-DeepLabV3+ | 99.4 | 98.1 | 96.8 | 97.5 | 97.0 | 95.0 | 95.9 |
Model | PA | MPA | MIoU | CPA (Cow) | CPA (Beef) | IoU (Cow) | IoU (Beef) |
---|---|---|---|---|---|---|---|
DeepLabV3+ | 92.7 | 67.9 | 62.0 | 55.0 | 50.1 | 47.1 | 46.4 |
M2-DeepLabV3+ | 99.1 | 97.5 | 95.2 | 96.5 | 96.4 | 92.3 | 94.4 |
M2-U-DeepLabV3+ | 99.4 | 97.9 | 96.6 | 97.0 | 97.0 | 94.6 | 95.8 |
Imp-DeepLabV3+ | 99.4 | 98.1 | 96.8 | 97.5 | 97.0 | 95.0 | 95.9 |
Model | PA | MPA | MIoU | CPA (Cow) | CPA (Beef) | IoU (Cow) | IoU (Beef) |
---|---|---|---|---|---|---|---|
DeepLabV3+ | 97.2 | 93.7 | 85.9 | 89.3 | 93.7 | 75.6 | 84.9 |
M2-DeepLabV3+ | 99.3 | 98.3 | 96.1 | 97.3 | 98.0 | 93.5 | 95.5 |
M2-U-DeepLabV3+ | 99.4 | 98.5 | 97.0 | 97.6 | 98.3 | 95.1 | 96.5 |
Imp-DeepLabV3+ | 99.5 | 98.8 | 97.3 | 98.3 | 98.4 | 95.5 | 96.9 |
Model | PA | MPA | MIoU | CPA (Cow) | CPA (Beef) | IoU (Cow) | IoU (Beef) |
---|---|---|---|---|---|---|---|
DeepLabV3+ | 88.1 | 40.5 | 36.1 | 19.5 | 2.5 | 17.2 | 2.4 |
M2-DeepLabV3+ | 98.9 | 96.4 | 94.1 | 95.3 | 94.5 | 90.7 | 92.8 |
M2-U-DeepLabV3+ | 99.2 | 97.1 | 95.9 | 96.0 | 95.5 | 93.8 | 94.8 |
Imp-DeepLabV3+ | 99.3 | 97.3 | 96.2 | 96.7 | 95.4 | 94.4 | 94.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Guo, Y.; Huang, X.; Qiao, Y. Cattle Target Segmentation Method in Multi-Scenes Using Improved DeepLabV3+ Method. Animals 2023, 13, 2521. https://doi.org/10.3390/ani13152521
Feng T, Guo Y, Huang X, Qiao Y. Cattle Target Segmentation Method in Multi-Scenes Using Improved DeepLabV3+ Method. Animals. 2023; 13(15):2521. https://doi.org/10.3390/ani13152521
Chicago/Turabian StyleFeng, Tao, Yangyang Guo, Xiaoping Huang, and Yongliang Qiao. 2023. "Cattle Target Segmentation Method in Multi-Scenes Using Improved DeepLabV3+ Method" Animals 13, no. 15: 2521. https://doi.org/10.3390/ani13152521