The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics
Abstract
:1. Introduction
2. Infectious Agents Involved in the Etiopathogenesis of Cutaneous Lymphoma
2.1. Bacterial Superantigens in CTCL
2.1.1. Staphylococcus aureus
2.1.2. Borrelia burgdorferi
2.1.3. Chlamydia pneumoniae
2.2. Viral Superantigens in CTCL
2.2.1. Retroviruses: Human T-Lymphotropic Virus (HTLV)
2.2.2. Herpesviruses: Epstein–Barr Virus (EBV) and Cytomegalovirus (CMV)
3. Parvoviruses Associated with the Etiopathogenesis of Cutaneous Lymphoma
3.1. The Parvoviridae Family
3.2. Cutavirus Discovery
3.3. Cutaviruses Association with CTCL
4. Parvoviruses with Therapeutic Potential in Cutaneous Lymphoma
4.1. The Rat H-1 Parvovirus
4.2. The Potential of H-1PV against Cutaneous Lymphoma
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019, 133, 1703–1714. [Google Scholar] [CrossRef]
- Willemze, R.; Jaffe, E.S.; Burg, G.; Cerroni, L.; Berti, E.; Swerdlow, S.H.; Ralfkiaer, E.; Chimenti, S.; Diaz-Perez, J.L.; Duncan, L.M.; et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105, 3768–3785. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.S.; Wedgeworth, E.; Crichton, S.; Mitchell, T.J.; Cox, M.; Ferreira, S.; Robson, A.; Calonje, E.; Stefanato, C.M.; Wain, E.M.; et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: Validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol. 2010, 28, 4730–4739. [Google Scholar] [CrossRef] [PubMed]
- Jahan-Tigh, R.R.; Huen, A.O.; Lee, G.L.; Pozadzides, J.V.; Liu, P.; Duvic, M. Hydrochlorothiazide and cutaneous T cell lymphoma: Prospective analysis and case series. Cancer 2013, 119, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Jackow, C.M.; McHam, J.B.; Friss, A.; Alvear, J.; Reveille, J.R.; Duvic, M. HLA-DR5 and DQB1*03 class II alleles are associated with cutaneous T-cell lymphoma. J. Investig. Dermatol. 1996, 107, 373–376. [Google Scholar] [CrossRef]
- Choi, J.; Goh, G.; Walradt, T.; Hong, B.S.; Bunick, C.G.; Chen, K.; Bjornson, R.D.; Maman, Y.; Wang, T.; Tordoff, J.; et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 2015, 47, 1011–1019. [Google Scholar] [CrossRef]
- Whittemore, A.S.; Holly, E.A.; Lee, I.M.; Abel, E.A.; Adams, R.M.; Nickoloff, B.J.; Bley, L.; Peters, J.M.; Gibney, C. Mycosis fungoides in relation to environmental exposures and immune response: A case-control study. J. Natl. Cancer Inst. 1989, 81, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, T.; Gellrich, S.; Lukowsky, A.; Mielke, A.; Audring, H.; Sterry, W.; Walden, P. Polyclonal expansion of T cells with the TCR V beta type of the tumour cell in lesions of cutaneous T-cell lymphoma: Evidence for possible superantigen involvement. Br. J. Dermatol. 2004, 150, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Huggins, R.H.; Lertsburapa, T.; Bauer, K.; Rademaker, A.; Gerami, P.; Guitart, J. Cutaneous T-cell lymphoma and Staphylococcus aureus colonization. J. Am. Acad. Dermatol. 2008, 59, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Hester, J.P.; Lemak, N.A. Photopheresis therapy for cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 1996, 35, 573–579. [Google Scholar] [CrossRef]
- Talpur, R.; Bassett, R.; Duvic, M. Prevalence and treatment of Staphylococcus aureus colonization in patients with mycosis fungoides and Sézary syndrome. Br. J. Dermatol. 2008, 159, 105–112. [Google Scholar] [CrossRef]
- Tokura, Y.; Yagi, H.; Ohshima, A.; Kurokawa, S.; Wakita, H.; Yokote, R.; Shirahama, S.; Flirukawa, F.; Takigawa, M. Cutaneous colonization with staphylococci influences the disease activity of Sézary syndrome: A potential role for bacterial superantigens. Br. J. Dermatol. 1995, 133, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Tuffs, S.W.; Haeryfar, S.M.M.; McCormick, J.K. Manipulation of innate and adaptive immunity by staphylococcal infections. Pathogens 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Woetmann, A.; Lovato, P.; Eriksen, K.W.; Krejsgaard, T.; Labuda, T.; Zhang, Q.; Mathiesen, A.M.; Geisler, C.; Svejgaard, A.; Wasik, M.A.; et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 2007, 109, 3325–3332. [Google Scholar] [CrossRef] [PubMed]
- Tothova, S.M.; Bonin, S.; Trevisan, G.; Stanta, G. Mycosis fungoides: Is it a Borrelia burgdorferi-associated disease? Br. J. Cancer 2006, 94, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Kraiczy, P.; Skerka, C.; Kirschfink, M.; Zipfel, P.F.; Brade, V. Mechanism of complement resistance of pathogenic Borrelia burgdorferi isolates. Int. Immunopharmacol. 2001, 1, 393–401. [Google Scholar] [CrossRef] [PubMed]
- De Koning, J.; Tazelaar, D.J.; Hoogkamp-Korstanje, J.A.; Elema, J.D. Acrodermatitis chronica atrophicans: A light and electron microscopic study. J. Cutan. Pathol. 1995, 22, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Seiler, K.P.; Weis, J.J. Immunity to Lyme disease: Protection, pathology and persistence. Curr. Opin. Immunol. 1996, 8, 503–509. [Google Scholar] [CrossRef]
- Hofbauer, G.F.; Kessler, B.; Kempf, W.; Nestle, F.O.; Burg, G.; Dummer, R. Multilesional primary cutaneous diffuse large B-cell lymphoma responsive to antibiotic treatment. Dermatology 2001, 203, 168–170. [Google Scholar] [CrossRef]
- Abrams, J.T.; Balin, B.J.; Vonderheid, E.C. Association between Sézary T cell-activating factor, Chlamydia pneumoniae, and cutaneous T cell lymphoma. Ann. N.Y. Acad. Sci. 2001, 941, 69–85. [Google Scholar] [CrossRef]
- Abrams, J.T.; Vonderheid, E.C.; Kolbe, S.; Appelt, D.M.; Arking, E.J.; Balin, B.J. Sézary T cell-activating factor is a Chlamydia pneumoniae-associated protein. Clin. Diagn. Lab. Immunol. 1999, 6, 895–905. [Google Scholar] [CrossRef]
- MacKie, R.M. Initial event in mycosis fungoides of the skin is viral infection of epidermal Langerhans cells. Lancet 1981, 2, 283–285. [Google Scholar] [CrossRef]
- Van der Loo, E.M.; van Muijen, G.N.; van Vloten, W.A.; Beens, W.; Scheffer, E.; Meijer, C.J. C-type virus-like particles specifically localized in Langerhans cells and related cells of skin and lymph nodes of patients with mycosis fungoides and Sézary’s syndrome: A morphological and biochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1979, 31, 193–203. [Google Scholar] [PubMed]
- Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA 1980, 77, 7415–7419. [Google Scholar] [CrossRef] [PubMed]
- Manzari, V.; Gismondi, A.; Barillari, G.; Morrone, S.; Modesti, A.; Albonici, L.; De Marchis, L.; Fazio, V.; Gradilone, A.; Zani, M.; et al. HTLV-V: A new human retrovirus isolated in a Tac-negative T cell lymphoma/leukemia. Science 1987, 238, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Zucker-Franklin, D.; Coutavas, E.E.; Rush, M.G.; Zouzias, D.C. Detection of human T-lymphotropic virus-like particles in cultures of peripheral blood lymphocytes from patients with mycosis fungoides. Proc. Natl. Acad. Sci. USA 1991, 88, 7630–7634. [Google Scholar] [CrossRef]
- Zucker-Franklin, D.; Hooper, W.C.; Evatt, B.L. Human lymphotropic retroviruses associated with mycosis fungoides: Evidence that human T-cell lymphotropic virus type II (HTLV-II) as well as HTLV-I may play a role in the disease. Blood 1992, 80, 1537–1545. [Google Scholar] [CrossRef]
- Böni, R.; Davis-Daneshfar, A.; Burg, G.; Fuchs, D.; Wood, G.S. No detection of HTLV-I proviral DNA in lesional skin biopsies from Swiss and German patients with cutaneous T-cell lymphoma. Br. J. Dermatol. 1996, 134, 282–284. [Google Scholar] [CrossRef]
- Wood, G.S.; Salvekar, A.; Schaffer, J.; Crooks, C.F.; Henghold, W.; Fivenson, D.P.; Kim, Y.H.; Smoller, B.R. Evidence against a role for human T-cell lymphotropic virus type I (HTLV-I) in the pathogenesis of American cutaneous T-cell lymphoma. J. Investig. Dermatol. 1996, 107, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Bazarbachi, A.; Soriano, V.; Pawson, R.; Vallejo, A.; Moudgil, T.; Matutes, E.; Peries, J.; Molina, A.; de The, H.; Schulz, T.F.; et al. Mycosis fungoides and Sézary syndrome are not associated with HTLV-I infection: An international study. Br. J. Haematol. 1997, 98, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk, M.; Filas, V.; Sobieska, M.; Gozdzicka-Jozefiak, A.; Wiktorowicz, K.; Breborowicz, J. No evidence of HTLV-I infection in patients with mycosis fungoides and Sézary syndrome. Neoplasia 2005, 52, 52–55. [Google Scholar]
- Bonin, S.; Tothova, S.M.; Barbazza, R.; Brunetti, D.; Stanta, G.; Trevisan, G. Evidence of multiple infectious agents in mycosis fungoides lesions. Exp. Mol. Pathol. 2010, 89, 46–50. [Google Scholar] [CrossRef]
- Erkek, E.; Sahin, S.; Atakan, N.; Kocagoz, T.; Olut, A.; Gokoz, A. Examination of mycosis fungoides for the presence of Epstein-Barr virus and human-herpesvirus-6 by polymerase chain reaction. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 422–426. [Google Scholar] [CrossRef]
- Nagore, E.; Ledesma, E.; Collado, C.; Oliver, V.; Perez-Perez, A.; Aliaga, A. Detection of Epstein-Barr virus and human herpesvirus 7 and 8 genomes in primary cutaneous T- and B-cell lymphomas. Br. J. Dermatol. 2000, 143, 320–323. [Google Scholar] [CrossRef]
- Shimakage, M.; Sasagawa, T.; Kawahara, K.; Yutsudo, M.; Kusuoka, H.; Kozuka, T. Expression of Epstein-Barr virus in cutaneous T-cell lymphoma including mycosis fungoides. Int. J. Cancer 2001, 92, 226–231. [Google Scholar] [CrossRef]
- Herne, K.L.; Talpur, R.; Breuer-McHam, J.; Champlin, R.; Duvic, M. Cytomegalovirus seropositivity is significantly associated with mycosis fungoides and Sézary syndrome. Blood 2003, 101, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Bischoff, S.; Skrygan, M.; Wieland, U.; Brockmeyer, N.H.; Stücker, M.; Altmeyer, P.; Gambichler, T. High association of human herpesvirus 8 in large-plaque parapsoriasis and mycosis fungoides. Arch. Dermatol. 2008, 144, 1011–1016. [Google Scholar] [CrossRef]
- Gupta, R.K.; Ramble, J.; Tong, C.Y.; Whittaker, S.; MacMahon, E. Cytomegalovirus seroprevalence is not higher in patients with mycosis fungoides/Sézary syndrome. Blood 2006, 107, 1241–1242. [Google Scholar] [CrossRef] [PubMed]
- Trento, E.; Castilletti, C.; Ferraro, C.; Lesnoni La Parola, I.; Mussi, A.; Muscardin, L.; Bordignon, V.; D’Agosto, G.; Amantea, A.; Mastroianni, A.; et al. Human herpesvirus 8 infection in patients with cutaneous lymphoproliferative diseases. Arch. Dermatol. 2005, 141, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Henghold, W.B., II; Purvis, S.F.; Schaffer, J.; Giam, C.Z.; Wood, G.S. No evidence of KSHV/HHV-8 in mycosis fungoides or associated disorders. J. Investig. Dermatol. 1997, 108, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Ponti, R.; Bergallo, M.; Costa, C.; Quaglino, P.; Fierro, M.T.; Comessatti, A.; Stroppiana, E.; Sidoti, F.; Merlino, C.; Novelli, M.; et al. C Human herpesvirus 7 detection by quantitative real time polymerase chain reaction in primary cutaneous T-cell lymphomas and healthy subjects: Lack of a pathogenic role. Br. J. Dermatol. 2008, 159, 1131–1137. [Google Scholar] [CrossRef]
- Berneman, Z.N.; Torelli, G.; Luppi, M.; Jarrett, R.F. Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann. Hematol. 1998, 77, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Mirvish, E.D.; Pomerantz, R.G.; Geskin, L.J. Infectious agents in cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 2011, 64, 423–431. [Google Scholar] [CrossRef]
- Phan, T.G.; Dreno, B.; Charlys da Costa, A.; Li, L.; Orlandi, P.; Deng, X.; Kapusinszky, B.; Siqueira, J.; Knol, A.C.; Halary, F.; et al. A new protoparvovirus in human fecal samples and cutaneous T cell lymphomas (mycosis fungoides). Virology 2016, 496, 299–305. [Google Scholar] [CrossRef]
- Phan, T.G.; Vo, N.P.; Bonkoungou, L.J.; Kapoor, A.; Barro, N.; O’Ryan, M.; Kapusinszky, B.; Wang, C.; Delwart, E. Acute diarrhea in West Africa children: Diverse enteric viruses and a novel parvovirus genus. J. Virol. 2012, 86, 11024–11030. [Google Scholar] [CrossRef]
- Väisänen, E.; Fu, Y.; Koskenmies, S.; Fyhrquist, N.; Wang, Y.; Keinonen, A.; Mäkisalo, H.; Väkevä, L.; Pitkänen, S.; Ranki, A.; et al. Cutavirus DNA in malignant and nonmalignant skin of cutaneous T-cell lymphoma and organ transplant patients but not of healthy adults. Clin. Infect. Dis. 2019, 68, 1904–1910. [Google Scholar] [CrossRef]
- Kreuter, A.; Nasserani, N.; Tigges, C.; Oellig, F.; Silling, S.; Akgül, B.; Wieland, U. Cutavirus infection in primary cutaneous B- and T-cell lymphoma. JAMA Dermatol. 2018, 154, 965–967. [Google Scholar] [CrossRef]
- Kikuchi, A.; Naka, W.; Harada, T.; Sakuraoka, K.; Harada, R.; Nishikawa, T. Parapsoriasis en plaques: Its potential for progression to malignant lymphoma. J. Am. Acad. Dermatol. 1993, 29, 419–422. [Google Scholar] [CrossRef]
- Mohanraj, U.; Konttinen, T.; Salava, A.; Väkevä, L.; Ranki, A.; Söderlund-Venermo, M. Significant association of cutavirus with parapsoriasis en plaques: High prevalence both in skin and biopsy samples. Clin. Infect. Dis. 2023, 77, 987–990. [Google Scholar] [CrossRef]
- Hashida, Y.; Nakajima, K.; Higuchi, T.; Nakai, K.; Daibata, M. Involvement of cutavirus in a subset of patients with cutaneous T-cell lymphoma with an unfavorable outcome. J. Clin. Virol. 2023, 165, 105523. [Google Scholar] [CrossRef]
- Bergallo, M.; Daprà, V.; Fava, P.; Ponti, R.; Calvi, C.; Fierro, M.T.; Quaglino, P.; Galliano, I.; Montanari, P. Lack of detection of cutavirus DNA using PCR real time in cutaneous T-cell lymphomas. G. Ital. Dermatol. Venereol. 2020, 155, 772–774. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-McKenna, M.; Chiorini, J.A.; Mukha, D.F.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P.; Tijssen, P.; Gatherer, D.; et al. The family Parvoviridae. Arch. Virol. 2014, 159, 1239–1247. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.; et al. ICTV virus taxonomy profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Tattersall, P. A rolling-hairpin strategy: Basic mechanisms of DNA replication in the parvoviruses. In Parvoviruses; Kerr, J., Cotmore, S.F., Bloom, M.E., Linden, R.M., Parrish, C.R., Eds.; Hodder Arnold: London, UK, 2005; pp. 171–181. [Google Scholar]
- Nüesch, J.P.; Tattersall, P. Nuclear targeting of the parvoviral replicator molecule NS1: Evidence for self-association prior to nuclear transport. Virology 1993, 196, 637–651. [Google Scholar] [CrossRef]
- Callaway, H.M.; Subramanian, S.; Urbina, C.A.; Barnard, K.N.; Dick, R.A.; Bator, C.M.; Hafenstein, S.L.; Gifford, R.J.; Parrish, C.R. Examination and reconstruction of three ancient endogenous parvovirus capsid protein gene remnants found in rodent genomes. J. Virol. 2019, 93, e01542-18. [Google Scholar] [CrossRef]
- Mühlemann, B.; Margaryan, A.; de Barros Damgaard, P.; Allentoft, M.E.; Vinner, L.; Hansen, A.J.; Weber, A.; Bazaliiskii, V.I.; Molak, M.; Arneborg, J.; et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl. Acad. Sci. USA 2019, 115, 7557–7562. [Google Scholar] [CrossRef]
- Francois, S.; Filloux, D.; Roumagnac, P.; Bigot, D.; Gayral, P.; Marin, D.P.; Froissart, R.; Ogliastro, M. Discovery of parvovirus-related sequences in an unexpected broad range of animals. Sci. Rep. 2016, 6, 30889. [Google Scholar] [CrossRef]
- Jager, M.C.; Tomplinson, J.E.; Lopez-Astacio, R.A.; Parrish, C.R.; Van de Walle, G.R. Small but mighty: Old and new parvoviruses of veterinary significance. Virol. J. 2021, 18, 210. [Google Scholar] [CrossRef]
- Kerr, J.R. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J. Clin. Pathol. 2016, 69, 279–291. [Google Scholar] [CrossRef]
- Pénzes, J.J.; Söderlund-Venermo, M.; Canuti, M.; Eis-Hübinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the family Parvoviridae: A revised taxonomy independent of the canonical approach based on host association. Arch. Virol. 2020, 165, 2133–2146. [Google Scholar] [CrossRef]
- Toolan, H.W. A virus associated with transplantable human tumors. Bull. N. Y. Acad. Med. 1961, 37, 305–310. [Google Scholar]
- Toolan, H.W.; Dalldore, G.; Barclay, M.; Chandra, S.; Moore, A.E. An unidentified, filterable agent isolated from transplanted human tumors. Proc. Natl. Acad. Sci. USA 1960, 46, 1256–1258. [Google Scholar] [CrossRef]
- Toolan, H.W.; Ledinko, N. Inhibition by H-1 virus of the incidence of tumors produced by adenovirus 12 in hamsters. Virology 1968, 35, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Toolan, H.W.; Rhode, S.L.; Gierthy, J.F. Inhibition of 7,12-dimethylbenz(a)anthracene-induced tumors in Syrian hamsters by prior infection with H-1 parvovirus. Cancer Res. 1982, 42, 2552–2555. [Google Scholar] [PubMed]
- Angelova, A.L.; Geletneky, K.; Nüesch, J.P.F.; Rommelaere, J. Tumor selectivity of oncolytic parvoviruses: From in vitro and animal models to cancer patients. Front. Bioeng. Biotechnol. 2015, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Marchino, A.; Bonifati, S.; Scott, E.M.; Angelova, A.L.; Rommelaere, J. Oncolytic parvoviruses: From basic virology to clinical applications. Virol. J. 2015, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Bretscher, K.; Marchini, A. H-1 parvovirus as a cancer-killing agent: Past, present, and future. Viruses 2019, 11, 562. [Google Scholar] [CrossRef] [PubMed]
- Angelova, A.; Rommelaere, J. Immune system stimulation by oncolytic rodent protoparvoviruses. Viruses 2019, 11, 415. [Google Scholar] [CrossRef]
- Angelova, A.; Ferreira, T.; Bretscher, C.; Rommelaere, J.; Marchini, A. Parvovirus-based combinatorial immunotherapy: A reinforced therapeutic strategy against poor-prognosis solid cancers. Cancers 2021, 13, 342. [Google Scholar] [CrossRef]
- Geletneky, K.; Hajda, J.; Angelova, A.L.; Leuchs, B.; Capper, D.; Bartsch, A.J.; Neumann, J.O.; Schöning, T.; Hüsing, J.; Beelte, B.; et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol. Ther. 2017, 25, 2620–2634. [Google Scholar] [CrossRef]
- Hajda, J.; Leuchs, B.; Angelova, A.L.; Frehtman, V.; Rommelaere, J.; Mertens, M.; Pilz, M.; Kieser, M.; Krebs, O.; Dahm, M.; et al. Phase 2 trial of oncolytic H-1 parvovirus therapy shows safety and signs of immune system activation in patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2021, 27, 5546–5556. [Google Scholar] [CrossRef] [PubMed]
- Angelova, A.L.; Aprahamian, M.; Balboni, G.; Delecluse, H.J.; Feederle, R.; Kiprianova, I.; Grekova, S.P.; Galabov, A.S.; Witzens-Harig, M.; Ho, A.D.; et al. Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: In vitro and in vivo studies. Mol. Ther. 2009, 17, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Angelova, A.L.; Witzens-Harig, M.; Galabov, A.S.; Rommelaere, J. The oncolytic virotherapy era in cancer management: Prospects of applying H-1 parvovirus to treat blood and solid cancers. Front. Oncol. 2017, 7, 93. [Google Scholar] [CrossRef] [PubMed]
Origin | Infectious Agent | Taxonomical Classification (Family) | References |
---|---|---|---|
Staphylococcus aureus | Staphylococcaceae | [9,10,11,12,13,14] | |
Bacterial | Borrelia burgdorferi | Borreliaceae | [15,16,17,18,19] |
Chlamydia pneumoniae | Chlamydiaceae | [20,21] | |
Human T-lymphotropic virus (HTLV) | Retroviridae | [22,23,24,25,26,27,28,29,30,31,32] | |
Epstein–Barr virus (EBV) | Orthoherpesviridae | [33,34,35,36,37,38] | |
Viral | Human cytomegalovirus (CMV) | Orthoherpesviridae | [33,34,35,36,37,38] |
Kaposi sarcoma-associated herpesvirus (KSHV) | Orthoherpesviridae | [34,39,40] | |
Human herpesviruses 6 and 7 (HHV-6 and HHV-7) | Orthoherpesviridae | [33,34,41,42] | |
Merkel polyomavirus | Polyomaviridae | [43] | |
Cutavirus (CutaV) | Parvoviridae | [44,45,46,47,48,49,50,51] |
Family | Parvoviridae | ||
---|---|---|---|
Subfamily | Densovirinae | Hamaparvovirinae | Parvovirinae |
Genera (number) | 11 | 5 | Protoparvovirus * |
+10 | |||
Species (number) | 37 | 37 | Protoparvovirus primate3 (cutavirus) |
Protoparvovirus rodent1 (H-1 parvovirus) | |||
+89 |
Study | Study Limitation(s) | Outcome | Conclusion |
---|---|---|---|
[54] |
|
| No direct oncogenic role of CutaV in CTCL could be concluded. |
[56] |
|
| Dermal CutaV DNA carriage may be strongly associated with CTCL. |
[57] |
|
| CutaV DNA carriage may be associated with MF. |
[59] |
|
| CutaV DNA carriage may serve as a predictive biomarker for CTCL development. |
[60] |
|
| CutaV DNA carriage may be associated with MF. |
[61] |
|
| CutaV’s association with CTCL could not be demonstrated. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, A.; Rommelaere, J.; Ungerechts, G. The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics. Pathogens 2024, 13, 184. https://doi.org/10.3390/pathogens13030184
Angelova A, Rommelaere J, Ungerechts G. The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics. Pathogens. 2024; 13(3):184. https://doi.org/10.3390/pathogens13030184
Chicago/Turabian StyleAngelova, Assia, Jean Rommelaere, and Guy Ungerechts. 2024. "The Complex Role of Infectious Agents in Human Cutaneous T-Cell Lymphoma Pathogenesis: From Candidate Etiological Factors to Potential Therapeutics" Pathogens 13, no. 3: 184. https://doi.org/10.3390/pathogens13030184