Simulation of Soil Water Evaporation during Freeze–Thaw Periods under Different Straw Mulch Thickness Conditions
Abstract
:1. Introduction
2. Field Test Conditions
2.1. Experimental Site
2.2. Measurements
3. Materials and Methods
3.1. SHAW Model Description
3.2. Model Evaluation Methods
3.3. Statistical Analyses Methods
4. Results
4.1. Model Evaluation Result
4.2. Soil Freezing and Thawing Processes
4.3. Effect of Straw Mulching on Soil Water Evaporation during the Freeze–Thaw Period
4.4. Soil Water Evaporation Characteristics during the Three Freeze–Thaw Stages
4.4.1. Unstable Freezing Stage
4.4.2. Stable Freezing Stage
4.4.3. Thawing Stage
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abu-Awwad, A.M. Effect of mulch and irrigation water amounts on soil evaporation and transpiration. J. Agron. Crop. Sci. 1998, 181, 55–59. [Google Scholar] [CrossRef]
- Saito, H.; Simuneka, J.; Mohantyb, B.P. Numerical analysis of coupled water, vapor and heat transport in the Vadose zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Shao, M.; Shao, H. Evaporation process in soil surface containing calcic nodules on the Northern Loess Plateau of China by simulated experiments. Clean (Weinh) 2010, 37, 866–871. [Google Scholar] [CrossRef]
- An, N.; Tang, C.; Xu, S.; Gong, X.; Shi, B.; Inyang, H.I. Effects of soil characteristics on moisture evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, X.; Zhang, Y.; Qin, Z.; Sun, M. Simulation of soil moisture evaporation under different groundwater level depths during seasonal freeze-thaw period. Trans. Chin. Soc. Agric. Mach. 2015, 46, 131–140. [Google Scholar]
- Wu, M.; Huang, J.; Wu, J.; Tan, X.; Jansson, P. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China. J. Hydrol. 2016, 535, 46–53. [Google Scholar] [CrossRef]
- Rousseaux, M.C.; Figuerola, P.I.; Correatedesco, G.; Searles, P.S. Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agric. Water Manag. 2009, 96, 1037–1044. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Ortega, J.F.; Montero, J.; Juan, J.A.D. Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agric. Water Manag. 2000, 43, 263–284. [Google Scholar] [CrossRef]
- Li, F.; Yong, Z. Estimation of open water evaporation using land-based meteorological data. Theor. Appl. Climatol. 2017, 134, 1–13. [Google Scholar] [CrossRef]
- Mcmahon, T.; Peel, M.; Lowe, L.; Srikanthan, R.; McVicar, T. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. Discuss. 2012, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Diaz, F.; Jimenez, C.C.; Tejedor, M. Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric. Water Manag. 2005, 74, 55. [Google Scholar] [CrossRef]
- Feng, H.; Chen, J.; Zheng, X.; Xue, J.; Miao, C.; Du, Q.; Xu, Y. Effect of sand mulches of different particle sizes on soil evaporation during the freeze—Thaw period. Water 2018, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.Y.; Wang, F.X.; Han, J.J.; Kang, S.Z.; Feng, S.Y. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Yuan, C.; Lei, T.; Mao, L.; Han, L.; Yang, W. Soil surface evaporation processes under mulches of different sized gravel. Catena 2009, 78, 117–121. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Till. Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Gill, B.S.; Jalota, S.K. Evaporation from soil in relation to residue rate, mixing depth, soil texture and evaporativity. Soil Technol. 1996, 8, 293–301. [Google Scholar] [CrossRef]
- Ruiz Corrêa, S.T.; Barbosa, L.C.; Menandro, L.M.S.; Scarpare, F.V.; Reichardt, K.; de Moraes, L.O.; Hernandes, T.A.D.; Franco, H.C.J.; Carvalho, J.L.N. Straw removal effects on soil water dynamics, soil temperature, and sugarcane yield in South-Central Brazil. Bioenergy Res. 2019, 12, 749–763. [Google Scholar] [CrossRef]
- Du, J.; He, W.; Nangia, V.; Yan, C.; Ahmad, M.; Liu, S.; Liu, Q. Effects of conservation tillage on soil water content in northern arid regions of China. Trans. Chin. Soc. Agric. Eng. 2008, 24, 25–29. [Google Scholar]
- Zhang, S.; Zhong, X.; Huang, N.; Lu, G. Effect of straw-mulch-incorporation on nitrogen uptake and N fertilizer use efficiency of rice (Oryza sativa L.). Chin. J. Eco-Agric. 2010, 18, 611–616. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Horwath, W.R.; Southard, R.J.; Madden, N.; Veenstra, J.; Munk, D.S. Tillage and cover cropping affect crop yields and soil carbon in the San Joaquin Valley, California. Agron. J. 2015, 107, 588. [Google Scholar] [CrossRef]
- Bi, Y.; Cai, S.; Wang, Y.; Xia, Y.; Zhao, X.; Wang, S.; Xing, G. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits. J. Environ. Manag. 2019, 245, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, H. Comprehensive utilization status and development analysis of crop straw resource in Northeast China. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–21. [Google Scholar]
- Dong, Q.G.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Balwinder, S.; Eberbach, P.; Humphreys, E.; Kukal, S.S. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric. Water Manag. 2011, 98, 1847–1855. [Google Scholar] [CrossRef]
- Vial, L.K.; Lefroy, R.D.B.; Fukai, S. Application of mulch under reduced water input to increase yield and water productivity of sweet corn in a lowland rice system. Field Crops Res. 2015, 171, 120–129. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Sauer, T.J.; Aiken, R.A. Effects of crop stover cover and architecture on heat and water transfer at the soil surface. Geoderma 2003, 116, 217–233. [Google Scholar] [CrossRef]
- Fu, Q.; Yan, P.; Li, T.; Cui, S.; Peng, L. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China. J. Earth Syst. Sci. 2018, 127, 33. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xie, X.; Zheng, X.; Xue, J.; Miao, C.; Du, Q.; Xu, Y. Effect of straw mulch on soil evaporation during freeze–Thaw periods. Water 2019, 11, 1689. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain Div. Am. Soc. Civ. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Lewan, E. Evaporation and discharge from arable land with cropped or bare soils during winter. Measurements and simulations. Agric. For. Meteorol. 1993, 64, 131–159. [Google Scholar] [CrossRef]
- Hansson, K.Š.N.J. Water flow and heat transportin frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Flerchinger, G.N.; Hanson, C.L.; Wight, J.R. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resour. Res. 1996, 32, 2539–2548. [Google Scholar] [CrossRef]
- Jansson, P.-E.; Moon, D.S.; Tidigare, I.F. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ. Model. Softw. 2001, 16, 37–46. [Google Scholar] [CrossRef]
- Li, R.; Shi, H.; Flerchinger, G.N.; Akae, T.; Wang, C. Simulation of freezing and thawing soils in Inner Mongolia Hetao Irrigation District, China. Geoderma 2012, 173–174, 28–33. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Hanson, C. Modeling soil freezing and thawing on a rangeland watershed. Trans. ASAE 1989, 32, 1551–1554. [Google Scholar] [CrossRef]
- Flerchinger, G.N. Simultaneous heat and water (SHAW) model: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1395–1411. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Reba, M.L. Measurement of surface energy fluxes from two rangeland sites and comparison with a multilayer canopy model. J. Hydrometeorol. 2012, 13, 1038–1051. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Pierson, F.B. Modelling plant canopy effects on variability of soil temperature and water: Model calibration and validation. J. Arid. Environ. 1997, 35, 653. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gao, X.; Zheng, X.; Miao, C.; Zhang, Y.; Du, Q.; Xu, Y. Simulation of soil freezing and thawing for different groundwater table depths. Vadose Zone J. 2019, 18, 1539–1663. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ma, L.; Flerchinger, G.N.; Ahuja, L.R.; Wang, H.; Li, Z. Simulation of overwinter soil water and soil temperature with SHAW and RZ-SHAW. Soil Sci. Soc. Am. J. 2012, 76, 1548. [Google Scholar] [CrossRef] [Green Version]
- Flerchinger, G.N.; Saxton, K.E. Simultaneous heat and water model of a freezing snow-residue-soil system, I. Theory and development. Trans. ASAE 1989, 32, 565–571. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Saxton, K.E. Simultaneous heat and water model of a freezing snow-residue-soil system Ⅱ. Field veriflcation. Trans. ASAE 1989, 32, 573–578. [Google Scholar] [CrossRef]
- Cai, H.; Yang, H.; Liu, J.; Niu, L.; Ren, L.; Liu, F.; Ou, S.; Yang, Q. Quantifying the impacts of human interventions on relative mean sea level change in the Pearl River Delta, China. Ocean Coast Manag. 2019, 173, 52–64. [Google Scholar] [CrossRef]
- Nassar, I.N.; Horton, R.; Flerchinger, G.N. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions 1. Soil Sci. 2000, 165, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.X.; Ma, L.; Flerchinger, G.N.; Qi, Z.; Ahuja, L.R.; Xing, H.T.; Li, J.; Yu, Q. Modeling evapotranspiration and energy balance in a wheat–maize cropping system using the revised RZ-SHAW model. Agric. For. Meteorol. 2014, 194, 218–229. [Google Scholar] [CrossRef]
- Li, R.; Shi, H.; Flerchinger, G.N.; Zou, C.; Li, Z. Modeling the effect of antecedent soil water storage on water and heat status in seasonally freezing and thawing agricultural soils. Geoderma 2013, 206, 70–74. [Google Scholar] [CrossRef]
- Guo, D.; Yang, M.; Wang, H. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol Process. 2011, 25, 2531–2541. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Bond, J.J.; Willis, W.O. Soil water evaporation: Surface residue rate and placement effects. Soil Sci. Soc. Am. J. 1969, 33, 445–448. [Google Scholar] [CrossRef]
- Bond, J.J.; Willis, W.O. Soil water evaporation: First stage drying as influenced by surface residue and evaporation potential. Soil Sci. Soc. Am. J. 1970, 34, 924–928. [Google Scholar] [CrossRef]
- Sharratt, B.S. Corn stubble height and residue placement in the northern US Corn Belt-II. Spring microclimate and wheat development. Soil Till. Res. 2002, 64, 253–261. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Benoit, G.R.; Voorhees, W.B. Winter soil microclimate altered by corn residue management in the northern Corn Belt of the USA. Soil Till. Res. 1998, 49, 243–248. [Google Scholar] [CrossRef]
Soil Depth | Mass Fraction of Different Soil Particle Sizes/% | Dry Bulk Density (g·cm−3) | ||
---|---|---|---|---|
Clay (<0.002 mm) | Silt (0.002–0.02 mm) | Sand (>0.02 mm) | ||
≤20 cm | 24.95 | 65.15 | 9.9 | 1.55 |
≥20 cm | 19.88 | 69.76 | 10.36 | 1.52 |
Simulation Depth (cm) | Saturated Water Content (m3·m−3) | Saturated Conductivity (cm·h−1) | Air entry Potential (m) | Pore Size Index (b) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|
0 | 0.503 | 0.862 | 0.042 | 4.615 | 1.55 |
5 | 0.503 | 0.862 | 0.042 | 4.615 | 1.55 |
10 | 0.503 | 0.862 | 0.042 | 4.615 | 1.55 |
15 | 0.503 | 0.862 | 0.042 | 4.615 | 1.55 |
20 | 0.503 | 0.862 | 0.042 | 4.615 | 1.55 |
40 | 0.491 | 1.332 | 0.048 | 4.098 | 1.52 |
80 | 0.491 | 1.332 | 0.048 | 4.098 | 1.52 |
Test Plots | Unstable Freezing Stage | Stable Freezing Stage | Thawing Stage |
---|---|---|---|
LD | From 14 November 2005 to 2 December 2005 | From 3 November 2005 to 1 February 2006 | From 2 February 2006 to 16 March 2006 |
JG5 | From16 November 2005 to 3 February 2006 | From 4 February 2006 to 16 March 2006 | |
JG10 | From 1 January 2006 to 5 February 2006 | From 6 February 2006 to 16 March 2006 |
Unstable Freezing Stage | Stable Freezing Stage | Thawing Stage | Freeze–Thaw Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R (mm) | Cv | Ӯ (mm) | R (mm) | Cv | Ӯ (mm) | R (mm) | Cv | Ӯ (mm) | R (mm) | Cv | Ӯ (mm) | |
LD | 2.280 | 0.589 | 0.842 | 0.690 | 0.091 | 0.026 | 0.640 | 0.151 | 0.219 | 2.760 | 1.857 | 0.205 |
JG5 | 0.310 | 0.084 | 0.271 | 0.430 | 0.099 | 0.113 | 0.740 | 0.148 | 0.197 | 0.740 | 0.785 | 0.167 |
JG10 | 0.240 | 0.069 | 0.199 | 0.300 | 0.067 | 0.109 | 0.510 | 0.093 | 0.177 | 0.510 | 0.593 | 0.146 |
JG15 | 0.210 | 0.060 | 0.184 | 0.260 | 0.057 | 0.092 | 0.410 | 0.076 | 0.152 | 0.410 | 0.574 | 0.127 |
JG20 | 0.180 | 0.052 | 0.172 | 0.230 | 0.049 | 0.082 | 0.350 | 0.064 | 0.134 | 0.350 | 0.571 | 0.114 |
JG30 | 0.170 | 0.048 | 0.163 | 0.190 | 0.041 | 0.068 | 0.280 | 0.052 | 0.104 | 0.280 | 0.569 | 0.101 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wei, Y.; Zhao, X.; Xue, J.; Xu, S.; Du, Q. Simulation of Soil Water Evaporation during Freeze–Thaw Periods under Different Straw Mulch Thickness Conditions. Water 2020, 12, 2003. https://doi.org/10.3390/w12072003
Chen J, Wei Y, Zhao X, Xue J, Xu S, Du Q. Simulation of Soil Water Evaporation during Freeze–Thaw Periods under Different Straw Mulch Thickness Conditions. Water. 2020; 12(7):2003. https://doi.org/10.3390/w12072003
Chicago/Turabian StyleChen, Junfeng, Yizhao Wei, Xiping Zhao, Jing Xue, Shuyuan Xu, and Qi Du. 2020. "Simulation of Soil Water Evaporation during Freeze–Thaw Periods under Different Straw Mulch Thickness Conditions" Water 12, no. 7: 2003. https://doi.org/10.3390/w12072003