Moisture Transport during Anomalous Climate Events in the La Plata Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Assessment of Anomalous Climatic Events through the Standardized Precipitation Evapotranspiration Index (SPEI)
- severity is the sum of the absolute values of SPEI-1 during the event;
- duration represents the number of months;
- peak is the maximum absolute value of SPEI-i recorded during the event.
2.3. Lagrangian Approach for Atmospheric Moisture Transport Analysis
2.4. Methods Applied in the Analysis
3. Results and Discussions
3.1. Lagrangian Climatology of the Atmospheric Moisture Transport from the Sources to the LP
3.2. Assessment of the Anomalous Climate Events over the LP
3.3. Variations in Moisture Transport from the Sources during the Anomalous Climate Events in the LP
4. Summary and Conclusions
- Moisture Transport and Event Severity: The moisture transport (uptake and supply) from the AM, North Atlantic (NA), and TO basins influences the severity of anomalous climate events over the LP, highlighting the importance of transport from northern latitudes to subtropical areas;
- Duration of Anomalous Climate events: There is a relationship between the duration of anomalous climate events and variations in the uptake and supply of atmospheric moisture associated with the NA and AM sources;
- Contribution of the Moisture Supply from Other Regions: Besides the NA, AM, and TO basins, a higher increase in moisture supply from the SF region and the oceanic area east of Brazil (EBO) also contributes to both the duration and severity of wet events;
- Peaks of Wet and Dry events: Higher peak wet events are associated with a significant increase in moisture supply from the northern NA, AM, and TO basins, while higher peak droughts are associated with a significant decrease in moisture uptake over the TO, SF, and EBO regions, which are sources located east of the continent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. (Eds.) IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; p. 2391. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R.; Pauliquevis, T.; Oliveira, M.; Ambrizzi, T. Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere 2021, 12, 155. [Google Scholar] [CrossRef]
- Naumann, G.; Podesta, G.; Marengo, J.; Luterbacher, J.; Bavera, D.; Arias Muñoz, C.; Barbosa, P.; Cammalleri, C.; Chamorro, L.; Cuartas, L.A.; et al. The 2019–2021 Extreme Drought Episode in La Plata Basin; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-41898-6. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Leal, K.R.D.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; De Praga Baião, C.F.; Angulo, E.C.; Almeida, E.K.; et al. Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Fortunato de Faria, L.; Reboita, M.S.; Mattos, E.V.; Carvalho, V.S.B.; Martins Ribeiro, J.G.; Capucin, B.C.; Drumond, A.; Paes dos Santos, A.P. Synoptic and Mesoscale Analysis of a Severe Weather Event in Southern Brazil at the End of June 2020. Atmosphere 2023, 14, 486. [Google Scholar] [CrossRef]
- Bartolomei, F.; Reboita, M.S.; da Rocha, R.P. Ciclones extratropicais causadores de eventos extremos no sul do Brasil no inverno de 2023. Terrae Didat. 2024, 20, e024003. [Google Scholar] [CrossRef]
- CNN 2024. Available online: https://edition.cnn.com/2024/05/03/weather/brazil-rain-floods-intl/index.html (accessed on 17 May 2024).
- Barros, V.; Clarke, R.; Dias, P.S. (Eds.) Climate Change in the La Plata Basin; Inter-American Institute for Global Change Research: São José dos Campos, Brazil, 2006; p. 219. Available online: https://www2.atmos.umd.edu/~berbery/lpb/climate_change_lpb.pdf (accessed on 17 May 2024).
- Cavalcanti, I.; Carril, A.; Penalba, O.; Grimm, A.; Menéndez, C.; Sanchez, E.; Cherchi, A.; Sörensson, A.; Robledo, F.; Rivera, J.; et al. Flach Precipitation extremes over La Plata Basin—Review and new results from observations and climate simulations. J. Hydrol. 2015, 523, 211–230. [Google Scholar] [CrossRef]
- Barros, V.; Chamorro, L.; Coronel, G.; Baez, J. The major discharge events in the Paraguay River: Magnitudes, source regions, and climate forcings. J. Hydrometeorol. 2004, 5, 1161–1170. [Google Scholar] [CrossRef]
- Barros, V.R.; Boninsegna, J.A.; Camilloni, I.A.; Chidiak, M.; Magrín, G.O.; Rusticucci, M. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 151–169. [Google Scholar] [CrossRef]
- de Freitas, A.A.; Reboita, M.S.; Carvalho, V.S.B.; Drumond, A.; Ferraz, S.E.T.; da Silva, B.C.; da Rocha, R.P. Atmospheric and Oceanic Patterns Associated with Extreme Drought Events over the Paraná Hydrographic Region, Brazil. Climate 2023, 11, 12. [Google Scholar] [CrossRef]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report. Clim. Chang. 2012, 109, 1–4. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap3_FINAL-1.pdf (accessed on 17 May 2024).
- Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Redmond, K.T. The depiction of drought: A commentary. Bull. Am. Meteorol. Soc. 2002, 83, 1143–1147. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index User Guide; WMO-1090: Geneva, Switzerland, 2012; p. 24. Available online: https://library.wmo.int/idurl/4/39629 (accessed on 28 June 2024).
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; pp. 179–184. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 17 May 2024).
- Hayes, M.; Svodoba, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal meteorological drought index recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Gurrapu, S.; Chipanshi, A.; Sauchyn, D.; Howard, A. Comparison of the SPI and SPEI on predicting drought conditions and streamflow in the Canadian prairies. In Proceedings of the 28th Conference on Hydrology, Atlanta, GA, USA, 2–6 February 2014; pp. 2–6. Available online: https://ams.confex.com/ams/94Annual/webprogram/Paper241519.html (accessed on 28 June 2024).
- Sordo-Ward, A.; Bejarano, M.D.; Iglesias, A.; Asenjo, V.; Garrote, L. Analysis of Current and Future SPEI Droughts in the La Plata Basin Based on Results from the Regional Eta Climate Model. Water 2017, 9, 857. [Google Scholar] [CrossRef]
- Mendiola, M.E.P.; Blázquez, J.; Solman, S.A. Characterization of wet and dry periods over southern South America. In Climate Dynamics; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L.; Ambrizzi, T. A Lagrangian identification of major sources of moisture over central Brazil and La Plata Basin. J. Geophys. Res. 2008, 113, D14128. [Google Scholar] [CrossRef]
- Arraut, J.M.; Nobre, C.; Barbosa, H.M.J.; Obregon, G.; Marengo, J. Aerial rivers and lakes: Looking at large-scale moisture transport and its relation to Amazonia and to subtropical rainfall in South America. J. Clim. 2012, 25, 543–556. [Google Scholar] [CrossRef]
- Nieto, R.; Castillo, R.; Drumond, A. The modulation of oceanic moisture transport by the hemispheric annular modes. Front. Earth Sci. 2014, 2, 11. [Google Scholar] [CrossRef]
- Martinez, J.A.; Dominguez, F. Sources of atmospheric moisture for the La Plata River basin. J. Clim. 2014, 27, 6737–6753. [Google Scholar] [CrossRef]
- Drumond, A.; Marengo, J.; Ambrizzi, A.; Nieto, R.; Moreira, L.; Gimeno, L. The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci. 2014, 18, 2577–2598. [Google Scholar] [CrossRef]
- Moura, L.Z.; Lima, C.H.R. Analysis of atmospheric moisture transport to the Upper Paraná River basin. Int. J. Climatol. 2018, 38, 5153–5167. [Google Scholar] [CrossRef]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Vicente-Serrano, S.M.; Gimeno, L. Linking anomalous moisture transport and drought episodes in the IPCC reference regions. Bull. Am. Meteorol. Soc. 2019, 100, 1481–1498. [Google Scholar] [CrossRef]
- Lemes, M.d.C.R.; de Oliveira, G.S.; Fisch, G.; Tedeschi, R.G.; da Silva, J.P.R. Analysis of moisture transport from Amazonia to Southeastern Brazil during the austral summer. Rev. Bras. Geogr. Física 2020, 13, 2650–2670. [Google Scholar] [CrossRef]
- Zanin, P.R.; Satyamurty, P. Hydrological processes interconnecting the two largest watersheds of South America from seasonal to intra-monthly time scales: A critical review. Int. J. Climatol. 2020, 40, 3971–4005. [Google Scholar] [CrossRef]
- Leyba, I.M.; Solman, S.A.; Saraceno, M.; Martinez, J.A.; Dominguez, F. The South Atlantic Ocean as a moisture source region and its relation with precipitation in South America. Clim. Dyn. 2023, 61, 1741–1756. [Google Scholar] [CrossRef]
- Gimeno, L.; Vázquez, M.; Eiras-Barca, J.; Sorí, R.; Stojanovic, M.; Algarra, I.; Nieto, R.; Ramos, A.M.; Durán-Quesada, A.M.; Dominguez, F. Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth Sci. Rev. 2020, 201, 103070. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle: Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Brubaker, K.L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeorol. 2007, 8, 20–37. [Google Scholar] [CrossRef]
- Sodemann, H.; Zubler, E. Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int. J. Climatol. 2010, 30, 947–961. [Google Scholar] [CrossRef]
- Knippertz, P.; Wernli, H.; Gläser, G. A Global Climatology of Tropical Moisture Exports. J. Clim. 2013, 26, 3031–3045. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L.; Trigo, R.M.; Ambrizzi, T.; De Souza, E. A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons. PLoS ONE 2010, 5, e11205. [Google Scholar] [CrossRef]
- Sorí, R.; Marengo, J.A.; Nieto, R.; Drumond, A.; Gimeno, L. The Atmospheric Branch of the Hydrological Cycle over the Negro and Madeira River Basins in the Amazon Region. Water 2018, 10, 738. [Google Scholar] [CrossRef]
- Hoyos, I.; Dominguez, F.; Cañón-Barriga, J.; Martínez, J.A.; Nieto, R.; Gimeno, L.; Dirmeyer, P.A. Moisture origin and transport processes in Colombia, northern South America. Clim. Dyn. 2018, 50, 971–990. [Google Scholar] [CrossRef]
- Nieto, R.; Gallego, D.; Trigo, R.M.; Ribera, P.; Gimeno, L. Dynamic identification of moisture sources in the Orinoco basin in equatorial South America. Hydrol. Sci. J. 2008, 53, 602–617. [Google Scholar] [CrossRef]
- Braz, D.F.; Ambrizzi, T.; Da Rocha, R.P.; Algarra, I.; Nieto, R.; Gimeno, L. Assessing the moisture transports associated with nocturnal low-level jets in continental South America. Front. Environ. Sci. 2021, 9, 657764. [Google Scholar] [CrossRef]
- Pampuch, L.A.; Drumond, A.; Gimeno, L.; Ambrizzi, T. Anomalous patterns of SST and moisture sources in the South Atlantic Ocean associated with dry events in southeastern Brazil. Int. J. Climatol. 2016, 36, 4913–4928. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Gimeno, L.; Drumond, A. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos. 2017, 122, 5636–5653. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Coll-Hidalgo, P.; Fernández-Álvarez, J.C.; Sorí, R.; da Rocha, R.P.; Simões Reboita, M.; Nieto, R.; Gimeno, L. Quantifying the related precipitation and moisture sources in the lifecycle of subtropical cyclones in the South Atlantic basin. In Quarterly Journal of the Royal Meteorological Society; Royal Meteorological Society (RMetS): London, UK, 2024. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- National Center for Atmospheric Research Staff. The Climate Data Guide: CRU TS Gridded Precipitation and Other Meteorological Variables Since 1901. Available online: https://climatedataguide.ucar.edu/climate-data/cru-ts-gridded-precipitation-and-other-meteorological-variables-1901 (accessed on 17 May 2024).
- Carvalho, L.M. Assessing precipitation trends in the Americas with historical data: A review. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e627. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2001, 137, 553–597. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Drumond, A.; Castillo, R.; Trigo, R.M. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett. 2013, 40, 1443–1450. [Google Scholar] [CrossRef]
- Montini, T.L.; Jones, C.; Carvalho, L.M.V. The South American low-level jet: A new climatology, variability, and changes. J. Geophys. Res. Atmos. 2019, 124, 1200–1218. [Google Scholar] [CrossRef]
- GRDC. WMO Basins and Sub-Basins/Global Runoff Data Centre, GRDC, 3rd, rev. ext. ed.; Federal Institute of Hydrology (BfG): Koblenz, Germany, 2020. [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S. Short communication comment on “candidate distributions for climatological drought indices (SPI and SPEI)” by James, H. Stagge et al. Int. J. Climatol. 2016, 36, 2120–2131. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, G.; He, H.; Wu, Z.; He, J. Anomalous Features of Water Vapor Transport during Severe Summer and Early Fall Droughts in Southwest China. Water 2017, 9, 244. [Google Scholar] [CrossRef]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Variations in Moisture Supply from the Mediterranean Sea during Meteorological Drought Episodes over Central Europe. Atmosphere 2018, 9, 278. [Google Scholar] [CrossRef]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Moisture Transport Anomalies over the Danube River Basin during Two Drought Events: A Lagrangian Analysis. Atmosphere 2017, 8, 193. [Google Scholar] [CrossRef]
- Salah, Z.; Nieto, R.; Drumond, A.; Gimeno, L.; Vicente-Serrano, S. A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought events. J. Hydrol. 2018, 560, 382–395. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L. A Lagrangian approach for investigating anomalies in the moisture transport during drought events. Cuad. Investig. Geográfica 2016, 42, 113–125. [Google Scholar] [CrossRef]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. Atmos. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Sorí, R.; Vázquez, M.; Stojanovic, M.; Nieto, R.; Liberato, M.L.R.; Gimeno, L. Hydrometeorological droughts in the Miño–Limia–Sil hydrographic demarcation (northwestern Iberian Peninsula): The role of atmospheric drivers. Nat. Hazards Earth Syst. Sci. 2020, 20, 1805–1832. [Google Scholar] [CrossRef]
- Neuhäuser, M. Wilcoxon–Mann–Whitney Test. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Gimeno, L.; Drumond, A.; Nieto, R.; Trigo, R.M.; Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 2010, 37, L13804. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; da Rocha, R.P. The South Atlantic subtropical anticyclone: Present and future climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Guven, A.; Pala, A. Comparison of different statistical downscaling models and future projection of areal mean precipitation of a river basin under climate change effect. Water Supply 2022, 22, 2424–2439. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Souza, C.A.d.; Baldoni, T.C.; Silva, P.L.L.d.S.; Ferreira, G.W.S. Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere 2022, 13, 1463. [Google Scholar] [CrossRef]
- Llopart, M.; Reboita, M.S.; Rocha, R.P. Assessment of Multi-Model Climate Projections of Water Resources over South America CORDEX Domain. Climate Dynamics 2020, 54, 99–116. [Google Scholar] [CrossRef]
Duration | Severity | Peak Magnitude | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sources | Slope | Intercept | R2 | Slope | Intercept | R2 | Slope | Intercept | R2 | |
Uptake Dry events | AM | −0.034 *** | 2.282 | 0.314 | −0.036 *** | 2.365 | 0.311 | −0.003 * | 1.485 | 0.092 |
NA | −0.125 *** | 2.280 | 0.342 | −0.166 *** | 2.139 | 0.572 | −0.012 ** | 1.481 | 0.118 | |
EBO | −0.031 | 2.660 | 0.055 | −0.046 ** | 2.588 | 0.133 | −0.008 *** | 1.452 | 0.211 | |
EA | −0.04 | 2.946 | 0.013 | −0.071 | 2.985 | 0.017 | −0.020 ** | 1.503 | 0.133 | |
SF | −0.038 | 2.777 | 0.052 | −0.065 ** | 2.698 | 0.177 | −0.011 *** | 1.474 | 0.261 | |
TO | −0.091 ** | 2.515 | 0.004 | −0.135 *** | 2.369 | 0.328 | −0.020 *** | 1.438 | 0.333 | |
SBO | 0.003 | 3.024 | 0.001 | 0.005 | 3.115 | 0.003 | 0.002 | 1.536 | 0.008 | |
SA | 0.113 | 2.878 | 0.001 | 0.239 * | 2.806 | 0.072 | 0.036 * | 1.500 | 0.080 | |
LP | 0.014 * | 2.583 | 0.077 | 0.019 ** | 2.518 | 0.153 | 0.002 * | 1.479 | 0.087 | |
Supply Dry events | AM | −0.013 *** | 1.509 | 0.469 | −0.014 *** | 1.412 | 0.563 | −0.001 ** | 1.426 | 0.125 |
NA | −0.078 *** | 1.878 | 0.438 | −0.091 *** | 1.789 | 0.561 | −0.006 * | 1.459 | 0.108 | |
EBO | −0.055 * | 2.372 | 0.111 | −0.060 ** | 2.422 | 0.123 | −0.007 * | 1.463 | 0.082 | |
EA | −0.044 | 2.885 | 0.013 | −0.038 | 3.017 | 0.009 | −0.004 | 1.538 | 0.004 | |
SF | −0.098 ** | 2.338 | 0.137 | −0.098 ** | 2.449 | 0.125 | −0.008 | 1.491 | 0.031 | |
TO | −0.086 *** | 1.960 | 0.257 | −0.098 *** | 1.919 | 0.313 | −0.009 * | 1.441 | 0.108 | |
SBO | −0.010 | 3.037 | 0.002 | 0.002 | 3.152 | 0.000 | 0.002 | 1.552 | 0.003 | |
SA | −0.041 | 3.023 | 0.001 | 0.077 | 3.184 | 0.003 | 0.011 | 1.556 | 0.003 | |
LP | −0.024 *** | 1.707 | 0.306 | −0.026 *** | 1.737 | 0.319 | −0.002 * | 1.446 | 0.071 | |
Uptake Wet events | AM | 0.025 *** | 2.515 | 0.345 | 0.029 *** | 2.476 | 0.486 | 0.002 ** | 1.461 | 0.172 |
NA | 0.136 *** | 2.040 | 0.440 | 0.142 *** | 2.054 | 0.484 | 0.010 ** | 1.433 | 0.145 | |
EBO | 0.052 ** | 2.567 | 0.179 | 0.047 ** | 2.675 | 0.144 | 0.003 | 1.483 | 0.021 | |
EA | 0.003 | 3.082 | 0.000 | −0.012 | 3.167 | 0.002 | 0.004 | 1.508 | 0.008 | |
SF | 0.068 ** | 2.661 | 0.116 | 0.060 * | 2.775 | 0.084 | 0.005 | 1.485 | 0.016 | |
TO | 0.130 *** | 2.313 | 0.320 | 0.126 *** | 2.398 | 0.301 | 0.005 | 1.482 | 0.013 | |
SBO | −0.035 * | 2.859 | 0.064 | −0.019 | 3.023 | 0.003 | 0.001 | 1.520 | 0.004 | |
SA | −0.221 | 2.884 | 0.010 | −0.063 | 3.089 | 0.003 | 0.012 | 1.526 | 0.006 | |
LP | −0.039 *** | 1.861 | 0.361 | −0.042 *** | 1.811 | 0.436 | −0.004 *** | 1.372 | 0.288 | |
Supply Wet events | AM | 0.010 *** | 1.815 | 0.480 | 0.012 *** | 1.686 | 0.646 | 0.001 *** | 1.383 | 0.300 |
NA | 0.068 *** | 1.720 | 0.632 | 0.074 *** | 1.648 | 0.771 | 0.006 *** | 1.399 | 0.258 | |
EBO | 0.072 *** | 2.105 | 0.293 | 0.068 *** | 2.211 | 0.267 | 0.005 * | 1.447 | 0.066 | |
EA | 0.113 | 2.633 | 0.058 | 0.081 | 2.821 | 0.019 | 0.002 | 1.507 | 0.001 | |
SF | 0.163 *** | 1.626 | 0.569 | 0.156 *** | 1.750 | 0.522 | 0.009 * | 1.436 | 0.079 | |
TO | 0.114 *** | 1.304 | 0.782 | 0.115 *** | 1.338 | 0.813 | 0.008 *** | 1.388 | 0.220 | |
SBO | −0.096 ** | 3.231 | 0.123 | −0.090 * | 3.281 | 0.105 | −0.001 | 1.516 | 0.001 | |
SA | −0.307 | 3.205 | 0.012 | −0.315 | 3.267 | 0.014 | 0.014 | 1.509 | 0.004 | |
LP | 0.026 *** | 1.526 | 0.371 | 0.027 *** | 1.523 | 0.407 | 0.003 *** | 1.348 | 0.247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drumond, A.; de Oliveira, M.; Reboita, M.S.; Stojanovic, M.; Nunes, A.M.P.; da Rocha, R.P. Moisture Transport during Anomalous Climate Events in the La Plata Basin. Atmosphere 2024, 15, 876. https://doi.org/10.3390/atmos15080876
Drumond A, de Oliveira M, Reboita MS, Stojanovic M, Nunes AMP, da Rocha RP. Moisture Transport during Anomalous Climate Events in the La Plata Basin. Atmosphere. 2024; 15(8):876. https://doi.org/10.3390/atmos15080876
Chicago/Turabian StyleDrumond, Anita, Marina de Oliveira, Michelle Simões Reboita, Milica Stojanovic, Ana Maria Pereira Nunes, and Rosmeri Porfírio da Rocha. 2024. "Moisture Transport during Anomalous Climate Events in the La Plata Basin" Atmosphere 15, no. 8: 876. https://doi.org/10.3390/atmos15080876