Thermal Performance of Multifunctional Facade Solution Containing Phase Change Materials: Experimental and Numerical Analysis
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Description of the Panel
2.2. Hotbox Method
2.3. Experimental Results
2.3.1. Temperature Amplitude
2.3.2. Thermal Amplitude Results
3. Numerical Models
3.1. Numerical Definitions
3.2. Numerical Validation with Experimental Results
3.2.1. Statistical Indices
3.2.2. Correlation Factor, R2
3.3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Nomenclature | |
cfoam | specific heat of the base layer (J/(kg.K)) |
cmix | specific heat (soft foam layer with PCM + hard foam layer with PCM) (J/(kg.K)) |
cPCM | Specific heat of the PCM (J/(kg.K)) |
f | decrement factor |
fw | PCM mass fraction |
Lv | latent heat phase change of PCM |
q | heat flux (W/m²) |
s | thickness (mm) |
T | temperature (°C) |
Tamp | amplitude temperature (°C) |
Tmean | external mean temperature (°C) |
U-value | thermal transmittance (W⁄(m2.K)) |
Greek Letters | |
∆ | Thermal amplitude |
λ | thermal conductivity (W/m.K) |
Abbreviations | |
CV RMSE | Variation of the root mean square error coefficient |
ECR | energy consumption reduction |
GOF | goodness-of-fit |
IEA | International Energy Agency |
NBME | normalized mean bias error |
PCM | phase change materials |
R2 | correlation factor |
RMSE | root mean square error |
PU | polyurethane |
TES | thermal energy storage |
wt | weight |
References
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Appl. Energy 2017, 194, 410–421. [Google Scholar] [CrossRef]
- Roaf, S.; Brotas, L.; Nicol, F. Counting the costs of comfort. Build. Res. Inf. 2015, 43, 269–273. [Google Scholar] [CrossRef]
- Fumo, N.; Rafe Biswas, M.A. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Sun, X.; Gao, F.; Feng, W.; Zillante, G. Heating energy saving potential from building envelope design and operation optimization in residential buildings: A case study in northern China. J. Clean. Prod. 2018, 174, 413–423. [Google Scholar] [CrossRef]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Zavrl, E.; El Mankibi, M.; Dovjak, M.; Stritih, U. Enhancing performance of building elements with phase change materials for cooling with air-based systems. J. Energy Storage 2022, 51, 104461. [Google Scholar] [CrossRef]
- ISO 7345:1987(en); Thermal Insulation—Physical Quantities and Definitions. International Organization for Standardization: Geneva, Switzerland, 1987.
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in situ methods for assessing the thermal transmittance of walls. Renew. Sustain. Energy Rev. 2019, 102, 356–371. [Google Scholar] [CrossRef]
- Whiffen, T.R.; Riffat, S.B. A review of PCM technology for thermal energy storage in the built environment: Part I. Int. J. Low-Carbon Technol. 2013, 8, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Hoseinzadeh, S.; Ghasemiasl, R.; Havaei, D.; Chamkha, A.J. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J. Mol. Liq. 2018, 271, 655–660. [Google Scholar] [CrossRef]
- Silva, T.; Vicente, R.; Amaral, C.; Figueiredo, A. Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis. Appl. Energy 2016, 179, 64–84. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, B.B.; Liu, L.J.; Liu, X.Y. The numerical simulation of radiant floor cooling and heating system with double phase change energy storage and the thermal performance. J. Energy Storage 2021, 40, 102635. [Google Scholar] [CrossRef]
- Larwa, B.; Cesari, S.; Bottarelli, M. Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy 2021, 225, 120245. [Google Scholar] [CrossRef]
- Lin, Y.; Zhong, S.; Yang, W.; Hao, X.; Li, C.Q. Multi-objective design optimization on building integrated photovoltaic with Trombe wall and phase change material based on life cycle cost and thermal comfort. Sustain. Energy Technol. Assessments 2021, 46, 101277. [Google Scholar] [CrossRef]
- Soudian, S.; Berardi, U. Development of a performance-based design framework for multifunctional climate-responsive façades. Energy Build. 2021, 231, 110589. [Google Scholar] [CrossRef]
- Sovetova, M.; Memon, S.A.; Kim, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Sol. Energy 2019, 189, 357–371. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K.; Gupta, N.K. Yearly analysis of peak temperature, thermal amplitude, time lag and decrement factor of a building envelope in tropical climate. J. Build. Eng. 2020, 31, 101459. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S.K. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renew. Energy 2020, 149, 1300–1313. [Google Scholar] [CrossRef]
- Sadeghi, H.M.; Babayan, M.; Chamkha, A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int. J. Heat Mass Transf. 2020, 147, 118970. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Doostanidezfuli, A.; Izadpanahi, E.; Ghalambaz, M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv. Powder Technol. 2017, 28, 385–397. [Google Scholar] [CrossRef]
- Bahrar, M.; Djamai, Z.I.; EL Mankibi, M.; Si Larbi, A.; Salvia, M. Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain. Cities Soc. 2018, 41, 455–468. [Google Scholar] [CrossRef]
- Li, Q.; Ma, L.; Li, D.; Arıcı, M.; Yıldız, Ç.; Wang, Z.; Liu, Y. Thermoeconomic analysis of a wall incorporating phase change material in a rural residence located in northeast China. Sustain. Energy Technol. Assess. 2021, 44, 101091. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, G.; Arıcı, M.; Bian, J.; Li, D. Thermal performance of non-ventilated multilayer glazing facades filled with phase change material. Sol. Energy 2019, 177, 464–470. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Zahir, M.H.; Irshad, K.; Shafiullah, M.; Ibrahim, N.I.; Kausarul Islam, A.K.M.; Mohaisen, K.O.; Sulaiman, F.A.A. Challenges of the application of PCMs to achieve zero energy buildings under hot weather conditions: A review. J. Energy Storage 2023, 64, 107156. [Google Scholar] [CrossRef]
- Liu, L.; Hammami, N.; Trovalet, L.; Bigot, D.; Habas, J.-P.; Malet-Damour, B. Description of phase change materials (PCMs) used in buildings under various climates: A review. J. Energy Storage 2022, 56, 105760. [Google Scholar] [CrossRef]
- Zhao, X.; Mofid, S.A.; Hulayel, M.R.A.; Saxe, G.W.; Jelle, B.P.; Yang, R. Reduced-scale hot box method for thermal characterization of window insulation materials. Appl. Therm. Eng. 2019, 160, 114026. [Google Scholar] [CrossRef]
- Amaral, C.; Pinto, S.C.C.; Silva, T.; Mohseni, F.; Amaral, J.S.S.; Amaral, V.S.S.; Marques, P.A.A.P.; Barros-Timmons, A.; Vicente, R. Development of polyurethane foam incorporating phase change material for thermal energy storage. J. Energy Storage 2020, 28, 101177. [Google Scholar] [CrossRef]
- Meng, X.; Gao, Y.; Wang, Y.; Yan, B.; Zhang, W.; Long, E. Research paper. Appl. Therm. Eng. 2015, 83, 48–56. [Google Scholar] [CrossRef]
- Guattari, C.; Evangelisti, L.; Gori, P.; Asdrubali, F. Influence of internal heat sources on thermal resistance evaluation through the heat flow meter method. Energy Build. 2017, 135, 187–200. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Li, L.; Zhao, M. Research on temperature dependent effective thermal conductivity of composite-phase change materials (PCMs) wall based on steady-state method in a thermal chamber. Energy Build. 2016, 126, 408–414. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G. Thermal transmittance measurements with the hot box method: Calibration, experimental procedures, and uncertainty analyses of three different approaches. Energy Build. 2011, 43, 1618–1626. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lunghi, L.; Barbanera, M. Thermal Conductivity Measurements By Means of a New `Small Hot-Box’ Apparatus: Manufacturing, Calibration and Preliminary Experimental Tests on Different Materials. Int. J. Thermophys. 2016, 37, 47. [Google Scholar] [CrossRef]
- Amaral, C.; Silva, T.; Mohseni, F.; Amaral, J.S.; Amaral, V.S.; Marques, P.A.A.P.; Barros-Timmons, A.; Vicente, R. Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material. Energy 2021, 216, 119213. [Google Scholar] [CrossRef]
- Amaral, C.; Vicente, R.; Ferreira, V.M.; Silva, T. Polyurethane foams with microencapsulated phase change material: Comparative analysis of thermal conductivity characterization approaches. Energy Build. 2017, 153, 392–402. [Google Scholar] [CrossRef]
- Cipriano, J.; Mor, G.; Chemisana, D.; Pérez, D.; Gamboa, G.; Cipriano, X. Evaluation of a multi-stage guided search approach for the calibration of building energy simulation models. Energy Build. 2015, 87, 370–385. [Google Scholar] [CrossRef]
Panel Layers | Material | Thickness (mm) | Density (kg/m3) | Thermal Conductivity (W/m.k) | Specific Heat (J/kg.K) |
---|---|---|---|---|---|
SOFT PU FOAM LAYER | Soft PU foam with 1.8% PCM | 25 | 101 | 0.037 | - |
HARD PU FOAM LAYER | Hard PU foam with 1.8% PCM | 28 | 98 | 0.037 | - |
SOFT PU FOAM LAYER | Soft PU foam without PCM | 20 | 101 | 0.037 | 1327 |
INSULATION LAYER | Clay aerogel | 30 | 50 | 0.035 | 850 |
DURABLE LAYER | Geopolymers | 15 | 1050 | 0.169 | 1000 |
EXTERNAL LAYER | Epoxy and glass fibres | 1.5 | 1870 | 0.320 | 1500 |
INTUMESCENT LAYER | Paint coating | 1.0 | 1500 | 0.200 | 1500 |
SURFACE COATING | Photocatalytic | 0.15 | 1100 | 0.035 | 1500 |
Density (kg/m3) | Melting | Thermal Conductivity (W/m.K) | |||
---|---|---|---|---|---|
Transition Temperature Tt,m (°C) | Melting Temperature Tm (°C) | Melting Latent Heat ΔHm (J/g) | 10 °C | 20 °C | |
503 | 23.37 | 25.84 | 59.56 | 0.970 | 1.051 |
Chamber Material | Thickness (mm) | Density (kg/m3) | Thermal Conductivity (W/m.K) | Specific Heat (J/kg.K) | Viscosity (mm) |
---|---|---|---|---|---|
Galvanized steel | 1.5 | 7833 | 54 | 465 | - |
Rockwool | 125 | 70 | 0.0375 | 840 | - |
Zinc | 1.5 | 7144 | 112.2 | 384.3 | - |
Interior air | - | 7833 | 54 | 465 | 1.5 |
Statistical Index | Panel |
---|---|
RMSE | 0.68 |
CVRMSE | 3.00 |
NMBE | −0.88 |
GOF | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, C.; Gomez, F.; Moreira, M.; Silva, T.; Vicente, R. Thermal Performance of Multifunctional Facade Solution Containing Phase Change Materials: Experimental and Numerical Analysis. Polymers 2023, 15, 2971. https://doi.org/10.3390/polym15132971
Amaral C, Gomez F, Moreira M, Silva T, Vicente R. Thermal Performance of Multifunctional Facade Solution Containing Phase Change Materials: Experimental and Numerical Analysis. Polymers. 2023; 15(13):2971. https://doi.org/10.3390/polym15132971
Chicago/Turabian StyleAmaral, C., F. Gomez, M. Moreira, T. Silva, and R. Vicente. 2023. "Thermal Performance of Multifunctional Facade Solution Containing Phase Change Materials: Experimental and Numerical Analysis" Polymers 15, no. 13: 2971. https://doi.org/10.3390/polym15132971