Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (578)

Search Parameters:
Keywords = thermal transmittance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8414 KiB  
Article
Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste
by Miroslav Müller, Viktor Kolář and Rajesh Kumar Mishra
Polymers 2024, 16(20), 2863; https://doi.org/10.3390/polym16202863 - 10 Oct 2024
Viewed by 445
Abstract
This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set [...] Read more.
This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set up to 80% of the maximum load in static tensile testing demonstrated satisfactory functionality of the recycled material developed by using the injection molding process. There was no significant change in the tensile strength under static and cyclic fatigue tests. Under cyclic loading, there was a quasi-static effect manifested by plastic deformation, and the displacement increased significantly. The static and cyclic tensile tests indicated improvement in the mechanical performance of the recycled LDPE as compared to the virgin material, owing to the high quality of the regranulates. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to analyze the functional groups in virgin and recycled LDPE samples. The analysis showed no significant change in the transmittance spectra. The thermal degradation performance was also analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The results were quite similar for both virgin and recycled LDPE. Full article
Show Figures

Graphical abstract

15 pages, 6396 KiB  
Article
Carbon Dots and Their Films with Narrow Full Width at Half Maximum Orange Emission
by Jiangchen Wu, Jianan Liu, Xinghua Liu, Jingxia Zheng, Lin Chen, Yongzhen Yang and Chunhui Su
Molecules 2024, 29(20), 4787; https://doi.org/10.3390/molecules29204787 - 10 Oct 2024
Viewed by 359
Abstract
To obtain carbon dots (CDs) with narrow full width at half maximum (FWHM) and long-wavelength emission, carbon sources with high conjugate sizes and abundant functional groups can be employed to synthesize CDs. In this study, orange-emissive carbon dots (OCDs) were synthesized with phloroglucinol [...] Read more.
To obtain carbon dots (CDs) with narrow full width at half maximum (FWHM) and long-wavelength emission, carbon sources with high conjugate sizes and abundant functional groups can be employed to synthesize CDs. In this study, orange-emissive carbon dots (OCDs) were synthesized with phloroglucinol and rhodamine B as precursors. When the molar ratio of them was 30:1, and ethanol was served as the solvent, OCDs with optimized emission wavelength at approximately 580 nm, an FWHM of 30 nm, and a quantum yield (QY) of 27.31% were obtained. Subsequently, the OCDs were incorporated into polyvinyl alcohol (PVA) to fabricate solid-state OCD/PVA fluorescent films, which exhibited an FWHM of 47 nm. The PVA matrix facilitated the dispersion of OCDs, thereby suppressing non-radiative energy transfer among the OCDs and enhancing luminescence efficiency. Consequently, compared with OCDs, the OCD/PVA film exhibited significant luminescent enhancement, and the QY of the composite film was increased to 84.74%. Moreover, OCD/PVA film showed good transmittance and thermal stability. This research offers a solid theoretical and experimental foundation for the potential applications of CDs in the field of solid-state lighting. Full article
Show Figures

Figure 1

22 pages, 12585 KiB  
Article
Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine
by Zhenzhong Wang, Xiaolei Wang, Shunqi Yuan, Xi Ren, Changxu Yang, Shujun Han, Yuexin Qi, Duanyi Li and Jingang Liu
Polymers 2024, 16(19), 2845; https://doi.org/10.3390/polym16192845 - 9 Oct 2024
Viewed by 363
Abstract
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite [...] Read more.
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite difficult to achieve both high optical transparency and AO resistance and maintain the intrinsic thermal stability of the PI films at the same time. In the current work, we aimed to achieve the target by using the copolymerization methodology using the fluorinated dianhydride 9,9-bis(trifluoromethyl)xanthene-2,3,6,7-tetracarboxylic dianhydride (6FCDA), the fluorinated diamine 2,2-bis [4-(4-aminophenoxy)phenyl]hexafluoropropane (BDAF) and the polyhedral oligomeric silsesquioxane (POSS)-containing diamine N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS) as the starting materials. The fluoro-containing monomers were used to endow the PI films with good optical and thermal properties, while the silicon-containing monomer was used to improve the AO resistance of the afforded PI films. Thus, the 6FCDA-based PI copolymers, including 6FCPI-1, 6FCPI-2 and 6FCPI-3, were prepared using a two-step chemical imidization procedure, respectively. For comparison, the analogous PIs, including 6FPI-1, 6FPI-2 and 6FPI-3, were correspondingly developed according to the same procedure except that 6FCDA was replaced by 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Two referenced PI homopolymers were prepared from BDAF and 6FDA (PI-ref1) and 6FCDA (PI-ref2), respectively. The experimental results indicated that a good balance among thermal stability, optical transparency, and AO resistance was achieved by the 6FCDA-PI films. For example, the 6FCDA-PI films exhibited good thermal stability with glass transition temperatures (Tg) up to 297.3 °C, good optical transparency with an optical transmittance at a wavelength of 450 nm (T450) higher than 62% and good AO resistance with the erosion yield (Ey) as low as 1.7 × 10−25 cm3/atom at an AO irradiation fluence of 5.0 × 1020 atoms/cm2. The developed 6FCDA-PI films might find various applications in aerospace as solar sails, thermal control blankets, optical components and other functional materials. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

17 pages, 6099 KiB  
Article
Influence of Graphene, Carbon Nanotubes, and Carbon Black Incorporated into Polyamide Yarn on Fabric Properties
by Veerakumar Arumugam, Aleksander Góra and Vitali Lipik
Textiles 2024, 4(4), 442-458; https://doi.org/10.3390/textiles4040026 - 4 Oct 2024
Viewed by 371
Abstract
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 [...] Read more.
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 (PA6) multifilament yarns. It explores how these nanofillers affect the physical, mechanical, and thermal properties of PA6 yarns and fabrics. By utilizing melt extrusion, the nanomaterials were uniformly distributed in the yarns, and knitted fabrics were subsequently produced for detailed analysis. The research offers critical insights into how each nanofiller improves the thermal behavior of PA6-based textiles, enabling the customization of their applications. FTIR spectroscopy revealed significant chemical interactions between polyamide and carbon additives, while DSC analysis showed enhanced thermal stability, particularly with the inclusion of graphene. The introduction of these nanomaterials led to increased absorbance and decreased transmittance in the UV-Vis-NIR spectrum. Additionally, Far-Infrared (FIR) emissivity and thermal effusivity varied with different concentrations, with optimal improvements observed at specific levels. Although thermal conductivity decreased with the addition of these nanomaterials, heat management experiments demonstrated varied effects on heat accumulation and cooling times, underscoring potential applications in insulation and cooling technologies. These findings enrich the existing knowledge on nanomaterial-enhanced textiles, providing valuable guidance for optimizing PA6 yarns and fabrics for use in protective clothing, sportswear, and technical textiles. The comparative analysis offers a thorough understanding of the relationship between carbon nanomaterials and thermal properties, paving the way for innovative advancements in functional textile materials. Full article
Show Figures

Figure 1

24 pages, 8015 KiB  
Article
Performance Evaluation of Low Thermal Bridging Drywall System with Separating Clips for C-Studs
by Jin-Hee Song and Hye-Won Kim
Buildings 2024, 14(9), 3032; https://doi.org/10.3390/buildings14093032 - 23 Sep 2024
Viewed by 593
Abstract
Drywall systems comprising gypsum boards and steel C-studs are widely used due to their lightweight structure, rapid construction, and ease of installation. These systems must meet the required thermal insulation performance for their specific applications. However, metal C-studs penetrate the insulation layer at [...] Read more.
Drywall systems comprising gypsum boards and steel C-studs are widely used due to their lightweight structure, rapid construction, and ease of installation. These systems must meet the required thermal insulation performance for their specific applications. However, metal C-studs penetrate the insulation layer at intervals, leading to additional heat loss, reduced thermal insulation performance, and lower indoor surface temperatures, which can result in condensation and mold growth. To address these issues, this study proposes a drywall system with low thermal bridging studs made up of two small-sized studs and four or five separating clips made of reinforced plastic. These clips separate the studs to minimize heat transfer through metal elements, maintain structural stability despite the spacing between them, and facilitate easy assembly. The results from mock-up tests showed that the proposed system’s thermal transmittance was 0.370 W/m2K, which is 28.8% lower than the 0.52 W/m2K observed with conventional C-studs. The proposed drywall system also met Korean regulations for acoustic insulation level 3 and the 2 h fire resistance criteria, similar to existing drywall systems with conventional C-studs. Moreover, the maximum and residual displacements were within an acceptable range for a horizontal load of 3000 N applied vertically to the non-load-bearing wall. Building energy analysis indicated that using the proposed drywall adjacent to unconditioned spaces could reduce the annual heating and cooling load by 2.5–3.0%, despite a 1.5–1.9% increase in the annual cooling load. The annual heating load decreased by 4.8–5.9% under infiltration rates of 0.5 to 1.5 air changes per hour for adjacent unconditioned spaces, making this drywall system’s improved insulation quality crucial for achieving heating-dominant zero-energy buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 5064 KiB  
Article
Adaptation of a Differential Scanning Calorimeter for Simultaneous Electromagnetic Measurements
by John W. Wilson, Mohsen A. Jolfaei, Adam D. Fletcher, Carl Slater, Claire Davis and Anthony J. Peyton
Sensors 2024, 24(18), 6077; https://doi.org/10.3390/s24186077 - 20 Sep 2024
Viewed by 461
Abstract
Although much information can be gained about thermally induced microstructural changes in metals through the measurement of their thermophysical properties using a differential scanning calorimeter (DSC), due to competing influences on the signal, not all microstructural changes can be fully characterised this way. [...] Read more.
Although much information can be gained about thermally induced microstructural changes in metals through the measurement of their thermophysical properties using a differential scanning calorimeter (DSC), due to competing influences on the signal, not all microstructural changes can be fully characterised this way. For example, accurate characterisation of recrystallisation, tempering, and changes in retained delta ferrite in alloyed steels becomes complex due to additional signal changes due to the Curie point, oxidation, and the rate (and therefore the magnitude) of transformation. However, these types of microstructural changes have been shown to invoke strong magnetic and electromagnetic (EM) responses; therefore, simultaneous EM measurements can provide additional complementary data which can help to emphasise or deconvolute these complex signals and develop a more complete understanding of certain metallurgical phenomena. This paper discusses how a DSC machine has been modified to incorporate an EM sensor consisting of two copper coils printed onto either side of a ceramic substrate, with one coil acting as a transmitter and the other as a receiver. The coil is interfaced with a custom-built data acquisition system, which provides current to the transmit coil, records signals from the receive coil, and is controlled by a graphical user interface which allows the user to select multiple excitation frequencies. The equipment has a useable frequency range of approximately 1–100 kHz and outputs phase and magnitude readings at a rate of approximately 50 samples per second. Simultaneous DSC-EM measurements were performed on a nickel sample up to a temperature of 600 °C, with the reversable ferromagnetic to paramagnetic transition in the nickel sample invoking a clear EM response. The results show that the combined DSC-EM apparatus has the potential to provide a powerful tool for the analysis of thermally induced microstructural changes in metals, feeding into research on steel production, development of magnetic and conductive materials, and many more areas. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors)
Show Figures

Figure 1

9 pages, 1957 KiB  
Article
Fabrication of Low-Emissivity Glass with Antibacterial Properties by Coating Cu/AZO Thin Films
by Shang-Chou Chang and Jian-Syun Wu
Solids 2024, 5(3), 434-442; https://doi.org/10.3390/solids5030029 - 1 Sep 2024
Viewed by 540
Abstract
This study explores the feasibility of using Cu/AZO thin films as low-emissivity materials with antibacterial properties, fabricated using the linear sputtering method. The linear sputtering technique deposits thin films onto continuous substrates, offering high throughput, uniform coatings, and precise control over film properties. [...] Read more.
This study explores the feasibility of using Cu/AZO thin films as low-emissivity materials with antibacterial properties, fabricated using the linear sputtering method. The linear sputtering technique deposits thin films onto continuous substrates, offering high throughput, uniform coatings, and precise control over film properties. In this research, Cu/AZO thin films underwent either vacuum annealing or hydrogen plasma annealing treatments. The Cu layer imparts antibacterial properties, while the AZO layer primarily provides thermal insulation. Experimental results show that annealing treatments enhance both photoelectric performance and antibacterial capability. Annealed Cu/AZO films exhibit lower resistivity and emissivity. Among the samples, those subjected to vacuum annealing at 400 °C are most suitable for low-emissivity applications, with an average visible light transmittance of 60%, an emissivity of 0.16, and an antibacterial activity value of 8.8. The Cu/AZO films proposed in this study effectively combine antibacterial and thermal insulation properties, making them relevant for the field of green materials. Full article
(This article belongs to the Special Issue Amorphous Materials: Fabrication, Properties, and Applications)
Show Figures

Figure 1

16 pages, 4263 KiB  
Article
Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites
by Hamza Bradai, Ahmed Koubaa, Jingfa Zhang and Nicole R. Demarquette
Polymers 2024, 16(17), 2493; https://doi.org/10.3390/polym16172493 - 31 Aug 2024
Viewed by 672
Abstract
This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood’s biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within [...] Read more.
This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood’s biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within the wood structure with resin. Once the resin cures, it forms a strong bond with the wood fibers, effectively reinforcing the biopolymer matrix and enhancing the mechanical properties of the resulting biocomposite material. This synergy between the natural biopolymer structure of wood and the synthetic resin impregnation is crucial for achieving the desired optical transparency and mechanical performance in transparent wood. Investigating three distinct wood species allows a comprehensive understanding of the relationship between natural and transparent wood biocomposite properties. The findings unveil promising results, such as remarkable light transmittance (up to 95%) for Aspen transparent wood. Moreover, transparent wood sourced from White Spruce demonstrates excellent stiffness (E = 2450 MPa), surpassing the resin’s Young’s modulus. Also, the resin impregnation enhanced the thermal stability of natural wood. Conversely, transparent wood originating from Larch showcases superior impact resistance. These results reveal a clear correlation between wood characteristics such as density, anatomy, and mechanical properties, and the resulting properties of the transparent wood. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Graphical abstract

15 pages, 1426 KiB  
Article
Salmonella Inactivation Model by UV-C Light Treatment in Chicken Breast
by Rosa María García-Gimeno, Eva Palomo-Manzano and Guiomar Denisse Posada-Izquierdo
Microorganisms 2024, 12(9), 1805; https://doi.org/10.3390/microorganisms12091805 - 31 Aug 2024
Viewed by 617
Abstract
This study aims to evaluate the effectiveness of inactivating Salmonella enteritidis in fresh chicken breast by irradiation using a combination of short-wave UV (0, 3, 6, 9, 12, and 15 J/cm2) and a natural antimicrobial such as caffeine (0, 5, 10, [...] Read more.
This study aims to evaluate the effectiveness of inactivating Salmonella enteritidis in fresh chicken breast by irradiation using a combination of short-wave UV (0, 3, 6, 9, 12, and 15 J/cm2) and a natural antimicrobial such as caffeine (0, 5, 10, 15, and 20 nM/g) at 14 °C as alternative proposals to conventional techniques to reduce pathogens in food. The effect of temperature was studied in an initial phase (2 to 22 °C). The most suitable models were double Weibull in 60% of cases, with an adjustment of R2 0.9903–0.9553, and Weibull + tail in 46.67%, with an adjustment of R2 of 0.9998–0.9981. The most effective combination for the reduction in Salmonella was 12 J/cm2 of UV light and 15 nM/g of caffeine, with a reduction of 6 CFU/g and an inactivation rate of 0.72. The synergistic effect was observed by increasing caffeine and UV light. Furthermore, the physico-chemical characteristics of the food matrix were not affected by the combination of both technologies. Therefore, these results suggest that this combination can be used in the food industry to effectively inactivate Salmonella enteritidis without deteriorating product quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 3564 KiB  
Article
Poly(vinyl chloride) Films Incorporated with Antioxidant ZnO-Flavonoid Nanoparticles: A Strategy for Food Preservation
by Lilian R. Braga, Maria Graciele Oliveira, Leonardo M. Pérez, Ellen T. Rangel and Fabricio Machado
Foods 2024, 13(17), 2745; https://doi.org/10.3390/foods13172745 - 29 Aug 2024
Viewed by 559
Abstract
Antioxidant films were prepared using poly(vinyl chloride) (PVC) incorporated with 0.5% or 1.0% zinc oxide (ZnO)-flavonoid (quercetin or morin) nanoparticles (NPZnO-Q% or NPZnO-M%) via the casting method. NP incorporation within the polymer matrix influenced the structural, morphological, optical, and thermal properties of the [...] Read more.
Antioxidant films were prepared using poly(vinyl chloride) (PVC) incorporated with 0.5% or 1.0% zinc oxide (ZnO)-flavonoid (quercetin or morin) nanoparticles (NPZnO-Q% or NPZnO-M%) via the casting method. NP incorporation within the polymer matrix influenced the structural, morphological, optical, and thermal properties of the PVC-based films, as well as their antioxidant activity as assessed using the DPPH radical scavenging method. Our results indicated that increasing ZnO-flavonoid NP concentration increased films thickness, while reducing ultraviolet light (UV) transmittance but conserving transparency. The presence of NPZnO-Q% or NPZnO-M% improved the surface uniformity and thermal stability of the active films. In terms of antioxidant activity, there was an enhancement in the DPPH radical scavenging capacity (PVC/ZnO-Q1.0% > PVC/ZnO-Q0.5% > PVC/ZnO-M0.5% > PVC/ZnO-M1.0% > PVC), suggesting that the packaging can help protect food from oxidative processes. Therefore, these antioxidant films represent an innovative strategy for using as active food packaging material, especially intended for aiding in quality preservation and extending the shelf life of fatty foods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

12 pages, 2108 KiB  
Article
A Comparative Study on the Melt Crystallization of Biodegradable Poly(butylene succinate-co-terephthalate) and Poly(butylene adipate-co-terephthalate) Copolyesters
by Pengkai Qin and Linbo Wu
Polymers 2024, 16(17), 2445; https://doi.org/10.3390/polym16172445 - 29 Aug 2024
Viewed by 586
Abstract
As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing [...] Read more.
As an important biodegradable and partially biobased copolyester, poly(butylene succinate-co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but it was found to display poorer melt processability during pelletizing and injection molding. To make clear its melt crystallization behavior under rapid cooling, PBST48 and PBST44 were synthesized, and their melt crystallization was investigated comparatively with PBAT48. PBST48 showed a PBAT48-comparable melt crystallization performance at a cooling rate of 10 °C/min or at isothermal conditions, but it showed a melt crystallization ability at a cooling rate of 40 °C/min which was clearly poorer. PBST44, which has the same mass composition as PBAT48, completely lost its melt crystallization ability under the rapid cooling. The weaker chain mobility of PBST, resulting from its shorter succinate moiety, is responsible for its inferior melt crystallization ability and processability. In comparison with PBAT48, PBST48 displayed higher tensile modulus, and both PBST48 and PBST44 showed higher light transmittance. The findings in this study deepen the understanding of PBST’s properties and will be of guiding significance for improving PBST’s processability and application development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

21 pages, 7175 KiB  
Article
Investigating Factors Impacting Power Generation Efficiency in Photovoltaic Double-Skin Facade Curtain Walls
by Xiaoxuan Zhou, Xue Zhou, Xiangyuan Zhu, Jiying Liu and Shiyu Zhou
Buildings 2024, 14(9), 2632; https://doi.org/10.3390/buildings14092632 - 25 Aug 2024
Viewed by 598
Abstract
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical [...] Read more.
Photovoltaic double-skin glass is a low-carbon energy-saving curtain wall system that uses ventilation heat exchange and airflow regulation to reduce heat gain and generate a portion of electricity. By developing a theoretical model of the ventilated photovoltaic curtain wall system and conducting numerical simulations, this study analyzes the variation patterns of the power generation efficiency of photovoltaic glass for different inclination angles, seasons, thermal ventilation spacing, and glass transmittance in the photovoltaic double-skin curtain wall system. The results indicate a positive correlation between the surface temperature of photovoltaic glass and both ground temperature and solar radiation intensity. Additionally, photovoltaic power generation efficiency is generally higher in spring and autumn than in summer and winter, with enhanced power generation performance observed. At an inclination angle of 40°, photovoltaic panels receive optimal solar radiation and, consequently, produce the maximum electricity. Furthermore, as the ventilation spacing increases, the efficiency of power generation initially rises, reaching a peak at approximately 0.4 m, where it is 0.4% greater than at a spacing of 0.012 m. For a photovoltaic glass transmittance of 40%, the highest photovoltaic power generation efficiency is 63%, while the average efficiency is 35.3%. This has significant implications for the application and promotion of photovoltaic double-skin glass curtain walls. Full article
Show Figures

Figure 1

18 pages, 9554 KiB  
Article
Thermal and Structural Performances of Screen Grid Insulated Concrete Forms (SGICFs) Using Experimental Testing
by Yosra El-Maghraby, Khaled Tarabieh, Meral Sharkass, Islam Mashaly and Ezzat Fahmy
Buildings 2024, 14(9), 2599; https://doi.org/10.3390/buildings14092599 - 23 Aug 2024
Viewed by 431
Abstract
The demand for sustainable building materials and systems with the emphasis on energy efficiency is on the rise. Insulating Concrete Forms (ICFs) are an example of such structural systems. Screen Grid Insulated Concrete Forms (SGICFs) are an innovative system that combines structural strength [...] Read more.
The demand for sustainable building materials and systems with the emphasis on energy efficiency is on the rise. Insulating Concrete Forms (ICFs) are an example of such structural systems. Screen Grid Insulated Concrete Forms (SGICFs) are an innovative system that combines structural strength and thermal performance. ICF walls are commonly used in Western countries to provide high-level insulation and internal weather control. Accordingly, the current research conducts a comparative thermal analysis for a market-supplied ICF wall, a SGICF proposed design, and three typical brick walls used regionally in the Middle East. The heat transfer through the five walls is simulated by COMSOL Multiphysics and validated experimentally by utilizing a guarded hot box facility under the regulations of the ASTM C1363 standard. The market-supplied ICF walls showed better thermal insulation properties than the proposed SGICF walls, because of their higher thermal mass of concrete than in the SGICF walls. However, both walls had a remarkably higher insulation performance than the other three typical brick walls available in the market. The results reveal that the market-supplied ICF walls are overdesigned for use in the Middle East region, and SGICFs, with their comparative thermal transmittance, are a very good competitor in the Middle East market. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Development of Advanced Solid-State Thermochromic Materials for Responsive Smart Window Applications
by Kai Zeng, Chang Xue, Jinbo Wu and Weijia Wen
Polymers 2024, 16(16), 2385; https://doi.org/10.3390/polym16162385 - 22 Aug 2024
Viewed by 710
Abstract
This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75–85% octadecyl acrylate and 0–7% allyl methacrylate, demonstrating a pronounced [...] Read more.
This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75–85% octadecyl acrylate and 0–7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5–39 °C. The synthesized powder underwent a battery of tests, including differential scanning calorimetry and thermogravimetric analysis, as well as scanning electron microscopy. These comprehensive evaluations confirmed the material’s exceptional thermal stability, uniform particle size distribution, and strong anchoring properties. Building upon these findings, we advanced the development of thermochromic polyvinyl butyral films and laminated glass products. By utilizing a coextrusion technique, we integrated these films into laminated glass, setting a new benchmark against existing glass technologies. Remarkably, the incorporation of thermochromic PVB films into laminated glass led to a significant reduction in solar irradiance of 20–30%, outperforming traditional double silver low-emissivity glass. This achievement demonstrates the exceptional shading and thermal insulation properties of the material. The research presented herein not only pioneers a valuable methodology for the engineering of smart materials with tunable thermotropic transmittance but also holds the key to unlocking enhanced energy efficiency across a spectrum of applications. The potential impact of this innovation on the realm of sustainable building materials is profound, promising significant strides toward energy conservation and environmental stewardship. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

13 pages, 9458 KiB  
Article
Optimization of Yb:CaF2 Transparent Ceramics by Air Pre-Sintering and Hot Isostatic Pressing
by Xiang Li, Chen Hu, Lihao Guo, Junlin Wu, Guido Toci, Angela Pirri, Barbara Patrizi, Matteo Vannini, Qiang Liu, Dariusz Hreniak and Jiang Li
Ceramics 2024, 7(3), 1053-1065; https://doi.org/10.3390/ceramics7030069 - 15 Aug 2024
Cited by 1 | Viewed by 705
Abstract
Yb:CaF2 transparent ceramics represent a promising laser gain medium for ultra-short lasers due to their characteristics: low phonon energy, relatively high thermal conductivity, negative thermo-optical coefficient, and low refractive index. Compared to single crystals, Yb:CaF2 ceramics offer superior mechanical properties, lower [...] Read more.
Yb:CaF2 transparent ceramics represent a promising laser gain medium for ultra-short lasers due to their characteristics: low phonon energy, relatively high thermal conductivity, negative thermo-optical coefficient, and low refractive index. Compared to single crystals, Yb:CaF2 ceramics offer superior mechanical properties, lower cost, and it is easier to obtain large-sized samples with proper shape and uniform Yb3+ doping at high concentrations. The combination of air pre-sintering and Hot Isostatic Pressing (HIP) emerges as a viable strategy for achieving high optical quality and fine-grained structure of ceramics at lower sintering temperatures. The properties of the powders used in ceramic fabrication critically influence both optical quality and laser performance of Yb:CaF2 ceramics. In this study, the 5 atomic percentage (at.%) Yb:CaF2 transparent ceramics were fabricated by air pre-sintering and hot isostatic pressing (HIP) using nano-powders synthesized through the co-precipitation method. The co-precipitated powders were optimized by studying air calcination temperature (from 350 to 550 °C). The influence of calcination temperature on the microstructure and laser performance of Yb:CaF2 ceramics was studied in detail. The 5 at.% Yb:CaF2 transparent ceramics air pre-sintered at 625 °C from powders air calcined at 400 °C and HIP post-treated at 600 °C exhibited the highest in-line transmittance of 91.5% at 1200 nm (3.0 mm thickness) and the best laser performance. Specifically, a maximum output power of 0.47 W with a maximum slope efficiency of 9.2% at 1029 nm under quasi-CW (QCW) pumping was measured. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Figure 1

Back to TopTop