Hybrid Dual-Polarization Synthetic Aperture Radar
Abstract
:1. Introduction
2. Provenance
2.1. Theoretical Foundation
2.2. Stokes Parameters
2.3. Historical Overview
3. Hybrid Dual-Polarization
3.1. Rationale
3.2. Hybrid Compact Polarimetry Goes to the Moon
3.3. HCP Lunar Data Analysis
4. Performance in Earth Applications
4.1. Methodologies to Avoid
4.2. Results from Appropriate Methodologies
- Circularly-polarized like- and cross-polarized radar brightness constituents derived from the HCP data are sufficient for certain applications [40], but only if evaluated in the circularly-polarized domain (see Appendix C.2), for example σ0RL and σ0RR.
- For decades, classical radar astronomy [41] has had success using the values of individual child parameters of the four-element Stokes vector, such as degree of polarization (m), circular-polarization ratio (CPR), degree of linear polarization (mL), and sense of polarimetric rotation (see Appendix C.2) (opposite sense vs. same sense of rotation relative to that of the circularly transmitted EM field). These parameters as well as others may be useful in classification applications of Earth-oriented HCP radar data [42].
- The m-chi method draws upon two of the three classical Poincaré variables. The third, psi, indicates the orientation of the strongest linear polarization present in the backscattered field. This suggests that an m-chi-psi decomposition as a three-parameter classification scheme (which could be helpful in response to a transmitted field that is not perfectly circularly polarized).
- The m-chi method weights ellipticity by (1 ± sin2χ) factors [24], where −45° ≤ χ ≤ +45°. The extrema represent L or R circular polarizations. An alternative has been suggested [43] that substitutes the linearized factor (1 ± 4χ/π). If greater sensitivity to ellipticity variations in the neighborhood of perfect circularity is of interest, then this version may be preferable.
- Although unsupervised classification techniques have been applied to polarimetric radar data for many years by several investigators, the approach seems neither to have attracted much attention nor many adherents. The method deserves a second look. For example, multi-temporal agricultural crop studies using unsupervised classification of HCP-derived Stokes parameters achieved better results than quad-pol data classified through either entropy-alpha or Freeman–Durden decompositions [25].
4.3. Results from RISAT-1 HCP Data
5. Conclusions
6. Patents
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Quadrature Polarimetry
Appendix B. Quad-pol Reflections
Appendix C. Terminology
Appendix C.1. Compact Polarimetric Radar Acronyms
Appendix C.2. Stokes Parameters
Appendix C.3. Decomposition
Appendix C.4. Simulation vs. Emulation
Appendix D. Calibration of an HCP Radar
References
- Chin, G.; Brylow, S.; Foote, M.; Garvin, J.; Kasper, J.; Keller, J.; Litvak, M.; Mitrofanov, I.; Paige, D.; Raney, R.K.; et al. Lunar Reconnaissance Orbiter overview: The instrument suite and mission. Space Sci. Rev. 2007, 129, 391–419. [Google Scholar] [CrossRef]
- Goswami, J.N.; Annadurai, M. Chandrayaan-1: India’s first planetary science mission to the moon. Curr. Sci. 2009, 96, 486–491. [Google Scholar]
- Misra, T.; Rana, S.S.; Desai, N.M.; Dave, D.B.; Rajeevjyoti Arora, R.K.; Rao, C.V.N.; Bakori, B.V.; Neelakantan, R.; Vachchani, J.G. Vachani, Synthetic Aperture Radar payload on-board RISAT-1: Configuration, technology, and performance. Curr. Sci. 2013, 104, 446–461. [Google Scholar]
- Yokota, Y.; Nakamura, S.; Endo, J.; Suwa, K.; Endo, T.; Tsuji, M.; Hariu, K.; Kankaku, Y.; Suzuki, S.M. Shimada: Evaluation of compact polarimetry and along track interferometry as experimental mode of PALSAR-2. IEEE Int. Geosci. Remote Sens. Symp. 2015, 4125–4128. [Google Scholar]
- Stokes, G.G. On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1852, 9, 399–416. [Google Scholar]
- Born, W.; Wolf, E. Principles of Optics; Pergamon Press: New York, NY, USA, 1959. [Google Scholar]
- Boerner, W.M.H.; Mott, E.; Luneburg, C.; Livingstone, B.; Brown, B.R.J.; Paterson, J.S. Polarimetry in radar remote sensing: Basic and applied concepts. In Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed.; Henderson, F.M., Lewis, A.J., Eds.; Wiley: New York, NY, USA, 1998; Volume 2. [Google Scholar]
- Maxwell, J.C. A Dynamical Theory of the Electromagnetic Field. Philos. Trans. R. Soc. Lond. 1865, 155, 459–512. [Google Scholar]
- Wolf, E. Optics in terms of observable quantities. Nuovo Cimento 1954, 12, 884–888. [Google Scholar] [CrossRef]
- Luscombe, A.P. Taking a Broader View: RADARSAT Adds ScanSAR to its Operation. Proc. Int. Geosci. Remote Sens. Symp. 1988, 2, 1027–1032. [Google Scholar]
- Souyris, J.-C.; Mingot, S. Polarimetry based on one transmitting and two receiving polarizations: The π/4 mode. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2002, 1, 629–631. [Google Scholar]
- Torlaschi, E.; Holt, A.R. A comparison of different polarization schemes for the radar sensing of precipitation. Radio Sci. 1998, 33, 1335–1352. [Google Scholar] [CrossRef]
- Bringi, V.N.; Hendry, A. Technology of polarization diversity radars for meteorology. Radar Meteorol. 1990, 153–190. [Google Scholar]
- Souyris, J.-C.; Imbo, P.; Fjortoft, R.; Mingot, S.; Lee, J.-S. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646. [Google Scholar] [CrossRef]
- Nord, M.E.; Ainsworth, T.L.; Lee, J.-S.; Stacy, N.J.S. Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188. [Google Scholar] [CrossRef]
- Raney, R.K. Hybrid-Polarity SAR Architecture. IEEE Int. Geosci. Remote Sens. Symp. 2006, 45, 3397–3404. [Google Scholar] [CrossRef]
- Stacy, N.; Preiss, M. Compact polarimetric analysis of X-band SAR data. In Proceedings of the 6th European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Mathews, J. A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 2013, 4, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Green, P.E., Jr. Radar Measurements of Target Scattering Properties. In Radar Astronomy; Evans, J.V., Hagfors, T., Eds.; McGraw-Hill: New York, NY, USA, 1968; pp. 1–78. [Google Scholar]
- Stacy, N.J.S.; Campbell, D.B. Stokes vector analysis of lunar radar backscatter. Proc. Geosci. Remote Sens. Symp. 1993, 30–33. [Google Scholar]
- Carter, L.M.; Campbell, D.B.; Campbell, B.A. Impact crater related surficial deposits on Venus: Multi-polarization radar observations with Arecibo. J. Geophys. Res. 2004, 109, E06009. [Google Scholar] [CrossRef]
- Hagfors, T.; Brockelman, R.A.; Danforth, H.H.; Hanson, L.B.; Hyde, G.M. Tenuous surface layer on the Moon: Evidence derived from radar observations. Science 1965, 150, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef]
- Raney, R.K.; Cahill, J.T.; Patterson, G.W.; Bussey, D.B.J. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. 2012, 117, E00H21. [Google Scholar] [CrossRef]
- Charbonneau, F.J.; Brisco, B.; Raney, R.K.; McNairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; DeAbreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36 (Suppl. 2), S298–S315. [Google Scholar] [CrossRef]
- Zebker, H.A.; Van Zyl, J.J.; Held, D.N. Imaging radar polarimetry from wave synthesis. J. Geophys. Res. 1987, 92, 1295–1304. [Google Scholar] [CrossRef]
- Raney, R.K.; Spudis, P.D.; Bussey, B.; Crusan, J.; Jensen, J.R.; Marinelli, W.; McKerracher, P.; Neish, C.; Palsetia, M.; Schulze, R.; et al. The Lunar Mini-RF Radars: Hybrid Polarimetric Architecture and Initial Results. Proc. IEEE 2011, 99, 808–823. [Google Scholar] [CrossRef]
- Ostro, S.J. Planetary radar astronomy. In The Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2002; pp. 295–328. [Google Scholar]
- Campbell, B.A.; Campbell, D.B.; Margot, J.L.; Ghent, R.R.; Nolan, M.; Chandler, J.; Carter, L.M.; Stacy, N.J. Focused 70-cm radar mapping of the Moon. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4032–4042. [Google Scholar] [CrossRef]
- Carter, L.M.; Campbell, D.; Campbell, B. Volcanic deposits in shield fields and highland regions on Venus: Surface properties from radar polarimetry. J. Geophys. Res. 2006, 111, E06005. [Google Scholar] [CrossRef]
- Wolf, E. Coherence properties of partially polarized electromagnetic radiation. Nuovo Cimento 1959, 13, 1165–1181. [Google Scholar] [CrossRef]
- Aiello, A.; Woerdman, J.P. Physical bounds to the entropy-depolarization relation in random light scattering. Phys. Rev. Lett. 2005, 94, 090406. [Google Scholar] [CrossRef] [PubMed]
- Poincare, H. Théorie Mathématique De La Lumiére II. NOUVELLES Études Sur La Diffraction; Gauthier-Villars: Paris, France, 1892; p. 306. [Google Scholar]
- Raney, R.K. M-Chi Decomposition of Imperfect Hybrid Dual-Polarimetric Radar Data. In Proceedings of the PolInSAR 2013, Frascati, Italy, 28 January–1 February 2013. [Google Scholar]
- Spudis, P.D.; Bussey, D.B.J.; Baloga, S.M.; Cahill, J.T.S.; Glaze, L.S.; Patterson, G.W.; Raney, R.K.; Thompson, T.W.; Thomson, B.J.; Ustinov, E.A. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res. Planet. 2013, 118, 2016–2029. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The Reflexion of X-rays by Crystals. Proc. R. Soc. 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Van Zyl, J.J.; Zebker, H.A.; Elachi, C. Imaging radar polarization signatures: Theory and observation. Radio Sci. 1987, 22, 529–543. [Google Scholar] [CrossRef]
- Raney, R.K. Comparing compact and quadrature polarimetric SAR performance. IEEE Geosci. Remote Sens. Lett. 2016, 13, 861–864. [Google Scholar] [CrossRef]
- Cloude, S. Polarization: Applications in Remote Sensing; Oxford University Press: London, UK, 2009; ISBN 10 0199569738. [Google Scholar]
- Kumar, A.; Das, A.; Panigrahi, R.K. Hybrid-pol Decomposition Methods: A Comparative Evaluation and a New Entropy-based Approach. IETE Tech. Rev. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Harmon, J.K.; Perillat, P.J.; Slade, M.A. High-Resolution Radar Imaging of Mercury’s North Pole. Icarus 2001, 149, 1–15. [Google Scholar] [CrossRef]
- Carter, L.; Campbell, D.B.; Campbell, B.A. Geologic Studies of Planetary Surfaces using Radar Polarimetric Imaging. Proc. IEEE 2011, 99, 770–782. [Google Scholar] [CrossRef]
- Bhattacharya, A.; De, S.; Muhuri, A.; Surendar, M.; Venkataraman, G.; Das, A.K. A New Compact Polarimetric SAR Decomposition Technique. Remote Sens. Lett. 2015, 6, 914–923. [Google Scholar] [CrossRef]
- Dhingra, S.; Bhattacharya, A. A modified m-χ decomposition for compact polarimetric SAR data. Lunar Planet. Sci. Conf. 2015, 46, 1837. [Google Scholar]
- Denbina, M.M.J.; Collins, B.; Minchew, C.E.J.; Holt, B. On the Use of Compact Polarimetry L- Band SAR for Characterizing the Deepwater Horizon Oil Spill. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1062–1077. [Google Scholar]
- Li, Y.; Lin, H.; Zhang, Y.; Chen, J. Comparisons of Circular Transmit and Linear Receive Compact Polarimetric SAR Features for Oil Slicks Discrimination. J. Sens. 2015, 2015, 631561. [Google Scholar] [CrossRef]
- Dabboor, M.; Geldsetzer, T. On the classification of sea ice types using simulated Radarsat Constellation Mission (RCM) Compact Polarimetric SAR Parameters. In Proceedings of the ASPRS Annual Conference, Louisville, KY, USA, 23–28 March 2014. [Google Scholar]
- Soussi, B.; Ouarzeddine, M.; Belhadj-Aissa, A. Optimal SVM Classification for Compact Polarimetric Data Using Stokes Parameters. J. Math. Model. Algorithms Oper. Res. 2014, 13, 433–446. [Google Scholar] [CrossRef]
- Truong-Loï, M.L. Potentiels D’un Système RSO Basse Fréquence Opérant En Polarimétrie Compacte. Ph.D. Thesis, Université de Rennes 1, Rennes, France, 2010; p. 258. [Google Scholar]
- Williams, M.L. Potential for Surface Parameter Estimation using Compact Polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2008, 5, 471–473. [Google Scholar] [CrossRef]
- Guo, X.; Li, K.; Shao, Y.; Wang, Z.; Li, H.; Yang, Z.; Liu, L.; Wang, S. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-band data. Sensors 2018, 18, 2271. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Perrie, W. Sea Ice Characterization and Classification Using Hybrid Polarimetry SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4998–5010. [Google Scholar] [CrossRef]
- Yin, J.; Yang, J.; Zhou, Z.S.; Song, J. The Extended Bragg Scattering Model-Based Method for Ship and Oil-Spill Observation Using Compact Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3760–3772. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S. Assessment of the High Resolution SAR Mode of the RADARSAT Constellation Mission for First Year Ice and Multiyear Ice Characterization. Remote Sens. 2018, 10, 594. [Google Scholar] [CrossRef]
- Migliaccio, M.; Nunziata, F.; Buono, A. SAR polarimetry for sea oil slick observation. Int. J. Remote Sens. 2015, 36, 3243–3273. [Google Scholar] [CrossRef] [Green Version]
- Jayasri, P.V.; Niharika, K.; Joseph, M.; Ryali, H.U.S.; Sarma, C.R.; Kumari, E.S.; Prasad, A.V.V. Implementation of RISAT-1 Hybrid Polarimetric Decomposition Techniques and Analysis Using Corner Reflector Data. J. Indian Soc. Remote Sens. 2018, 46, 1005–1012. [Google Scholar] [CrossRef]
- Singha, S.; Ressel, R. Arctic Sea Ice Characterization Using RISAT-1 Compact-Pol SAR Imagery and Feature Evaluation: A Case Study Over Northeast Greenland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3504–3514. [Google Scholar] [CrossRef] [Green Version]
- Dasari, K.; Lokam, A. Exploring the Capability of Compact Polarimetry (Hybrid Pol) C band RISAT-1 data for Land Cover Classification. IEEE Access 2018, 6, 57981–57993. [Google Scholar] [CrossRef]
- Ponnurangam, G.G.; Jagdhuber, T.; Hajnsek, I.; Rao, Y.S. Soil Moisture Estimation Using Hybrid Polarimetric SAR Data of RISAT-1. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2033–2049. [Google Scholar] [CrossRef]
- Uppala, D.; Venkata, R.K.; Poloju, S.; Venkata Rama, S.M.; Dadhwal, V.K. Discrimination of maize crop with hybrid polarimetric RISAT-1 data. Int. J. Remote Sens. 2016, 37, 2641–2652. [Google Scholar] [CrossRef]
- Espeseth, M.; Brekke, C.; Johansson, A. Assessment of RISAT-1 and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective. Remote Sens. 2017, 9, 1088. [Google Scholar] [CrossRef]
- Kumar, A.; Das, A.; Panigrahi, R.K. Hybrid-Pol Based Three-Component Scattering Model for Analysis of RISAT Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5155–5162. [Google Scholar] [CrossRef]
- Dubois, P.C.; Norikane, L. Data volume reduction for imaging radar polarimetry. Proc. Int. Geosci. Remote Sens. Symp. 1987, 1, 691–696. [Google Scholar]
- Raney, R.K.; Freeman, A.; Jordan, R.L. Improved Range Ambiguity Performance in Quad-Pol SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 349–356. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. GRS 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cohen, M.H. Radio Astronomy Polarization Measurements. Proc. IRE 1958, 46, 172–183. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sens. 2019, 11, 1521. https://doi.org/10.3390/rs11131521
Raney RK. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sensing. 2019; 11(13):1521. https://doi.org/10.3390/rs11131521
Chicago/Turabian StyleRaney, R. Keith. 2019. "Hybrid Dual-Polarization Synthetic Aperture Radar" Remote Sensing 11, no. 13: 1521. https://doi.org/10.3390/rs11131521