Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Extraction of Brewer′s Spent Grains
2.2. Techno-Functional Properties
2.3. Water Absorption Index (WAI) and Water Solubility Index (WSI)
2.4. Swelling Capacity (SC)
2.5. Foaming Capacity (FC)
2.6. Oil Absorption Capacity (OAC)
2.7. Estimation of Antioxidant Efficacy
2.8. Determination of Total Phenol Content
2.9. Determination of Total Flavonoid Content
2.10. Amylase and Lipase Inhibition Assay
2.11. Glucose Uptake Assay
2.12. Total Protein Content
2.13. Crude Fiber (CF)
2.14. Fourier Transform Infrared Spectroscopy (FTIR)
2.15. Differential Scanning Calorimetry (DSC)
2.16. X-ray Diffraction (XRD)
2.17. Total Plate Count (TPC)
2.18. Total Fungal Count (TFC)
2.19. Statistical Analysis
3. Results and Discussion
3.1. Bulk Density (BD)
3.2. Tapped Density (TD)
3.3. Carr′s Index (CI)
3.4. Hausner Ratio (HR)
3.5. Angle of Repose (φ)
3.6. Water Absorption Index (WAI)
3.7. Water Solubility Index (WSI)
3.8. Swelling Capacity (SC)
3.9. Foaming Capacity (FC)
3.10. Oil Absorption Capacity (OAC)
3.11. Antioxidant Activity
3.12. Total Phenolic Content (TPC)
3.13. Total Flavonoid Content (TFC)
3.14. Amylase Inhibition Assay
3.15. Lipase Inhibition Assay
3.16. Glucose Uptake Assay
3.17. Total Protein Content (TPC)
3.18. Crude Fiber (CF) Content
3.19. Differential Scanning Calorimetry (DSC)
3.20. X-ray Diffraction (XRD)
3.21. Fourier Transform Infrared Spectroscopy (FTIR)
3.22. Total Plate Count (TPC)
3.23. Total Fungal Count (TFC)
4. Future Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar]
- Macias-Garbett, R.; Serna-Hernández, S.O.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Phenolic Compounds from Brewer’s Spent Grains: Toward Green Recovery Methods and Applications in the Cosmetic Industry. Front. Sustain. Food Syst. 2021, 5, 681684. [Google Scholar] [CrossRef]
- Muthusamy, N. Chemical composition of brewers spent grain. Int. J. Sci. Environ. Technol. 2014, 3, 2109–2112. [Google Scholar]
- Jin, Z.; Lan, Y.; Ohm, J.B.; Gillespie, J.; Schwarz, P.; Chen, B. Physicochemical composition, fermentable sugars, free amino acids, phenolics, and minerals in brewers’ spent grains obtained from craft brewing operations. J. Cereal Sci. 2022, 104, 103413. [Google Scholar] [CrossRef]
- Ivanova, K.; Denkova, R.; Kostov, G.; Petrova, T.; Bakalov, I.; Ruscova, M.; Penov, N. Extrusion of brewers’ spent grains and application in the production of functional food. Characteristics of spent grains and optimization of extrusion. J. Inst. Brew. 2017, 123, 544–552. [Google Scholar]
- Parekh, I.; Khanvilkar, A.; Naik, A. Barley–wheat brewers’ spent grain: A potential source of antioxidant rich lipids. J. Food Process. Preser. 2017, 41, e13244. [Google Scholar] [CrossRef]
- Panjičko, M.; Zupančič, G.D.; Fanedl, L.; Logar, R.M.; Tišma, M.; Zelić, B. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J. Clean. Prod. 2017, 166, 519–529. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Boas, A.A.V.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Teixeira, J.A.; Pintado, M. Bioactive extracts from brewer’s spent grain. Food Func. 2020, 11, 8963–8977. [Google Scholar] [CrossRef]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. J. Environ. Chem. Eng. 2019, 7, 103184. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Galli, V.; Amoriello, M.; Ciccoritti, R. Technological properties and consumer acceptability of bakery products enriched with brewers’ spent grains. Foods 2020, 9, 1492. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, A.; Zannini, E.; Sahin, A.W.; Arendt, E.K. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods 2021, 10, 1389. [Google Scholar] [CrossRef]
- Ndayishimiye, J.; Ferrentino, G.; Nabil, H.; Scampicchio, M. Encapsulation of oils recovered from brewer’s spent grain by particles from gas saturated solutions technique. Food Bioprocess. Technol. 2020, 13, 256–264. [Google Scholar] [CrossRef]
- Hetclova, V.; Jezerska, L.; Strbova, K.; Prokes, R.; Zegzulka, J. Effect of the cleaning process on physical properties for different malting barley seed varieties. Food Sci. Nutr. 2020, 8, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Huarcaya, J.J.; Valentin-Soto, L.S.; Herrera-Calderon, O.; Fuertes-Ruitón, C.M.; Pari-Olarte, J.B.; Loyola-Gonzales, E.; Almeida-Galindo, J.S.; Kong-Chirinos, J.F.; Melgar-Merino, E.J.; Alshahrani, M.M.; et al. Chemical Characterization, Antioxidant, and Antihyperglycemic Capacity of Ferulated Arabinoxylan Extracted from “Chicha de Jora” Bagasse: An Ancestral Fermented Beverage from Zea mays L. J. Food Qual. 2022, 2022, 4015886. [Google Scholar] [CrossRef]
- Jiang, L.; Qi, M.; Deng, Y.; Suo, W.; Song, J.; Zhang, M.; Zheng, H.; Zhang, D.; Chen, S.; Li, H. Extrusion-induced pre-gelatinization and hydrolyzation of rice adjunct contributed to the mashing performance. LWT 2022, 158, 113126. [Google Scholar] [CrossRef]
- Shroti, G.K.; Saini, C.S. Development of edible films from protein of brewer’s spent grain: Effect of pH and protein concentration on physical, mechanical and barrier properties of films. App. Food Res. 2022, 2, 100043. [Google Scholar] [CrossRef]
- Vieira, M.C.; Brandelli, A.; Thys, R.C.S. Evaluation of the technological functional properties and antioxidant activity of protein hydrolysate obtained from brewers’ spent grain. J. Food Process. Preser. 2022, 46, e16638. [Google Scholar] [CrossRef]
- Singh, J.; Rasane, P.; Kaur, S.; Nanda, V. Comparative analysis of antioxidant potential and techno-functional properties of selected corn silk varieties at different developmental stages. J. Food Meas. Charac. 2022, 16, 2685–2698. [Google Scholar]
- Zago, E.; Tillier, C.; De Leener, G.; Nandasiri, R.; Delporte, C.; Bernaerts, K.V.; Shavandi, A. Sustainable production of low molecular weight phenolic compounds from Belgian Brewers’ spent grain. Biores. Technol. Rep. 2022, 17, 100964. [Google Scholar] [CrossRef]
- Merten, D.; Erman, L.; Marabelli, G.P.; Leners, B.; Ney, Y.; Nasim, M.J.; Jacob, C.; Tchoumtchoua, J.; Cajot, S.; Bohn, T. Potential health effects of brewers’ spent grain as a functional food ingredient assessed by markers of oxidative stress and inflammation following gastro-intestinal digestion and in a cell model of the small intestine. Food Funct. 2022, 13, 5327–5342. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A.V.; Bobiş, O.; Nayik, G.A.; Jagdale, Y.D.; Saeed, F.; Afzaal, M.; Mostashari, P.; et al. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front. Nutr. 2022, 9, 972154. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.; Anand, T.; Ilaiyaraja, N.; Khanum, F. In-vitro antioxidant and anti-obesity properties of Bauhinia variegata. Def. Life Sci. J. 2017, 2, 128–132. [Google Scholar] [CrossRef]
- D’Souza, S.; Murata, H.; Jose, M.V.; Askarova, S.; Yantsen, Y.; Andersen, J.D.; Edington, C.D.; Clafshenkel, W.P.; Koepsel, R.R.; Russell, A.J. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials 2014, 35, 9447–9458. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative estimation of protein in sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. [Google Scholar] [CrossRef] [PubMed]
- Madubuike, P.C.; Okolo, T.C. Quality estimation of brewer’s spent grains and its potential: A product of beer industries. Int. J. Eng. Sci. 2016, 5, 21–25. [Google Scholar]
- Singh, J.; Inbaraj, B.S.; Kaur, S.; Rasane, P.; Nanda, V. Phytochemical Analysis and Characterization of Corn Silk (Zeamays, G5417). Agron. 2022, 12, 777. [Google Scholar] [CrossRef]
- AOAC 990.12; Aerobic Plate Count in Foods (PetrifilmTM Method). Department of Agriculture, Water and the Environment: Canberra, Australia, 2019.
- Arranz, J.I.; Sepúlveda, F.J.; Montero, I.; Romero, P.; Miranda, M.T. Feasibility Analysis of Brewers’ Spent Grain for Energy Use: Waste and Experimental Pellets. Appl. Sci. 2021, 11, 2740. [Google Scholar] [CrossRef]
- Pérez, V.; Murillo, J.M.; Bados, R.; Esteban, L.S.; Ramos, R.; Sánchez, J.M. Preparation and gasification of brewers’ spent grains. In Proceedings of the 5th International Conference on Sustainable Solid. Waste Management, Athens, Greece, 21–24 June 2017; pp. 1–12. [Google Scholar]
- Bian, Q.; Ambrose, R.K.; Subramanyam, B. Effect of chaff on bulk flow properties of wheat. J. Stored Prod. Res. 2015, 64, 21–26. [Google Scholar] [CrossRef]
- Jan, S.; Rafiq, S.I.; Saxena, D.C. Effect of physical properties on flow ability of commercial rice flour/powder for effective bulk handling. Int. J. Comp. Appl. 2015, 975, 8887. [Google Scholar]
- Gowthamraj, G.; Jubeena, C.; Sangeetha, N. The effect of γ-irradiation on the physicochemical, functional, proximate, and anti-nutrient characteristics of finger millet (CO14 & CO15) flours. Radiat. Phys. Chem. 2021, 183, 109403. [Google Scholar]
- Rao, M.V.; Akhil, K.G.; Sunil, C.K.; Venkatachalapathy, N.; Jaganmohan, R. Effect of microwave treatment on physical and functional properties of foxtail millet flour. Int. J. Chem. Stud. 2021, 9, 2762–2767. [Google Scholar] [CrossRef]
- Girma Tura, A.; Abera, S. Study of some physical and functional properties of the malted Temash Barley (Hordeum vulgare L.) grains and its flour. Cogent Food Agric. 2020, 6, 1855841. [Google Scholar] [CrossRef]
- Pratap Singh, A.; Mandal, R.; Shojaei, M.; Singh, A.; Kowalczewski, P.Ł.; Ligaj, M.; Pawlicz, J.; Jarzębski, M. Novel drying methods for sustainable upcycling of brewers’ spent grains as a plant protein source. Sustainability 2020, 12, 3660. [Google Scholar] [CrossRef]
- Ayoub, W.S.; Zahoor, I.; Dar, A.H.; Anjum, N.; Pandiselvam, R.; Farooq, S.; Rusu, A.V.; Rocha, J.M.; Trif, M.; Jeevarathinam, G. Effect of incorporation of wheat bran, rice bran and banana peel powder on the mesostructure and physicochemical characteristics of biscuits. Front. Nutr. 2022, 17, 1016717. [Google Scholar] [CrossRef]
- Patrignani, M.; Brantsen, J.F.; Awika, J.M.; Conforti, P.A. Application of a novel microwave energy treatment on brewers’ spent grain (BSG): Effect on its functionality and chemical characteristics. Food Chem. 2021, 346, 128935. [Google Scholar] [CrossRef]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT 2019, 114, 108421. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sandhu, K.S.; Trif, M.; Rusu, A.; Pop, I.D.; Kumar, M. Enrichment in different health components of barley flour using twin-screw extrusion technology to support nutritionally balanced diets. Front. Nutr. 2022, 8, 823148. [Google Scholar] [CrossRef]
- Naibaho, J.; Korzeniowska, M.; Wojdyło, A.; Figiel, A.; Yang, B.; Laaksonen, O.; Foste, M.; Vilu, R.; Viiard, E. Fiber modification of brewers’ spent grain by autoclave treatment to improve its properties as a functional food ingredient. LWT 2021, 149, 111877. [Google Scholar] [CrossRef]
- Suresh, C. Assessment of functional properties of different flours. Afr. J. Agric. Res. 2013, 8, 4849–4852. [Google Scholar]
- Godswill, A.C. Proximate composition and functional properties of different grain flour composites for industrial applications. Int. J. Food Sci. 2019, 2, 43–64. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Coldea, T.E.; Zhao, H. Modification of structural and functional characteristics of brewer’s spent grain protein by ultrasound assisted extraction. LWT 2021, 139, 110582. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef]
- Meneses, N.G.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
- McCarthy, A.L.; O’Callaghan, Y.C.; Neugart, S.; Piggott, C.O.; Connolly, A.; Jansen, M.A.; Krumbein, A.; Schreiner, M.; FitzGerald, R.J.; O’Brien, N.M. The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chem. 2013, 141, 2567–2574. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. In vitro α-glucosidase, angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers’ spent grain protein hydrolysates. Food Res. Int. 2014, 56, 100–107. [Google Scholar] [CrossRef]
- Stoffel, F.; de Oliveira Santana, W.; Gregolon, J.G.N.; Kist, T.B.L.; Fontana, R.C.; Camassola, M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innov. Food Sci. Emerg. Technol. 2019, 58, 102227. [Google Scholar] [CrossRef]
- Becker, D.; Bakuradze, T.; Hensel, M.; Beller, S.; Yélamos, C.C.; Richling, E. Influence of Brewer’s Spent Grain Compounds on Glucose Metabolism Enzymes. Nutrients 2021, 13, 2696. [Google Scholar] [CrossRef] [PubMed]
- Cian, R.E.; Garzón, A.G.; Martínez-Augustin, O.; Botto, C.C.; Drago, S.R. Antithrombotic activity of brewers’ spent grain peptides and their effects on blood coagulation pathways. Plant Foods Hum. Nutr. 2018, 73, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Waters, D.M.; Jacob, F.; Titze, J.; Arendt, E.K.; Zannini, E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur. Food Res. Technol. 2012, 235, 767–778. [Google Scholar] [CrossRef]
- Osman, A.I.; O’Connor, E.; McSpadden, G.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.A.H.; Harrison, J.; Rooney, D.W. Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes for energy and other applications via two-stage activation. J. Chem. Technol. Biotechnol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Outeiriño, D.; Costa-Trigo, I.; Rodríguez, A.; Guerra, N.P.; Domínguez, J.M. Recovery and reuse of ionic liquid cholinium glycinate in the treatment of brewery spent grain. Sep. Purif. Technol. 2021, 254, 117651. [Google Scholar] [CrossRef]
- Kumar, R.S.; Rajkumar, P. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys. Technol. 2014, 67, 30–41. [Google Scholar] [CrossRef]
- Cruz-Espinoza, J.E.; Orduña-Díaz, A.; Rosales-Perez, M.; Zaca-Morán, O.; Delgado-Macuil, R.; Gayou, V.L.; Rojas-López, M. FTIR analysis of phenolic extracts from Moringa oleifera leaves. J. Biom. Biostat. 2012, 11, 2802. [Google Scholar]
- Fan, H.; Li, X.; Liu, Y.; Yang, R. Curing and thermal behaviors of inorganic–organic hybrid polyarylacetylene resins with polyhedral oligomeric octa (propargylaminophenyl) silsesquioxane. J. Appl. Pol. Sci. 2013, 128, 4361–4367. [Google Scholar] [CrossRef]
- Yeboah, M.L.; Li, X.; Zhou, S. Facile fabrication of biochar from palm kernel shell waste and its novel application to magnesium-based materials for hydrogen storage. Materials 2020, 13, 625. [Google Scholar] [CrossRef]
- Pereira, T.M.; Júnior, J.A.; Ortiz, R.S.; Rocha, W.F.; Endringer, D.C.; Filgueiras, P.R.; Poppi, R.J.; Romao, W. Viagra® and Cialis® blister packaging fingerprinting using Fourier transform infrared spectroscopy (FTIR) allied with chemometric methods. Anal. Methods 2014, 6, 2722–2728. [Google Scholar] [CrossRef]
- Carrasco, K.H.; Höfgen, E.G.; Brunner, D.; Borchert, K.B.; Reis, B.; Steinbach, C.; Mayer, M.; Schwarz, S.; Glas, K.; Schwarz, D. Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain. Polysaccharides 2022, 3, 356–379. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, X.C.; Jin, P.K.; Zhao, B.; Fan, X. Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2009, 72, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Z.; Zaki, S.M.; Muhamad, I.I. Quality assessment of fried palm oils using fourier transform infrared spectroscopy and multivariate approach. Chem. Eng. Trans. 2017, 56, 829–834. [Google Scholar]
- Chavan, S.; Gaikwad, A. Optimization of enzymatic hydrolysis of bamboo biomass for enhanced saccharification of cellulose through Taguchi orthogonal design. J. Environ. Chem. Eng. 2021, 9, 104807. [Google Scholar] [CrossRef]
- Bui, N.Q.; Fongarland, P.; Rataboul, F.; Dartiguelongue, C.; Charon, N.; Vallée, C.; Essayem, N. FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pinewood. Fuel Process. Technol. 2015, 134, 378–386. [Google Scholar] [CrossRef]
- Sidiras, D.; Batzias, F.; Schroeder, E.; Ranjan, R.; Tsapatsis, M. Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems. Chem. Eng. J. 2011, 171, 883–896. [Google Scholar] [CrossRef]
- Erukhimovitch, V.; Pavlov, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. FTIR microscopy as a method for identification of bacterial and fungal infections. J. Pharm. Biomed. Anal. 2005, 37, 1105–1108. [Google Scholar] [CrossRef]
- Shaltout, A.A.; Allam, M.A.; Moharram, M.A. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2011, 83, 56–60. [Google Scholar] [CrossRef]
- Archibong, E.J.; Obuboegbunam, E.C.; Ewelukwa, U.C.; Onuora, V.C.; Ezemba, C.C.; Okeke, B.C.; Okafor, U.C. Formulation of microbial growth media using brewers’ spent grains (BSG) and growth rate assessment with three bacterial species. Eur. J. Exp. Biol. 2016, 6, 19–24. [Google Scholar]
- Gonzalez Pereyra, M.L.; Rosa, C.A.R.; Dalcero, A.M.; Cavaglieri, L.R. Mycobiota and mycotoxins in malted barley and brewer’s spent grain from Argentinean breweries. Lett. Appl. Microbiol. 2011, 53, 649–655. [Google Scholar] [CrossRef]
- Kitaw, G.; Terefe, G.; Faji, M. Nutritional and logarithmic fungal count of brewery spent grain in different conservation techniques and brewery factories. World J. Microbiol. Biotechnol. 2022, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Microbial Food Safety—Indian Regulations. Available online: https://www.cfs.gov.hk/english/food_leg/files/food_leg_Microbiological_Guidelines_for_Food_e.pdf (accessed on 10 October 2023).
- European Commission (EC). Regulation 2073/2005. EU Off. J. 2005, L.338, 1–26. [Google Scholar]
- European Commission (EC). Regulation 1441/2007. EU Off. J. 2007, L.332, 1–12. [Google Scholar]
Samples | Bulk Density (g/mL) | Tapped Density (g/mL) | Carr’s Index | Hausner Ratio | Angle of Repose |
---|---|---|---|---|---|
BB | 0.42 ± 0.01 a | 0.48 ± 0.01 a | 12.50 ± 0.2 c | 1.143 ± 0.003 c | 21.16 ± 0.08 a |
BW | 0.50 ± 0.02 c | 0.55 ± 0.02 bc | 9.00 ± 0.2 a | 1.100 ± 0.003 a | 21.80 ± 0.40 b |
BR | 0.56 ± 0.01 d | 0.67 ± 0.03 d | 16.40 ± 0.3 e | 1.196 ± 0.004 e | 25.31 ± 0.03 c |
BM | 0.45 ± 0.02 b | 0.53 ± 0.01 b | 15.00 ± 0.5 d | 1.178 ± 0.002 d | 32.09 ± 0.06 e |
BF | 0.63 ± 0.01 e | 0.71 ± 0.02 e | 12.00 ± 0.3 b | 1.136 ± 0.005 b | 25.78 ± 0.02 d |
Samples | WAI (g/g) | WSI (%) | OAC (g/g) | SC (mL/g) | FC (mL/g) |
---|---|---|---|---|---|
BB | 3.20 ± 0.53 a | 10.47 ± 0.41 de | 2.70 ± 0.05 de | 8.60 ± 0.30 a | 1.80 ± 0.20 e |
BW | 4.33 ± 0.15 cd | 7.6 ± 0.69 b | 2.24 ± 0.04 b | 8.80 ± 0.10 b | 1.60 ± 0.10 d |
BR | 4.10 ± 0.35 c | 8.20 ± 0.35 abc | 2.30 ± 0.30 bc | 8.80 ± 0.40 b | 1.00 ± 0.10 b |
BM | 5.03 ± 0.41 e | 7.06 ± 0.31 a | 1.90 ± 0.40 a | 9.60 ± 0.20 d | 0.80 ± 0.10 a |
BF | 3.56 ± 0.60 b | 9.67 ± 0.80 cd | 2.57 ± 0.03 cd | 9.00 ± 0.10 bc | 1.20 ± 0.20 c |
Samples | % Inhibition of DPPH | TPC (mg GAE/g) | TFC (mg QE/g) |
---|---|---|---|
BB | 31.35 ± 0.81 a | 46.02 ± 0.26 a | 25.75 ± 0.72 a |
BW | 36.61 ± 0.58 b | 55.87 ± 0.28 d | 38.67 ± 0.53 bc |
BR | 39.11 ± 0.83 c | 50.22 ± 0.69 b | 35.88 ± 0.13 b |
BM | 44.14 ± 0.56 de | 72.39 ± 0.61 e | 66.03 ± 0.87 e |
BF | 43.03 ± 0.76 d | 50.94 ± 0.52 bc | 55.19 ± 0.67 d |
Sample Code | % Inhibition of Amylase | IC50 | % Inhibition of Lipase | IC50 |
---|---|---|---|---|
BB | 30.33 ± 0.07 b | 8.58 | 24.57 ± 0.04 b | 6.41 |
BW | 10.22 ± 0.06 a | 2.29 | 19.27 ± 0.03 a | 4.62 |
BR | 37.02 ± 0.05 c | 11.90 | 44.51 ± 0.06 c | 24.46 |
BM | 89.05 ± 0.09 e | 73.44 | 75.82 ± 0.07 e | 62.34 |
BF | 58.55 ± 0.06 d | 27.02 | 61.26 ± 0.06 d | 32.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Anisha, A.; Kaushik, D.; Kaur, J.; Shubham, S.; Rusu, A.V.; Rocha, J.M.; Trif, M. Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties. Sustainability 2023, 15, 15184. https://doi.org/10.3390/su152015184
Kumar M, Anisha A, Kaushik D, Kaur J, Shubham S, Rusu AV, Rocha JM, Trif M. Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties. Sustainability. 2023; 15(20):15184. https://doi.org/10.3390/su152015184
Chicago/Turabian StyleKumar, Mukul, Anisha Anisha, Deepika Kaushik, Jasjit Kaur, Shubham Shubham, Alexandru Vasile Rusu, João Miguel Rocha, and Monica Trif. 2023. "Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties" Sustainability 15, no. 20: 15184. https://doi.org/10.3390/su152015184
APA StyleKumar, M., Anisha, A., Kaushik, D., Kaur, J., Shubham, S., Rusu, A. V., Rocha, J. M., & Trif, M. (2023). Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties. Sustainability, 15(20), 15184. https://doi.org/10.3390/su152015184