Fertilization and Shading Trials to Promote Pinus nigra Seedlings’ Nursery Growth under the Climate Change Demands
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Sánchez, J.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Díaz-Palmero, J.M.; Cabezas-Cerezo, J.D.D. Evolution of burned area in forest fires under climate change conditions in southern spain using ANN. Appl. Sci. 2019, 9, 4155. [Google Scholar] [CrossRef] [Green Version]
- Singleton, M.P.; Thode, A.E.; Meador, A.J.S.; Iniguez, J.M. Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Espelta, J.M.; Retana, J.; Habrouk, A. An economic and ecological multi-criteria evaluation of reforestation methods to recover burned Pinus nigra forests in NE Spain. For. Ecol. Manag. 2003, 180, 185–198. [Google Scholar] [CrossRef]
- Ganatsas, P.; Daskalakou, E.; Paitaridou, D. First results on early postfire succession in an Abies cephalonica forest (Parnitha National Park, Greece). iForest 2012, 5, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Tíscar, P.A.; Lucas-Borja, M.E.; Candel-Pérez, D. Lack of local adaptation to the establishment conditions limits assisted migration to adapt drought-prone Pinus nigra populations to climate change. For. Ecol. Manag. 2018, 409, 719–728. [Google Scholar] [CrossRef]
- Ganatsas, P. Forest characteristics of Black pine ecosystems and restoration of burned stands. In New Approaches to the Restoration of Black Pine Forests; Kakouros, P., Chrysopolitou, V., Eds.; Management Body of Mount Parnonas and Moustos Wetland: Sparta, Greece, 2010; p. 7. [Google Scholar]
- Ivetić, V.; Škorić, M. The impact of seeds provenance and nursery production method on Austrian pine (Pinus nigra Arn.) seedlings quality. Ann. For. Res. 2013, 56, 297–305. [Google Scholar]
- Ivetić, V.; Grossnickle, S.; Škorić, M. Forecasting the field performance of Austrian pine seedlings using morphological attributes. iForest Biogeosciences For. 2016, 10, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Ocak, A.; Kurt, L.; Oz, M.; Tug, G.N. Floristical and ecological studies on burned black pine (Pinus nigra Arn. subsp. Pallasiana (Lamb) Holmboe) forest area at central Anatolia. Asian J. Plant Sci. 2007, 6, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Retana, J.; Espelta, J.M.; Habrouk, A.; Ordonez, J.L.; de la Sola-Morales, F. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 2002, 9, 89–97. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Dimitrakopoulos, P.G.; Troumbis, A.Y. Regeneration dynamics of a mixed Mediterranean pine forest in the absence of fire. For. Ecol. Manag. 2008, 256, 1552–1559. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel-Pérez, D.; Onkelinx, T.; Fule, P.Z.; Moya, D.; de las Heras, J.; Tíscar, P.A. Seed origin and protection are important factors affecting post-fire initial recruitment in pine forest areas. Forests 2017, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, J.L.; Retana, J.; Espelta, J.M. Effects of tree size, crown damage and tree location on post-fire survival and cone production of Pinus nigra trees. For. Ecol. Manag. 2005, 206, 109–117. [Google Scholar] [CrossRef]
- Ordonez, J.L.; Molowny-Horas, R.; Retana, J. A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecol. Model. 2006, 197, 405–417. [Google Scholar] [CrossRef]
- González-Olabarria, J.R.; Garcia-Gonzalo, J.; Mola-Yudego, B.; Pukkala, T. Adaptive management rules for Pinus nigra Arnold ssp. salzmannii stands under risk of fire. Ann. For. Sci. 2017, 74, 52. [Google Scholar] [CrossRef]
- Van Haverbeke, D.F. Pinus nigra. European black pine. In Silvics of North America. Conifers. Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 1, 877p. [Google Scholar]
- Isajev, V.; Fady, B.; Semerci, H.; Andonovski, V. EUFORGEN Technical Guidelines for Genetic Conservation and Use for European Black Pine (Pinus nigra); International Plant Genetic Resources Institute: Rome, Italy, 2004; 6p. [Google Scholar]
- Ivetić, V.; Maksimović, Z.; Kerkez, I.; Devetaković, J. Seedling quality in Serbia—Results from a three-year survey. Reforesta 2017, 4, 27–53. [Google Scholar] [CrossRef]
- Yildiz, O.; Altundağ, E.; Çetin, B.; Teoman Güner, Ş.; Sarginci, M.; Toprak, B. Experimental arid land afforestation in Central Anatolia, Turkey. Environ. Monit. Assess. 2018, 190, 355. [Google Scholar] [CrossRef]
- Oliet, J.A.; Planelles, R.; Artero, F.; Valverde, R.; Jacobs, D.F.; Segura, M.L. Field performance of Pinus halepensis planted in Mediterranean arid conditions: Relative influence of seedling morphology and mineral nutrition. New For. 2009, 37, 313–331. [Google Scholar] [CrossRef]
- Devetaković, J.; Maksimović, Z.; Ivanović, B.; Baković, Z.; Ivetić, V. Stocktype effect on field performance of Austrian pine seedlings. Reforesta 2017, 4, 21–26. [Google Scholar] [CrossRef]
- Pinto, J.R.; Marshall, J.D.; Dumroese, R.K.; Davis, A.S.; Cobos, D.R. Establishment and growth of container seedlings for reforestation: A function of stocktype and edaphic conditions. For. Ecol. Manag. 2011, 261, 1876–1884. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Puertolas, J.; Cuesta, B.; Penuelas, J.L.; Uscola, M.; Heredia-Guerrero, N.; Rey-Benayas, J.M. Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For. 2012, 43, 755–770. [Google Scholar] [CrossRef]
- Landis, T.D.; Tinus, R.W.; McDonald, S.E.; Barnett, J.P. Chapter 1—Mineral nutrients and fertilization. In The Container Tree Nursery Manual. Seedling Nutrition and Irrigation; No. 674; US Department of Agriculture, Forest Service: Washington, DC, USA, 1989; Volume 4. [Google Scholar]
- Jacobs, D.F.; Davis, A.S.; Dumroese, R.K.; Owen, T.; Burney, O.T. Nursery cultural techniques facilitate restoration of Acacia koacompeting with invasive grass in a dry tropical forest. Forests 2020, 11, 1124. [Google Scholar] [CrossRef]
- Luis, V.C.; Lorca, M.; Chirino, E.; Hernandez, E.I.; Vilagrosa, A. Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees 2010, 24, 1143–1150. [Google Scholar] [CrossRef]
- González, O.M.M.; José, Á.P.R.; Arnulfo, A.; Ciro, J.H.D.; Armando, J.C.S.; Rodríguez, R.L. Raw sawdust substrates and fertilization in the plant quality of Pinus cooperi Blanco seedlings grown at the nursery. Rev. Mex. Cienc. For. 2018, 9, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Grossnickle, S.C.; Li, G.; Su, S.; Liu, Y. Fertilization and irrigation regimes influence on seedling attributes and field performance of Pinus tabuliformis Carr. Forestry 2019, 92, 97–107. [Google Scholar] [CrossRef]
- Toca, A.; Villar-Salvador, P.; Oliet, J.A.; Jacobs, D.F. Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings. Tree Physiol. 2020, 40, 1381–1391. [Google Scholar] [CrossRef]
- Toca, A.; Oliet, J.A.; Villar-Salvador, P.; Catalán, R.A.M.; Jacobs, D.F. Ecologically distinct pine species show differential root development after outplanting in response to nursery nutrient cultivation. For. Ecol. Manag. 2019, 451, 117562. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Franco, S.; Retana, J. Limitation of the recruitment of Pinus nigra in a gradient of post-fire environmental conditions. Écoscience 2004, 11, 296–304. [Google Scholar] [CrossRef]
- Heiskanen, J. Effects of pre- and post-planting shading on growth of container Norway spruce seedlings. New For. 2004, 27, 101–114. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Planelles, R.; Enrıquez, E.; Rubira, J.P. Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For. Ecol. Manag. 2004, 196, 257–266. [Google Scholar] [CrossRef]
- Puértolas, J.; Benito, L.F.; Peñuelas, J.L. Effects of nursery shading on seedling quality and post-planting performance in two Mediterranean species with contrasting shade tolerance. New For. 2009, 38, 295–308. [Google Scholar] [CrossRef]
- Leão, N.V.M.; Shimizu, E.S.C.; Felipe, S.H.S. Shading improves initial growth and quality of Parkia multijugabenth. seedlings. Aust. J. Crop Sci. 2019, 13, 1908–1913. [Google Scholar] [CrossRef]
- Santelices, R.; Espinoza, S.; Cabrera, A.M. Effects of shading and slow release fertilizer on early growth of Nothofagus leoniiseedlings from its northernmost distribution in Central Chile. Bosque 2015, 36, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Tsakaldimi, Μ.; Ganatsas, P.; Jacobs, D.F. Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New For. 2013, 44, 327–339. [Google Scholar] [CrossRef]
- Kolevska, D.D.; Dimitrova, A.; Cokoski, K.; Basova, M. Growth and quality of Pinus nigra (Arn.), Pinus sylvestris (L.) and Pinus pinaster (Aiton) seedlings in two container types. Reforesta 2020, 9, 21–36. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Importance of root growth in overcoming planting stress. New For. 2005, 30, 273–294. [Google Scholar] [CrossRef]
- Puértolas, J.; Jacobs, D.F.; Benito, L.F.; Peñuelas, J.L. Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol. Eng. 2012, 44, 210–215. [Google Scholar] [CrossRef]
- Mariotti, B.; Maltoni, A.; Jacobs, D.F.; Tani, A. Container effects on growth and biomass allocation in Quercus brobur and Juglans regia seedlings. Scand. J. For. Res. 2015, 30, 401–415. [Google Scholar]
- South, D.B. Planting morphologically improved pine seedlings to increase survival and growth. In Forestry and Wildlife Research Series; No, 1; Waters, L., Jr., Ed.; Alabama Agricultural Experiment Station: Alabama City, AL, USA, 2000; p. 12. [Google Scholar]
- Deligoz, A.; Bayar, E.; Gur, M.; Genc, M. An assessment of the important seedling properties for reforestation in Pinus nigra J. F. Arnold subsp. nigra var. caramanica (Loudon) Rehder from Three Provenances. In In Proceedings of the International Caucasian Forest Symposium, Artvin, Turkey, 24–26 October 2013; pp. 13–17. [Google Scholar]
- Chiatante, D.; Di Iorio, G.S.; Scippa, A.; Schirone, B. Root architectural and morphological response of ofPinus nigra Arn. and Quercus robur L. to nutrient supply and root density in the soil. Ann. Bot. Nuovaserie 2004, IV, 159–171. [Google Scholar]
- Tsakaldimi, M.; Tsitsoni, T.; Ganatsas, P.; Zagas, T. A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant Soil 2009, 324, 103–113. [Google Scholar] [CrossRef]
- Haase, D.L. Seedling root targets. In National Proceedings: Forest and Conservation Nursery Associations 2010; RMRS-P-65; Riley, L.E., Haase, D.L., Pinto, J.R., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; Volume 65, pp. 80–82. [Google Scholar]
- Dafis, S.; Chatzistathis, A. Reforestations—Forest Nurseries; Giahoudis Editions: Thessaloniki, Greece, 1989. (In Greek) [Google Scholar]
- Genç, M.; Güner, T.; Şahan, A. Morphological research on 2 + 0-year-old Black pine seedlings in Eskişehir, Eğirdir and Seydişehir forest nurseries. Turk. J. Agric. For. 1999, 23, 2. [Google Scholar]
- Jinks, R.L.; Kerr, G. Establishment and early growth of different plant types of Corsican pine (Pinusnigra var. maritima) on four sites in Thetford Forest. Forestry 1999, 72, 293–304. [Google Scholar] [CrossRef]
- Eken, O.; Öner, N. An assessment of the important morphological properties of anatolian black pine seedlings in semiarid forest nursery. Fresenius Environ. Bull. 2017, 26, 4158–4162. [Google Scholar]
- Collet, C.; Löf, M.; Pages, L. Root system development of oak seedlings analysed using an architectural model. Effects of competition with grass. Plant. Soil 2006, 279, 367–383. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; MacDonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Zagas, T.; Tsitsoni, T.; Ganatsas, P. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 2005, 278, 85–93. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Ecophysiology of Northern Spruce Species: The Performance of Planted Seedlings; NRC Research Press: Ottawa, QC, Canada, 2000. [Google Scholar]
- Wang, J.; Li, G.; Pinto, J.R.; Liu, J.; Shi, W.; Liu, Y. Both nursery and field performance determine suitable nitrogen supply of nursery-grown, exponentially fertilized Chinese pine. Silva. Fenn. 2015, 49, 1–13. [Google Scholar] [CrossRef] [Green Version]
Shade 50% | |||||
---|---|---|---|---|---|
Fertilization Level per Lit Substrate | Shoot Height SH, (cm) | Root Collar Diameter, RCD, (mm) | Percentage of Mature Needles (%) | Fresh Weight (g) | Dry Weight (g) |
5 g | 9.3 ± 0.47 | 2.1 ± 0.08 | 72.0 ± 4.6 | 1.7 ± 0.10 | 0.5 ± 0.03 |
10 g | 8.5 ± 0.49 | 2.4 ± 0.08 | 87.5 ± 6.7 | 1.6 ± 0.13 | 0.6 ± 0.04 |
p value | 0.267 | * 0.043 | * 0.045 | 0.708 | 0.079 |
Shade 70% | |||||
5 g | 10.1 ± 0.53 | 1.9 ± 0.09 | 57.0 ± 3.4 | 1.3 ± 0.15 | 0.4 ± 0.04 |
10 g | 10.1 ± 0.60 | 2.0 ± 0.10 | 90.9 ± 8.8 | 1.6 ± 0.17 | 0.4 ± 0.05 |
p value | 0.985 | 0.207 | * 0.049 | 0.166 | 0.369 |
Shade effect p value | * 0.024 | ** 0.001 | 0.090 | 0.252 | * 0.016 |
Fertilization effect p value | 0.458 | * 0.047 | * 0.032 | 0.334 | 0.066 |
Fertilization X Shade p value | 0.442 | 0.294 | 0.087 | 0.160 | 0.625 |
Shade 50% | |||||
---|---|---|---|---|---|
Fertilization Level per Lit Substrate | Central Root Length (cm) | FOLR | Number of Root Tips | Fresh Weight (g) | Dry Weight (g) |
5 g | 17.6 ± 0.68 | 38.5 ± 2.08 | 661.4 ± 80.7 | 0.9 ± 0.10 | 0.3 ± 0.03 |
10 g | 18.3 ± 0.72 | 29.6 ± 2.21 | 723.9 ± 85.7 | 1.0 ± 0.10 | 0.4 ± 0.03 |
p value | 0.278 | ** 0.001 | 0.627 | 0.733 | ** 0.007 |
Shade 70% | |||||
5 g | 18.4 ± 0.77 | 36.9 ± 2.36 | 658.1 ± 91.6 | 0.7 ± 0.10 | 0.2± 0.03 |
10 g | 16.7 ± 0.87 | 24.4 ± 2.67 | 323.5 ± 103.3 | 0.6 ± 0.11 | 0.2± 0.03 |
p value | 0.279 | * 0.010 | * 0.011 | 0.499 | 0.449 |
Shade effect p value | 0.619 | 0.150 | * 0.030 | * 0.010 | ** 0.000 |
Fertilization effect p value | 0.503 | ** 0.000 | 0.140 | 0.820 | 0.119 |
Fertilization X Shade p value | 0.116 | 0.461 | * 0.033 | 0.483 | * 0.013 |
Shade 50% | ||
---|---|---|
Fertilization Level per Lit Substrate | Shoot Height (cm) | Root Collar Diameter (mm) |
5 g | 13.8 ± 0.5 | 3.6 ± 0.10 |
10 g | 13.9 ± 0.6 | 4.0 ± 0.11 |
p value | 0.932 | * 0.033 |
Shade 70% | ||
5 g | 14.0 ± 0.4 | 3.4 ± 0.07 |
10 g | 12.9 ± 0.7 | 3.6 ± 0.16 |
p value | * 0.022 | 0.358 |
Shade effect p value | * 0.041 | ** 0.003 |
Fertilization effect p value | * 0.040 | * 0.026 |
Fertilization X Shade p value | 0.273 | 0.315 |
Shade 50% | ||
---|---|---|
Fertilization Level per Lit Substrate | Shoot Height (cm) | Root Collar Diameter (mm) |
5 g | 25.5 ± 0.5 | 5.9 ± 0.16 |
10 g | 28.6 ± 0.7 | 6.5 ± 0.18 |
p value | ** 0.001 | ** 0.003 |
Shade 70% | ||
5 g | 26.0 ± 0.6 | 5.2 ± 0.13 |
10 g | 27.0 ± 0.7 | 5.4 ± 0.15 |
p value | 0.598 | 0.504 |
Shade effect p value | * 0.020 | ** 0.000 |
Fertilization effect p value | * 0.018 | * 0.009 |
Fertilization X Shade p value | * 0.011 | * 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakaldimi, M.; Giannaki, P.; Ivetić, V.; Kapsali, N.; Ganatsas, P. Fertilization and Shading Trials to Promote Pinus nigra Seedlings’ Nursery Growth under the Climate Change Demands. Sustainability 2021, 13, 3563. https://doi.org/10.3390/su13063563
Tsakaldimi M, Giannaki P, Ivetić V, Kapsali N, Ganatsas P. Fertilization and Shading Trials to Promote Pinus nigra Seedlings’ Nursery Growth under the Climate Change Demands. Sustainability. 2021; 13(6):3563. https://doi.org/10.3390/su13063563
Chicago/Turabian StyleTsakaldimi, Marianthi, Panagiota Giannaki, Vladan Ivetić, Nikoleta Kapsali, and Petros Ganatsas. 2021. "Fertilization and Shading Trials to Promote Pinus nigra Seedlings’ Nursery Growth under the Climate Change Demands" Sustainability 13, no. 6: 3563. https://doi.org/10.3390/su13063563