Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics
Abstract
:1. Introduction
1.1. HBV Life Cycle and Genomes
1.2. HBV Treatment and Cure
2. Regulation of HBV Transcription
2.1. DNA Methylation
2.2. Histone Modifications
2.3. Role of HBx
3. Inhibiting HBV via the Direct Targeting of Viral Genomes through CRISPR/Cas
3.1. DSB-Based CRISPR/Cas
3.2. Non-DSB-Based CRISPR/Cas
3.2.1. Base Editing
- (1)
- Effect on the established pool of cccDNA. Base editing should ideally be performed on an already established pool of cccDNA to mimic the situation observed in CHB patients. In our study, for the first time, the base editors were delivered after cccDNA establishment both in vitro and in vivo. We also demonstrated the administration of a base editor in lamivudine-pretreated hepatocytes showing (a) direct cccDNA editing in the context of a reduced rcDNA/cccDNA ratio, (b) the sustained inhibition of viral antigen production and replication with no rebound, and (c) the feasibility of combining BE and standard-of-care NA treatments.
- (2)
- Assessing BE effects in HBV-infected primary human hepatocytes (PHHs). Our study evaluated the effect of BE side by side in both differentiated hepatocytes (HepG2-NTCP cells) and primary cells (PHHs), providing a more comprehensive in vitro assessment.
- (3)
- mRNA-based delivery and in vivo data. We utilized mRNA-based delivery to allow the transient expression of BE in vitro, thus avoiding potential deleterious effects of lentiviral-based expression of BE. Furthermore, for the first time, we demonstrated the in vivo delivery of HBV-targeting base editing reagents using lipid nanoparticles (LNPs), displaying a therapeutically relevant strategy for systemic delivery to the liver. Our results unequivocally demonstrate the durability of the editing effect on cccDNA and, consequently, on viral replication and antigen production in vivo.
- (4)
- Combining gRNAs and the use of next-generation BEs. We employed a combination of the two different gRNAs with a CBE-encoding mRNA, resulting in a reduction in all tested viral markers. In addition to using a standard BE4 base editor, we used two recently evolved cytosine base editors, PpAPOBEC1 [78] and CBE-T [79], demonstrating the broad applicability of the different base editors for reducing HBV markers.
- (5)
- Off-target assessment. An extensive off-target assessment for the lead gRNAs included the screening of several hundred potential off-target sites as performed using RNase H-dependent amplification and sequencing (rhAmpSeq) [80]. We also confirmed that, in the context of HBV infection, next-generation CBEs display minimized off-target profiles.
3.2.2. Epigenetic Editing
4. Inhibiting HBV by Targeting Factors Other than HBV Genomes
4.1. Targeting HBV RNAs by CRISPR/Cas13
4.2. Targeting of Host Proteins via CRISPR/Cas
5. Delivery of CRISPR/Cas
6. CRISPR/Cas for HBV Detection and Diagnosis
7. Developing Models to Study cccDNA Biology
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tsukuda, S.; Watashi, K. Hepatitis B Virus Biology and Life Cycle. Antivir. Res. 2020, 182, 104925. [Google Scholar] [CrossRef]
- Diogo Dias, J.; Sarica, N.; Neuveut, C. Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses 2021, 13, 757. [Google Scholar] [CrossRef]
- Tong, S.; Revill, P. Overview of Hepatitis B Viral Replication and Genetic Variability. J. Hepatol. 2016, 64, S4–S16. [Google Scholar] [CrossRef]
- Slagle, B.L.; Bouchard, M.J. Role of HBx in Hepatitis B Virus Persistence and Its Therapeutic Implications. Curr. Opin. Virol. 2018, 30, 32–38. [Google Scholar] [CrossRef]
- Seeger, C.; Mason, W.S. Molecular Biology of Hepatitis B Virus Infection. Virology 2015, 479–480, 672–686. [Google Scholar] [CrossRef]
- Olenginski, L.T.; Attionu, S.K.; Henninger, E.N.; LeBlanc, R.M.; Longhini, A.P.; Dayie, T.K. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023, 15, 1913. [Google Scholar] [CrossRef]
- Allweiss, L.; Dandri, M. The Role of cccDNA in HBV Maintenance. Viruses 2017, 9, 156. [Google Scholar] [CrossRef]
- Tu, T.; Zehnder, B.; Wettengel, J.M.; Zhang, H.; Coulter, S.; Ho, V.; Douglas, M.W.; Protzer, U.; George, J.; Urban, S. Mitosis of Hepatitis B Virus-Infected Cells in Vitro Results in Uninfected Daughter Cells. JHEP Rep. 2022, 4, 100514. [Google Scholar] [CrossRef]
- Allweiss, L.; Volz, T.; Giersch, K.; Kah, J.; Raffa, G.; Petersen, J.; Lohse, A.W.; Beninati, C.; Pollicino, T.; Urban, S.; et al. Proliferation of Primary Human Hepatocytes and Prevention of Hepatitis B Virus Reinfection Efficiently Deplete Nuclear cccDNA in Vivo. Gut 2018, 67, 542–552. [Google Scholar] [CrossRef]
- Tu, T.; Zhang, H.; Urban, S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021, 13, 180. [Google Scholar] [CrossRef]
- Zoulim, F.; Chen, P.-J.; Dandri, M.; Kennedy, P.; Seeger, C. Hepatitis B Virus DNA Integration: Implications for Diagnostics, Therapy, and Outcome. J. Hepatol. 2024; in press. [Google Scholar] [CrossRef]
- Salpini, R.; D’Anna, S.; Benedetti, L.; Piermatteo, L.; Gill, U.; Svicher, V.; Kennedy, P.T.F. Hepatitis B Virus DNA Integration as a Novel Biomarker of Hepatitis B Virus-Mediated Pathogenetic Properties and a Barrier to the Current Strategies for Hepatitis B Virus Cure. Front. Microbiol. 2022, 13, 972687. [Google Scholar] [CrossRef]
- Vaillant, A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect. Dis. 2021, 7, 1351–1368. [Google Scholar] [CrossRef]
- Seeger, C.; Zoulim, F.; Mason, W.S. Hepadnaviruses, Fields Virology: Chapter 18, 7th ed.; Wolters Kluwer Health: Riverwoods, IL, USA, 2021; Available online: https://books.google.fr/books?id=fvcuEAAAQBAJ (accessed on 7 September 2024).
- Ogunnaike, M.; Das, S.; Raut, S.S.; Sultana, A.; Nayan, M.U.; Ganesan, M.; Edagwa, B.J.; Osna, N.A.; Poluektova, L.Y. Chronic Hepatitis B Infection: New Approaches towards Cure. Biomolecules 2023, 13, 1208. [Google Scholar] [CrossRef]
- Lim, S.G.; Baumert, T.F.; Boni, C.; Gane, E.; Levrero, M.; Lok, A.S.; Maini, M.K.; Terrault, N.A.; Zoulim, F. The Scientific Basis of Combination Therapy for Chronic Hepatitis B Functional Cure. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 238–253. [Google Scholar] [CrossRef]
- Lok, A.S.F. Toward a Functional Cure for Hepatitis B. Gut Liver 2024, 18, 593–601. [Google Scholar] [CrossRef]
- Dandri, M. Epigenetic Modulation in Chronic Hepatitis B Virus Infection. Semin. Immunopathol. 2020, 42, 173–185. [Google Scholar] [CrossRef]
- Low, W.F.; Ngeow, Y.F.; Chook, J.B.; Tee, K.K.; Ong, S.-K.; Peh, S.C.; Bong, J.J.; Mohamed, R. Hepatitis B Virus DNA Methylation and Its Potential Role in Chronic Hepatitis B. Expert. Rev. Mol. Med. 2022, 25, e11. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, R.; Yan, R.; Cai, D.; Zhang, Y.; Zhu, H.; Kang, Y.; Liu, H.; Wang, J.; Qin, Y.; et al. Transcription of Hepatitis B Virus Covalently Closed Circular DNA Is Regulated by CpG Methylation during Chronic Infection. PLoS ONE 2014, 9, e110442. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Mu, S.; Zhang, J.; Yan, Z. Evidence That Methylation of Hepatitis B Virus Covalently Closed Circular DNA in Liver Tissues of Patients with Chronic Hepatitis B Modulates HBV Replication. J. Med. Virol. 2009, 81, 1177–1183. [Google Scholar] [CrossRef]
- Vivekanandan, P.; Thomas, D.; Torbenson, M. Hepatitis B Viral DNA Is Methylated in Liver Tissues. J. Viral Hepat. 2008, 15, 103–107. [Google Scholar] [CrossRef]
- Vivekanandan, P.; Thomas, D.; Torbenson, M. Methylation Regulates Hepatitis B Viral Protein Expression. J. Infect. Dis. 2009, 199, 1286–1291. [Google Scholar] [CrossRef]
- Vivekanandan, P.; Daniel, H.D.-J.; Kannangai, R.; Martinez-Murillo, F.; Torbenson, M. Hepatitis B Virus Replication Induces Methylation of Both Host and Viral DNA. J. Virol. 2010, 84, 4321–4329. [Google Scholar] [CrossRef]
- Jain, S.; Chang, T.-T.; Chen, S.; Boldbaatar, B.; Clemens, A.; Lin, S.Y.; Yan, R.; Hu, C.-T.; Guo, H.; Block, T.M.; et al. Comprehensive DNA Methylation Analysis of Hepatitis B Virus Genome in Infected Liver Tissues. Sci. Rep. 2015, 5, 10478. [Google Scholar] [CrossRef]
- Chen, J.Y.; Hsu, H.C.; Lee, C.S.; Chen, D.S.; Zuckerman, A.J.; Harrison, T.J. Detection of Hepatitis B Virus DNA in Hepatocellular Carcinoma: Methylation of Integrated Viral DNA. J. Virol. Methods 1988, 19, 257–263. [Google Scholar] [CrossRef]
- Guan, G.; Abulaiti, A.; Qu, C.; Chen, C.-C.; Gu, Z.; Yang, J.; Zhang, T.; Chen, X.; Zhou, Z.; Lu, F.; et al. Multi-Omics Panoramic Analysis of HBV Integration, Transcriptional Regulation, and Epigenetic Modifications in PLC/PRF/5 Cell Line. J. Med. Virol. 2024, 96, e29614. [Google Scholar] [CrossRef]
- Pollicino, T.; Belloni, L.; Raffa, G.; Pediconi, N.; Squadrito, G.; Raimondo, G.; Levrero, M. Hepatitis B Virus Replication Is Regulated by the Acetylation Status of Hepatitis B Virus cccDNA-Bound H3 and H4 Histones. Gastroenterology 2006, 130, 823–837. [Google Scholar] [CrossRef]
- Tropberger, P.; Mercier, A.; Robinson, M.; Zhong, W.; Ganem, D.E.; Holdorf, M. Mapping of Histone Modifications in Episomal HBV cccDNA Uncovers an Unusual Chromatin Organization Amenable to Epigenetic Manipulation. Proc. Natl. Acad. Sci. USA 2015, 112, E5715–E5724. [Google Scholar] [CrossRef]
- Rivière, L.; Gerossier, L.; Ducroux, A.; Dion, S.; Deng, Q.; Michel, M.-L.; Buendia, M.-A.; Hantz, O.; Neuveut, C. HBx Relieves Chromatin-Mediated Transcriptional Repression of Hepatitis B Viral cccDNA Involving SETDB1 Histone Methyltransferase. J. Hepatol. 2015, 63, 1093–1102. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, Z.; Mani, S.K.K.; Bancel, B.; Durantel, D.; Zoulim, F.; Tran, E.J.; Merle, P.; Andrisani, O. RNA Helicase DEAD Box Protein 5 Regulates Polycomb Repressive Complex 2/Hox Transcript Antisense Intergenic RNA Function in Hepatitis B Virus Infection and Hepatocarcinogenesis. Hepatology 2016, 64, 1033–1048. [Google Scholar] [CrossRef]
- Salerno, D.; Chiodo, L.; Alfano, V.; Floriot, O.; Cottone, G.; Paturel, A.; Pallocca, M.; Plissonnier, M.-L.; Jeddari, S.; Belloni, L.; et al. Hepatitis B Protein HBx Binds the DLEU2 lncRNA to Sustain cccDNA and Host Cancer-Related Gene Transcription. Gut 2020, 69, 2016–2024. [Google Scholar] [CrossRef]
- Giraud, G.; El Achi, K.; Zoulim, F.; Testoni, B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024, 16, 615. [Google Scholar] [CrossRef]
- Locatelli, M.; Quivy, J.-P.; Chapus, F.; Michelet, M.; Fresquet, J.; Maadadi, S.; Aberkane, A.N.; Diederichs, A.; Lucifora, J.; Rivoire, M.; et al. HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 527–551. [Google Scholar] [CrossRef]
- Belloni, L.; Pollicino, T.; De Nicola, F.; Guerrieri, F.; Raffa, G.; Fanciulli, M.; Raimondo, G.; Levrero, M. Nuclear HBx Binds the HBV Minichromosome and Modifies the Epigenetic Regulation of cccDNA Function. Proc. Natl. Acad. Sci. USA 2009, 106, 19975–19979. [Google Scholar] [CrossRef]
- Decorsière, A.; Mueller, H.; van Breugel, P.C.; Abdul, F.; Gerossier, L.; Beran, R.K.; Livingston, C.M.; Niu, C.; Fletcher, S.P.; Hantz, O.; et al. Hepatitis B Virus X Protein Identifies the Smc5/6 Complex as a Host Restriction Factor. Nature 2016, 531, 386–389. [Google Scholar] [CrossRef]
- Murphy, C.M.; Xu, Y.; Li, F.; Nio, K.; Reszka-Blanco, N.; Li, X.; Wu, Y.; Yu, Y.; Xiong, Y.; Su, L. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Rep. 2016, 16, 2846–2854. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, B.; Li, C.; Li, X.; Chen, M.; Zhou, Z.; Tang, D.; He, J.; Wu, Y.; Sun, Y.; et al. SLF2 Interacts with the SMC5/6 Complex to Direct Hepatitis B Virus Episomal DNA to Promyelocytic Leukemia Bodies for Transcriptional Repression. J. Virol. 2023, 97, e0032823. [Google Scholar] [CrossRef]
- Kim, E.S.; Zhou, J.; Zhang, H.; Marchetti, A.; van de Klundert, M.; Cai, D.; Yu, X.; Mitra, B.; Liu, Y.; Wang, M.; et al. Hepatitis B Virus X Protein Counteracts High Mobility Group Box 1 Protein-Mediated Epigenetic Silencing of Covalently Closed Circular DNA. PLoS Pathog. 2022, 18, e1010576. [Google Scholar] [CrossRef]
- Sivasudhan, E.; Blake, N.; Lu, Z.; Meng, J.; Rong, R. Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022, 11, 741. [Google Scholar] [CrossRef]
- Sze, K.M.F.; Chu, G.K.Y.; Lee, J.M.F.; Ng, I.O.L. C-Terminal Truncated Hepatitis B Virus x Protein Is Associated with Metastasis and Enhances Invasiveness by C-Jun/Matrix Metalloproteinase Protein 10 Activation in Hepatocellular Carcinoma. Hepatology 2013, 57, 131–139. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, C.; Ren, G.; Cai, D.; Long, L.; Li, J.; Li, K.; Tang, Y.; Huang, T.; Deng, W. C-Terminal-Truncated Hepatitis B Virus X Protein Promotes Hepatocarcinogenesis by Activating the MAPK Pathway. Microb. Pathog. 2021, 159, 105136. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, G.; Peng, X.; Deng, A.; Ye, L.; Shi, L.; Wang, T.; He, J. The Use of CRISPR/Cas9 as a Tool to Study Human Infectious Viruses. Front. Cell Infect. Microbiol. 2021, 11, 590989. [Google Scholar] [CrossRef] [PubMed]
- Bartosh, U.I.; Dome, A.S.; Zhukova, N.V.; Karitskaya, P.E.; Stepanov, G.A. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int. J. Mol. Sci. 2023, 25, 334. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia Coli, and Identification of the Gene Product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef]
- Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J. Bacteriol. 2018, 200, e00580-17. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353–361. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. 2018, 1, 325–336. [Google Scholar] [CrossRef]
- Martinez, M.G.; Smekalova, E.; Combe, E.; Gregoire, F.; Zoulim, F.; Testoni, B. Gene Editing Technologies to Target HBV cccDNA. Viruses 2022, 14, 2654. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, T. Targeting Hepatitis B Virus DNA Using Designer Gene Editors. Clin. Liver Dis. 2023, 27, 895–916. [Google Scholar] [CrossRef]
- Rawal, P.; Tripathi, D.M.; Hemati, H.; Kumar, J.; Tyagi, P.; Sarin, S.K.; Nain, V.; Kaur, S. Targeted HBx Gene Editing by CRISPR/Cas9 System Effectively Reduces Epithelial to Mesenchymal Transition and HBV Replication in Hepatoma Cells. Liver Int. 2024, 44, 614–624. [Google Scholar] [CrossRef]
- Seeger, C.; Sohn, J.A. Complete Spectrum of CRISPR/Cas9-Induced Mutations on HBV cccDNA. Mol. Ther. 2016, 24, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Sun, S.; Yang, Q.; Huang, Y.; Li, Q.; Tao, S.; Chen, L. CRISPR/Cas9 System with Dual gRNAs Synergically Inhibit Hepatitis B Virus Replication. Discov. Med. 2024, 36, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Maestro, S.; Weber, N.D.; Zabaleta, N.; Aldabe, R.; Gonzalez-Aseguinolaza, G. Novel Vectors and Approaches for Gene Therapy in Liver Diseases. JHEP Rep. 2021, 3, 100300. [Google Scholar] [CrossRef]
- Kim, K.; Park, S.W.; Kim, J.H.; Lee, S.H.; Kim, D.; Koo, T.; Kim, K.-E.; Kim, J.H.; Kim, J.-S. Genome Surgery Using Cas9 Ribonucleoproteins for the Treatment of Age-Related Macular Degeneration. Genome Res. 2017, 27, 419–426. [Google Scholar] [CrossRef]
- Kostyushev, D.; Kostyusheva, A.; Brezgin, S.; Ponomareva, N.; Zakirova, N.F.; Egorshina, A.; Yanvarev, D.V.; Bayurova, E.; Sudina, A.; Goptar, I.; et al. Depleting Hepatitis B Virus Relaxed Circular DNA Is Necessary for Resolution of Infection by CRISPR-Cas9. Mol. Ther. Nucleic Acids 2023, 31, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Lee, C.M.; Gasiunas, G.; Davis, T.H.; Cradick, T.J.; Siksnys, V.; Bao, G.; Cathomen, T.; Mussolino, C. Streptococcus Thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol. Ther. 2016, 24, 636–644. [Google Scholar] [CrossRef]
- Kostyushev, D.; Brezgin, S.; Kostyusheva, A.; Zarifyan, D.; Goptar, I.; Chulanov, V. Orthologous CRISPR/Cas9 Systems for Specific and Efficient Degradation of Covalently Closed Circular DNA of Hepatitis B Virus. Cell. Mol. Life Sci. 2019, 76, 1779–1794. [Google Scholar] [CrossRef]
- Tu, T.; Zehnder, B.; Qu, B.; Urban, S. D e Novo Synthesis of Hepatitis B Virus Nucleocapsids Is Dispensable for the Maintenance and Transcriptional Regulation of cccDNA. JHEP Rep. 2021, 3, 100195. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Khanal, S.; Cao, D.; Zhao, J.; Dang, X.; Nguyen, L.N.T.; Schank, M.; Wu, X.Y.; Jiang, Y.; et al. Synthetic gRNA/Cas9 Ribonucleoprotein Targeting HBV DNA Inhibits Viral Replication. J. Med. Virol. 2023, 95, e28952. [Google Scholar] [CrossRef]
- Kim, H.I.; Park, J.; Zhu, Y.; Wang, X.; Han, Y.; Zhang, D. Recent Advances in Extracellular Vesicles for Therapeutic Cargo Delivery. Exp. Mol. Med. 2024, 56, 836–849. [Google Scholar] [CrossRef]
- El Andaloussi, S.; Lakhal, S.; Mäger, I.; Wood, M.J.A. Exosomes for Targeted siRNA Delivery across Biological Barriers. Adv. Drug Deliv. Rev. 2013, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.E.; Leonard, J.N. A Platform for Actively Loading Cargo RNA to Elucidate Limiting Steps in EV-Mediated Delivery. J. Extracell. Vesicles 2016, 5, 31027. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Zheng, L.; Li, Y.; Yang, J.; Mao, T.; Zhang, J.; Liu, Y.; Ning, J.; Zhang, T.; Huang, H.; et al. Engineered Extracellular Vesicles for Delivering Functional Cas9/gRNA to Eliminate Hepatitis B Virus cccDNA and Integration. Emerg. Microbes Infect. 2024, 13, 2284286. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Z.-W.; Liu, S.; Zhang, R.-Y.; Ding, S.-L.; Xie, X.-M.; Long, L.; Chen, X.-M.; Zhuang, H.; Lu, F.-M. Dual gRNAs Guided CRISPR/Cas9 System Inhibits Hepatitis B Virus Replication. World J. Gastroenterol. 2015, 21, 9554–9565. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.G.; Combe, E.; Inchauspe, A.; Mangeot, P.E.; Delberghe, E.; Chapus, F.; Neveu, G.; Alam, A.; Carter, K.; Testoni, B.; et al. CRISPR-Cas9 Targeting of Hepatitis B Virus Covalently Closed Circular DNA Generates Transcriptionally Active Episomal Variants. mBio 2022, 13, e0288821. [Google Scholar] [CrossRef]
- Yi, J.; Lei, X.; Guo, F.; Chen, Q.; Chen, X.; Zhao, K.; Zhu, C.; Cheng, X.; Lin, J.; Yin, H.; et al. Co-Delivery of Cas9 mRNA and Guide RNAs Edits Hepatitis B Virus Episomal and Integration DNA in Mouse and Tree Shrew Models. Antivir. Res. 2023, 215, 105618. [Google Scholar] [CrossRef]
- Seeger, C.; Sohn, J.A. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol. Ther. Nucleic Acids 2014, 3, e216. [Google Scholar] [CrossRef]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef]
- Cullot, G.; Boutin, J.; Toutain, J.; Prat, F.; Pennamen, P.; Rooryck, C.; Teichmann, M.; Rousseau, E.; Lamrissi-Garcia, I.; Guyonnet-Duperat, V.; et al. CRISPR-Cas9 Genome Editing Induces Megabase-Scale Chromosomal Truncations. Nat. Commun. 2019, 10, 1136. [Google Scholar] [CrossRef]
- Leibowitz, M.L.; Papathanasiou, S.; Doerfler, P.A.; Blaine, L.J.; Sun, L.; Yao, Y.; Zhang, C.-Z.; Weiss, M.J.; Pellman, D. Chromothripsis as an On-Target Consequence of CRISPR-Cas9 Genome Editing. Nat. Genet. 2021, 53, 895–905. [Google Scholar] [CrossRef]
- Rees, H.A.; Liu, D.R. Base Editing: Precision Chemistry on the Genome and Transcriptome of Living Cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef] [PubMed]
- Raguram, A.; Banskota, S.; Liu, D.R. Therapeutic in Vivo Delivery of Gene Editing Agents. Cell 2022, 185, 2806–2827. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Chen, Y.-H.; Kao, J.-H.; Ching, C.; Liu, I.-J.; Wang, C.-C.; Tsai, C.-H.; Wu, F.-Y.; Liu, C.-J.; Chen, P.-J.; et al. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-Cleavage Base Editing. Mol. Ther. Nucleic Acids 2020, 20, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, X.; Steer, C.J.; Song, G.; Niu, J. Efficient Silencing of Hepatitis B Virus S Gene through CRISPR-Mediated Base Editing. Hepatol. Commun. 2022, 6, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Smekalova, E.M.; Martinez, M.G.; Combe, E.; Kumar, A.; Dejene, S.; Leboeuf, D.; Chen, C.-Y.; Dorkin, J.R.; Shuang, L.S.; Kieft, S.; et al. Cytosine Base Editing Inhibits Hepatitis B Virus Replication and Reduces HBsAg Expression in Vitro and in Vivo. Mol. Ther. Nucleic Acids 2024, 35, 102112. [Google Scholar] [CrossRef]
- Yu, Y.; Leete, T.C.; Born, D.A.; Young, L.; Barrera, L.A.; Lee, S.-J.; Rees, H.A.; Ciaramella, G.; Gaudelli, N.M. Cytosine Base Editors with Minimized Unguided DNA and RNA Off-Target Events and High on-Target Activity. Nat. Commun. 2020, 11, 2052. [Google Scholar] [CrossRef]
- Lam, D.K.; Feliciano, P.R.; Arif, A.; Bohnuud, T.; Fernandez, T.P.; Gehrke, J.M.; Grayson, P.; Lee, K.D.; Ortega, M.A.; Sawyer, C.; et al. Improved Cytosine Base Editors Generated from TadA Variants. Nat. Biotechnol. 2023, 41, 686–697. [Google Scholar] [CrossRef]
- Dobosy, J.R.; Rose, S.D.; Beltz, K.R.; Rupp, S.M.; Powers, K.M.; Behlke, M.A.; Walder, J.A. RNase H-Dependent PCR (rhPCR): Improved Specificity and Single Nucleotide Polymorphism Detection Using Blocked Cleavable Primers. BMC Biotechnol. 2011, 11, 80. [Google Scholar] [CrossRef]
- Ueda, J.; Yamazaki, T.; Funakoshi, H. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int. J. Mol. Sci. 2023, 24, 4778. [Google Scholar] [CrossRef]
- Fadul, S.M.; Arshad, A.; Mehmood, R. CRISPR-Based Epigenome Editing: Mechanisms and Applications. Epigenomics 2023, 15, 1137–1155. [Google Scholar] [CrossRef]
- Yesseinia, A.-R. Development of HBV-Targeting Epigenetic Repressors with Deep, Durable in Vivo Silencing of Viral Markers. In Proceedings of the International HBV Meeting, Kobe, Japan, 19–23 September 2023. [Google Scholar]
- Yesseinia, A.-R. Novel Epigenetic Editing Technology Targets Hepatitis B Virus in Vivo to Deeply and Durably Repress Viral Markers. In Proceedings of the EASL Congress, Milan, Italy, 5–8 June 2024. [Google Scholar]
- Brian, C. Epigenetic Editing for the Treatment of HBV. In Proceedings of the Hep-DART Conference, Cabo San Lucas, Mexico, 3–7 December 2023. [Google Scholar]
- McCoullough, L.C.; Fareh, M.; Hu, W.; Sozzi, V.; Makhlouf, C.; Droungas, Y.; Lee, C.L.; Takawy, M.; Fabb, S.A.; Payne, T.J.; et al. CRISPR-Cas13b-Mediated Suppression of Hepatitis B Virus Replication and Protein Expression. J. Hepatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Brezgin, S.; Kostyusheva, A.; Kostyushev, D.; Chulanov, V. Dead Cas Systems: Types, Principles, and Applications. Int. J. Mol. Sci. 2019, 20, 6041. [Google Scholar] [CrossRef]
- Cannataro, V.L.; Gaffney, S.G.; Sasaki, T.; Issaeva, N.; Grewal, N.K.S.; Grandis, J.R.; Yarbrough, W.G.; Burtness, B.; Anderson, K.S.; Townsend, J.P. APOBEC-Induced Mutations and Their Cancer Effect Size in Head and Neck Squamous Cell Carcinoma. Oncogene 2019, 38, 3475–3487. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Cao, Y.; Yang, Z. Roles of APOBEC3 in Hepatitis B Virus (HBV) Infection and Hepatocarcinogenesis. Bioengineered 2021, 12, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Kostyushev, D.; Brezgin, S.; Kostyusheva, A.; Ponomareva, N.; Bayurova, E.; Zakirova, N.; Kondrashova, A.; Goptar, I.; Nikiforova, A.; Sudina, A.; et al. Transient and Tunable CRISPRa Regulation of APOBEC/AID Genes for Targeting Hepatitis B Virus. Mol. Ther. Nucleic Acids 2023, 32, 478–493. [Google Scholar] [CrossRef]
- Qian, Z.; Liang, J.; Huang, R.; Song, W.; Ying, J.; Bi, X.; Zhao, J.; Shi, Z.; Liu, W.; Liu, J.; et al. HBV Integrations Reshaping Genomic Structures Promote Hepatocellular Carcinoma. Gut 2024, 73, 1169–1182. [Google Scholar] [CrossRef]
- De Caneva, A.; Porro, F.; Bortolussi, G.; Sola, R.; Lisjak, M.; Barzel, A.; Giacca, M.; Kay, M.A.; Vlahoviček, K.; Zentilin, L.; et al. Coupling AAV-Mediated Promoterless Gene Targeting to SaCas9 Nuclease to Efficiently Correct Liver Metabolic Diseases. JCI Insight 2019, 5, e128863. [Google Scholar] [CrossRef] [PubMed]
- Mangeot, P.E.; Risson, V.; Fusil, F.; Marnef, A.; Laurent, E.; Blin, J.; Mournetas, V.; Massouridès, E.; Sohier, T.J.M.; Corbin, A.; et al. Genome Editing in Primary Cells and in Vivo Using Viral-Derived Nanoblades Loaded with Cas9-sgRNA Ribonucleoproteins. Nat. Commun. 2019, 10, 45. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Packer, M.S.; Chowdhary, V.; Lung, G.; Cheng, L.-I.; Aratyn-Schaus, Y.; Leboeuf, D.; Smith, S.; Shah, A.; Chen, D.; Zieger, M.; et al. Evaluation of Cytosine Base Editing and Adenine Base Editing as a Potential Treatment for Alpha-1 Antitrypsin Deficiency. Mol. Ther. 2022, 30, 1396–1406. [Google Scholar] [CrossRef]
- Horie, T.; Ono, K. VERVE-101: A promising CRISPR-based gene editing therapy that reduces LDL-C and PCSK9 levels in HeFH patients. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Banskota, S.; Raguram, A.; Suh, S.; Du, S.W.; Davis, J.R.; Choi, E.H.; Wang, X.; Nielsen, S.C.; Newby, G.A.; Randolph, P.B.; et al. Engineered Virus-like Particles for Efficient in Vivo Delivery of Therapeutic Proteins. Cell 2022, 185, 250–265.e16. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-Based Diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Bahrulolum, H.; Tarrahimofrad, H.; Rouzbahani, F.N.; Nooraei, S.; Sameh, M.M.; Hajizade, A.; Ahmadian, G. Potential of CRISPR/Cas System as Emerging Tools in the Detection of Viral Hepatitis Infection. Virol. J. 2023, 20, 91. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Kou, Z.; Ren, F.; Jin, Y.; Yang, L.; Dong, X.; Yang, M.; Zhao, J.; Liu, H.; et al. Highly Sensitive and Specific Detection of Hepatitis B Virus DNA and Drug Resistance Mutations Utilizing the PCR-Based CRISPR-Cas13a System. Clin. Microbiol. Infect. 2021, 27, 443–450. [Google Scholar] [CrossRef]
- Ding, R.; Long, J.; Yuan, M.; Zheng, X.; Shen, Y.; Jin, Y.; Yang, H.; Li, H.; Chen, S.; Duan, G. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int. J. Mol. Sci. 2021, 22, 4842. [Google Scholar] [CrossRef]
- Choi, J.-H.; Shin, M.; Yang, L.; Conley, B.; Yoon, J.; Lee, S.-N.; Lee, K.-B.; Choi, J.-W. Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray. ACS Nano 2021, 15, 13475–13485. [Google Scholar] [CrossRef]
- Chen, X.; Tan, Y.; Wang, S.; Wu, X.; Liu, R.; Yang, X.; Wang, Y.; Tai, J.; Li, S. A CRISPR-Cas12b-Based Platform for Ultrasensitive, Rapid, and Highly Specific Detection of Hepatitis B Virus Genotypes B and C in Clinical Application. Front. Bioeng. Biotechnol. 2021, 9, 743322. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, S.; Wang, X.; Li, J.; Pan, W.; Li, N.; Tang, B. Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid. Anal. Chem. 2021, 93, 15216–15223. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Xu, L.; Fan, Z.; Cao, Y.; Ma, Y.; Li, H.; Ren, F. CRISPR/Cas13-Assisted Hepatitis B Virus Covalently Closed Circular DNA Detection. Hepatol. Int. 2022, 16, 306–315. [Google Scholar] [CrossRef]
- Tao, Y.; Yi, K.; Wang, H.; Kim, H.-W.; Li, K.; Zhu, X.; Li, M. CRISPR-Cas12a-Regulated DNA Adsorption and Metallization on MXenes as Enhanced Enzyme Mimics for Sensitive Colorimetric Detection of Hepatitis B Virus DNA. J. Colloid. Interface Sci. 2022, 613, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, L.; Li, Y.; Chen, L.; Gui, C.; Zhu, J.; Li, H.; Wang, W.; Chen, D. A Signal On-off Strategy Based on the Digestion of DNA Cubes Assisted by the CRISPR-Cas12a System for Ultrasensitive HBV Detection in Solid-State Nanopores. Analyst 2022, 147, 5623–5632. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ji, S.; Dong, Q.; Wang, J.; Han, D.; Gao, Z. Amplification-Free Detection of HBV DNA Mediated by CRISPR-Cas12a Using Surface-Enhanced Raman Spectroscopy. Anal. Chim. Acta 2023, 1245, 340864. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Du, L.; Zhang, F.; Liu, Y.; Sun, J.; Zhang, Q.; Li, C.; Li, X.; Xue, Q. “One-to-Many” Signal-Output Strategy-Based CRISPR/Cas12a System for Sensitive Label-Free Fluorescence Detection of HBV-DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 304, 123338. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jing, Z.; Yang, G.; Yuan, R.; Hu, F.X.; Chen, S. Nickel Single-Atom Catalyst Boosts Electrochemiluminescence of Graphitic Carbon Nitride for Sensitive Detection of HBV DNA. Anal. Chem. 2023, 95, 18207–18214. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fan, Z.; Xu, L.; Cao, Y.; Chen, S.; Pan, Z.; Gao, Y.; Li, H.; Zheng, S.; Ma, Y.; et al. CRISPR/Cas13a-Assisted Rapid and Portable HBV DNA Detection for Low-Level Viremia Patients. Emerg. Microbes Infect. 2023, 12, e2177088. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Fang, J.; Chen, F.; Wu, X.; Wang, L.; Gao, M.; Zhang, L.; Li, S. A Universal Nucleic Acid Detection Platform Combing CRISPR/Cas12a and Strand Displacement Amplification with Multiple Signal Readout. Talanta 2024, 273, 125922. [Google Scholar] [CrossRef]
- Xu, H.; Lin, G.; Chen, R.; Cai, Z.; Sun, Y.; Zhang, X.; Zhao, B.; Zeng, Y.; Liu, J.; Liu, X. CRISPR/Cas12b Assisted Loop-Mediated Isothermal Amplification for Easy, Rapid and Sensitive Quantification of Chronic HBV DNA in One-Pot. Anal. Chim. Acta 2024, 1310, 342702. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.; Wang, J. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef]
- Huang, Z.; Lyon, C.J.; Wang, J.; Lu, S.; Hu, T.Y. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. Adv. Sci. 2023, 10, e2301697. [Google Scholar] [CrossRef]
- Chen, B.; Zou, W.; Xu, H.; Liang, Y.; Huang, B. Efficient Labeling and Imaging of Protein-Coding Genes in Living Cells Using CRISPR-Tag. Nat. Commun. 2018, 9, 5065. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zeng, J.; Yu, Y.; Xiang, K.; Hu, H.; Zhou, X.; Gu, L.; Wang, L.; Zhao, J.; Young, J.A.T.; et al. HBVcircle: A Novel Tool to Investigate Hepatitis B Virus Covalently Closed Circular DNA. J. Hepatol. 2017, 66, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yi, Z.; Zai, W.; Wu, M.; Chen, B.; Cai, Q.; Zhang, X.; Yuan, Z. Illuminating the Live-Cell Dynamics of Hepatitis B Virus Covalently Closed Circular DNA Using the CRISPR-Tag System. mBio 2023, 14, e03550-22. [Google Scholar] [CrossRef] [PubMed]
- Seeger, C. A CRISPR-Based System to Investigate HBV cccDNA Biology. J. Virol. 2023, 97, e0118523. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.D.; Lin, L.; Xiang, X.; Petersen, T.S.; Huang, J.; Yang, L.; Kjeldsen, E.; Jensen, U.B.; Zhang, X.; Liu, X.; et al. CRISPR-C: Circularization of Genes and Chromosome by CRISPR in Human Cells. Nucleic Acids Res. 2018, 46, e131. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Jiang, J.; Wu, M.; Lin, P. Applications and Challenges of CRISPR-Cas Gene-Editing to Disease Treatment in Clinics. Precis. Clin. Med. 2021, 4, 179–191. [Google Scholar] [CrossRef]
- Riesenberg, S.; Helmbrecht, N.; Kanis, P.; Maricic, T.; Pääbo, S. Improved gRNA Secondary Structures Allow Editing of Target Sites Resistant to CRISPR-Cas9 Cleavage. Nat. Commun. 2022, 13, 489. [Google Scholar] [CrossRef]
- Hajj, K.A.; Melamed, J.R.; Chaudhary, N.; Lamson, N.G.; Ball, R.L.; Yerneni, S.S.; Whitehead, K.A. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. Nano Lett. 2020, 20, 5167–5175. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Hu, J.; Peng, X.; Liu, Z. CRISPR/Cas9 Systems: Delivery Technologies and Biomedical Applications. Asian J. Pharm. Sci. 2023, 18, 100854. [Google Scholar] [CrossRef]
- Khattak, A.; Vongsavath, T.; Haque, L.; Narwan, A.; Gish, R.G. The Forgotten Virus, Hepatitis D: A Review of Epidemiology, Diagnosis, and Current Treatment Strategies. J. Clin. Exp. Hepatol. 2024, 14, 101395. [Google Scholar] [CrossRef]
- Vaillant, A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022, 14, 2052. [Google Scholar] [CrossRef] [PubMed]
- Rehermann, B.; Ferrari, C.; Pasquinelli, C.; Chisari, F.V. The Hepatitis B Virus Persists for Decades after Patients’ Recovery from Acute Viral Hepatitis despite Active Maintenance of a Cytotoxic T-Lymphocyte Response. Nat. Med. 1996, 2, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jeong, M.; Lee, G.; Park, J.; Jung, H.; Im, S.; Lee, H. Development of Lipid Nanoparticle Formulation for the Repeated Administration of mRNA Therapeutics. Biomater. Res. 2024, 28, 0017. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA Targeting with CRISPR-Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Xu, D.; Cai, Y.; Tang, L.; Han, X.; Gao, F.; Cao, H.; Qi, F.; Kapranov, P. A CRISPR/Cas13-Based Approach Demonstrates Biological Relevance of Vlinc Class of Long Non-Coding RNAs in Anticancer Drug Response. Sci. Rep. 2020, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J.; Liu, D.R. Prime Editing for Precise and Highly Versatile Genome Manipulation. Nat. Rev. Genet. 2023, 24, 161–177. [Google Scholar] [CrossRef]
- Saitta, C.; Pollicino, T.; Raimondo, G. Occult Hepatitis B Virus Infection: An Update. Viruses 2022, 14, 1504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Zai, W.; Hu, K.; Zhu, Y.; Deng, Q.; Wu, M.; Li, Y.; Chen, J.; Yuan, Z. HBV Covalently Closed Circular DNA Minichromosomes in Distinct Epigenetic Transcriptional States Differ in Their Vulnerability to Damage. Hepatology 2022, 75, 1275–1288. [Google Scholar] [CrossRef]
- Akbar, S.M.F.; Yoshida, O.; Hiasa, Y. Immune Therapies against Chronic Hepatitis B. J. Gastroenterol. 2022, 57, 517–528. [Google Scholar] [CrossRef]
Delivery Vehicle | Cargo | Advantages | Limitations | Examples | References |
---|---|---|---|---|---|
Adeno-associated viruses (AAVs) | DNA-encoding Cas9/sgRNA | Mainly episomal and, hence, minimal risk of integration into the host genome, low inflammatory response, high transduction efficiency, pseudotyping possible | Limited cargo packaging capacity, serotype-dependent preexisting immunity, long-term expression of editing components, off-target risk | Liver function restoration in mouse model of Crigler–Najjar syndrome for the insertion of therapeutic cDNA into the albumin locus | Maestro et al., 2021; De Caneva et al., 2019 [55,92] |
Nanoblades | Engineered virus-like particles loaded with Cas9-sgRNA RNPs | Non-viral, can be used for rapid and transient expression, minimal off-targets, can be complexed with other components, such as DNA repair templates | Lower editing, need further improvements | Editing of Hpd gene in NRG mice | Mangeot et al., 2019 [93] |
LNPs | Gene editor-encoding mRNA/sgRNA | Non-viral, low immunogenicity, no integration risk, can be used for rapid and transient expression, low toxicity, flexible cargo packaging capacity | May have lower transduction efficiency, limited targeting without modification |
| Gillmore et al., 2021; Packer et al., 2022; Horie and Ono, 2024 [94,95,96] |
Engineered VLPs (eVLPs) | Engineered virus-like particles loaded with base editor-sgRNA RNPs | Non-viral, can be used for rapid and transient expression, minimal off-targets | Needs more characterization, including contents that may be packaged and pharmacokinetics | Base editing of PCSK9 gene in mice | Banskota et al., 2022 [97] |
Delivery Vehicle | Cargo | In Vivo Model System | References |
---|---|---|---|
LNPs | Cas9-encoding mRNA and HBV-targeting gRNA | AAV-HBV1.04 mice, 1.28-mer (gt A) HBV-integrated genome mice, HBV-infected tree shrews | Yi et al., 2023 [68] |
LNPs | BE-encoding mRNA and HBV-targeting gRNA | HBV minicircle mouse | Smekalova and Martinez et al., 2024 [77] |
LNPs | EE-encoding mRNA and HBV-targeting gRNA | AAV-HBV, HBV transgenic, HBV-infected FRG chimeric mice | Yesseinia 2023 and 2024; Brian, 2023 [83,84,85] |
EVs | RNP containing Cas9 and HBV-targeting gRNA | 1.2x HBV replicon (gt C)-replicating mice and HBV (gt A) transgenic mice | Zeng et al., 2024 [65] |
Assays | Target Molecule | Advantages | Limitations | LOD |
---|---|---|---|---|
ELISA | HBV antigen or antibody | Simple, cost-effective, high throughput | Lower sensitivity | 0.1–0.5 ng/mL |
qPCR | HBV DNA | High sensitivity and specificity, allows quantitative monitoring of viral load | Requires specialized equipment and technical expertise, expensive | 10–100 IU/mL (approx. 50–500 copies/mL) |
Nucleic acid sequencing | HBV DNA | Provides detailed viral genetic information (genotypes and mutations) | High cost, needs advanced equipment and bioinformatics expertise | 10–100 copies/mL |
CRISPR/Cas | HBV DNA | Ultra-sensitive, potential for high specificity | Still in experimental stages for diagnostic use | 1 copy/µL |
Cas Type | Amplification | Detection | LOD | Reference |
---|---|---|---|---|
Cas13a | PCR followed by T7 transcription | Fluorescence | 1 copy/test | Wang S et al., 2021 [100] |
Cas12a | LAMP | Fluorescence and lateral flow | 1 copy/μL | Ding et al., 2021 [101] |
Cas12a | - | Surface-enhanced Raman spectroscopy (SERS) | 1 aM | Choi et al., 2021 [102] |
Cas12b | MCDA | Fluorescence and lateral flow | 10 copies/test | Chen et al., 2021 [103] |
Cas12a | SDA | Colorimetric | 41.8 fM | Gong et al., 2021 [104] |
Cas13a | RCA⟶PCR⟶T7 transcription | Fluorescence | 1 copy/μL | Zhang et al., 2022 [105] |
Cas12a | - | Colorimetric | 0.5 pM | Tao et al., 2022 [106] |
Cas12a | PCR | Nanopore sensing | 5 aM | Wang et al., 2022 [107] |
Cas12a | - | Surface-enhanced Raman spectroscopy (SERS) | 100 fM | Du et al., 2023 [108] |
Cas12a | RCA | Fluorescence | 1.502 pM | Liu et al., 2023 [109] |
Cas12a | Entropy-driven 3D DNA walking machine | Electrochemiluminescence | 17 aM | Li et al., 2023 [110] |
Cas13a | RAA⟶T7 transcription | Fluorescence and lateral flow assay (LFA) | 10 copy/μL | Tian et al., 2023 [111] |
Cas12a | SDA | Fluorescence/PGM/LFA | 55.1 fM | Li et al., 2024 [112] |
Cas12b | LAMP and fluorescence detection-one step detection. | Fluorescence | 25 copies/mL | Xu et al., 2024 [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Combe, E.; Mougené, L.; Zoulim, F.; Testoni, B. Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics. Viruses 2024, 16, 1565. https://doi.org/10.3390/v16101565
Kumar A, Combe E, Mougené L, Zoulim F, Testoni B. Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics. Viruses. 2024; 16(10):1565. https://doi.org/10.3390/v16101565
Chicago/Turabian StyleKumar, Anuj, Emmanuel Combe, Léa Mougené, Fabien Zoulim, and Barbara Testoni. 2024. "Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics" Viruses 16, no. 10: 1565. https://doi.org/10.3390/v16101565