Network Medicine: A Potential Approach for Virtual Drug Screening
Abstract
:1. Introduction
2. Principle of Network Medicine-Based Virtual Drug Screening
2.1. Network-Based Virtual Single Drug Screening
2.2. Network Medicine Approach for Screening Drug Combinations
3. The Methodology of Virtual Drug Screening Based on Network Medicine
3.1. The Steps of Network Medicine-Based Drug Screening
3.2. Construction of the Human Protein–Protein Interaction Network
3.3. Collection of Disease Gene Datasets
3.4. Optimization of the Disease Module
3.5. Collection of Drug and Natural Product Targets
3.6. Calculation of Network Proximity
4. Application Examples of Network Medicine in Virtual Drug Screening
Disease/ Symptom Name | Key Finding Information | Validation Methods for the Predicted Results | Ref. |
---|---|---|---|
Alzheimer’s disease | Identified sildenafil as a potential treatment using network medicine and data mining methods. | Pharmacoepidemiologic validation, mechanistic observations in human microglia cells and iPSCs. | [53] |
Network-based prediction and retrospective case–control studies revealed gefitinib as a promising candidate for prevention and treatment. | Pharmacoepidemiologic validation. | [54] | |
Atrial fibrillation | A transcriptomics-based network medicine approach identified metformin as a potential drug candidate. | Validation in human iPSC-derived atrial-like cardiomyocytes and pharmacoepidemiologic analysis. | [55] |
Breast cancer and liver cirrhosis | Multiscale interaction network method revealed the therapeutic effects and mechanisms of natural products. | Active ingredient validation in the hepatic stellate cell model. | [59] |
Fatty liver | Providing theoretical guidance for studying the pharmacodynamic material basis and action mechanisms of herbal medicine. | Literature-based validation. | [47,48] |
Insomnia | Network medicine approach elucidated the active ingredients and molecular mechanisms through which herbal medicine improves sleep. | Literature-based validation. | [46,57] |
Non-small cell lung cancer | Genome-wide mapping system using network algorithms facilitated drug repurposing by identifying disease modules from DNA/RNA profiles. | Pharmacoepidemiologic validation, mechanistic assays in non-small cell lung cancer cells. | [56] |
Novel coronavirus | Network-based method identified repurposing drug candidates and promising drug combinations against SARS-CoV-2. | Literature-based validation. | [13] |
An integrated method using artificial intelligence, network diffusion, and network proximity repurposes drugs against SARS-CoV-2. | Validation in VeroE6 cells challenged with SARS-CoV-2 virus. | [49] | |
An approach using network medicine, clinical insights, and multi-omics analysis highlights melatonin as a potential candidate for preventing and treating COVID-19. | Patient data validation. | [50] | |
Provided insights for advancing COVID-19 treatment research through network systems biology. | Validation with patient data and in A549-ACE2 cells challenged with SARS-CoV-2. | [51] | |
Vascular diseases | Network medicine framework predicted new therapeutic effects of polyphenols. | Validation in platelet. | [58] |
Various symptoms | Network proximity between herb targets and symptom modules predicted the herb’s effectiveness in treating symptoms. | Validation with empirical data and patient data. | [3] |
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Chandak, P.; Huang, K.; Zitnik, M. Building a knowledge graph to enable precision medicine. Sci. Data 2023, 10, 67. [Google Scholar] [CrossRef]
- Gan, X.; Shu, Z.; Wang, X.; Yan, D.; Li, J.; Ofaim, S.; Albert, R.; Li, X.; Liu, B.; Zhou, X.; et al. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. Sci. Adv. 2023, 9, eadh0215. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Gujjari, L.; Kalani, H.; Pindiprolu, S.K.; Arakareddy, B.P.; Yadagiri, G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol. Control 2022, 17, e00244. [Google Scholar] [CrossRef]
- Strittmatter, S. Overcoming Drug Development Bottlenecks with Repurposing: Old drugs learn new tricks. Nat. Med. 2014, 20, 590–591. [Google Scholar] [CrossRef]
- Dhaneshwar, S.; Bhasin, B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr. Drug Res. Rev. 2021, 13, 101–119. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.; Zhang, S.; Chen, S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol. Ther. Nucleic Acids 2023, 31, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Savage, N. Drug discovery companies are customizing ChatGPT: Here’s how. Nat. Biotechnol. 2023, 41, 585–586. [Google Scholar] [CrossRef]
- Murphy, R.F. An active role for machine learning in drug development. Nat. Chem. Biol. 2011, 7, 327–330. [Google Scholar] [CrossRef]
- Vidal, M.; Cusick, M.E.; Barabási, A.-L. Interactome networks and human disease. Cell 2011, 144, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun. 2016, 7, 10331. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Kovács, I.A.; Barabási, A.-L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanov, U.; Emili, A. Protein-protein interaction networks: Probing disease mechanisms using model systems. Genome Med. 2013, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- De Las Rivas, J.; Fontanillo, C. Protein-protein interaction networks: Unraveling the wiring of molecular machines within the cell. Brief. Funct. Genom. 2012, 11, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Ideker, T.; Sharan, R. Protein networks in disease. Genome Res. 2008, 18, 644–652. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. Clinvar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, C.J.; Colby, G.T.; Forrest, J.N.; Boyer, J.L. The Comparative Toxicogenomics Database (CTD). Environ. Health Perspect. 2003, 111, 793. [Google Scholar] [CrossRef]
- Bauer-Mehren, A.; Rautschka, M.; Sanz, F.; Furlong, L.I. Disgenet: A cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 2010, 26, 2924–2926. [Google Scholar] [CrossRef]
- Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: Integrating Information about Genes, Proteins and Diseases. Trends Genet. 1997, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D. The human gene mutation database. Nucleic Acids Res. 1998, 26, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Gwinn, M.; Clyne, M.; Yesupriya, A.; Khoury, M.J. A navigator for human genome epidemiology. Nat. Genet. 2008, 40, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, A.D. Searching online mendelian inheritance in man (OMIM) for information on genetic loci involved in human disease. Curr. Protoc. Hum. Genet. 2012, 73, 9.13.1–9.13.10. [Google Scholar]
- Aymé, S.; Schmidtke, J. Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2007, 50, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Hewett, M.; Oliver, D.E.; Rubin, D.L.; Easton, K.L.; Stuart, J.M.; Altman, R.B.; Klein, T.E. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 2002, 30, 163–165. [Google Scholar] [CrossRef]
- Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res. 2002, 30, 412–415. [Google Scholar] [CrossRef]
- Apweiler, R. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Ata, S.K.; Wu, M.; Fang, Y.; Ou-Yang, L.; Kwoh, C.K.; Li, X.-L. Recent advances in network-based methods for disease gene prediction. Brief. Bioinform. 2021, 22, bbaa303. [Google Scholar] [CrossRef]
- Sadegh, S.; Skelton, J.; Anastasi, E.; Bernett, J.; Blumenthal, D.B.; Galindez, G.; Salgado-Albarrán, M.; Lazareva, O.; Flanagan, K.; Cockell, S.; et al. Network medicine for disease module identification and drug repurposing with the NeDRex platform. Nat. Commun. 2021, 12, 6848. [Google Scholar] [CrossRef]
- Gustafsson, M.; Nestor, C.E.; Zhang, H.; Barabási, A.-L.; Baranzini, S.; Brunak, S.; Chung, K.F.; Federoff, H.J.; Gavin, A.-C.; Meehan, R.R.; et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014, 6, 82. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2011, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef] [PubMed]
- Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral: Online drug compendium. Nucleic Acids Res. 2017, 45, D932–D939. [Google Scholar] [CrossRef]
- Yan, D.; Zheng, G.; Wang, C.; Chen, Z.; Mao, T.; Gao, J.; Yan, Y.; Chen, X.; Ji, X.; Yu, J.; et al. HIT 2.0: An enhanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res. 2021, 50, D1238–D1243. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Yuan, S.; Wang, Q.; Lv, C.; Wang, J.; Fang, J.; Fu, L.; Yang, J.; Zu, X.; et al. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief. Bioinform. 2023, 24, bbad027. [Google Scholar] [CrossRef]
- Pawson, A.J.; Sharman, J.L.; Benson, H.E.; Faccenda, E.; Alexander, S.P.H.; Buneman, O.P.; Davenport, A.P.; McGrath, J.C.; Peters, J.A.; Southan, C.; et al. The IUPHAR/BPS Guide to PHARMACOLOGY: An Expert-Driven Knowledgebase of Drug Targets and Their Ligands. Nucleic Acids Res. 2014, 42, D1098–D1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDB bind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 2004, 47, 2977–2980. [Google Scholar] [CrossRef]
- Rosania, G.R.; Crippen, G.; Woolf, P.; States, D.; Shedden, K. A Cheminformatic Toolkit for Mining Biomedical Knowledge. Pharm. Res. 2007, 24, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2007, 36, D684–D688. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Ren, A.; Wu, T.; Wang, Y.; Fan, Q.; Yang, Z.; Zhang, S.; Cao, Y.; Cui, G. Integrating animal experiments, mass spectrometry and network-based approach to reveal the sleep-improving effects of Ziziphi Spinosae Semen and γ-aminobutyric acid mixture. Chin. Med. 2023, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, Z.; Wang, S.; Ren, A.; Ding, Z.; Li, Y.; Wang, Y.; Qian, Z.; Bian, B.; Huang, B.; et al. Golden bile powder prevents drunkenness and alcohol-induced liver injury in mice via the gut microbiota and metabolic modulation. Chin. Med. 2024, 19, 39. [Google Scholar] [CrossRef]
- Wei, J.; Wang, S.; Huang, J.; Zhou, X.; Qian, Z.; Wu, T.; Fan, Q.; Liang, Y.; Cui, G. Network medicine-based analysis of the hepatoprotective effects of Amomum villosum Lour. on alcoholic liver disease in rats. Food Sci. Nutr. 2024, 12, 3759–3773. [Google Scholar] [CrossRef]
- Gysi, D.M.; Do Valle, Í.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.J.; Davey, R.A.; Loscalzo, J.; et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2025581118. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Y.; Shen, J.; Mehra, R.; Kallianpur, A.; Culver, D.A.; Gack, M.U.; Farha, S.; Zein, J.; Comhair, S.; et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020, 18, e3000970. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Gupta, S.; Paramo, M.I.; Hou, Y.; Mao, C.; Luo, Y.; Judd, J.; Wierbowski, S.; Bertolotti, M.; et al. A Comprehensive SARS-CoV-2–Human Protein–Protein Interactome Reveals COVID-19 Pathobiology and Potential Host Therapeutic Targets. Nat. Biotechnol. 2022, 41, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Pieper, A.A.; Nussinov, R.; Lee, G.; Bekris, L.; Leverenz, J.B.; Cummings, J.; Cheng, F. Harnessing endophenotypes and network medicine for Alzheimer’s drug repurposing. Med. Res. Rev. 2020, 40, 2386–2426. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, P.; Zhou, Y.; Chiang, C.-W.; Tan, J.; Hou, Y.; Stauffer, S.; Li, L.; Pieper, A.A.; Cummings, J.; et al. Endophenotype-Based in Silico Network Medicine Discovery Combined with Insurance Record Data Mining Identifies Sildenafil as a Candidate Drug for Alzheimer’s Disease. Nat. Aging 2021, 1, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mao, C.; Hou, Y.; Luo, Y.; Binder, J.L.; Zhou, Y.; Bekris, L.M.; Shin, J.; Hu, M.; Wang, F.; et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease. Cell Rep. 2022, 41, 111717. [Google Scholar] [CrossRef] [PubMed]
- Lal, J.C.; Mao, C.; Zhou, Y.; Gore-Panter, S.R.; Rennison, J.H.; Lovano, B.S.; Castel, L.; Shin, J.; Gillinov, A.M.; Smith, J.D.; et al. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep. Med. 2022, 3, 100749. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Lu, W.; Liu, C.; Fang, J.; Hou, Y.; Handy, D.E.; Wang, R.; Zhao, Y.; Yang, Y.; Huang, J.; et al. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 2019, 10, 3476. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Ma, M.; Liang, Y.; Wang, Y.; Li, Z.; Liu, Y.; Fan, Q.; Cui, G. GSZ formula enhances sleep quality: Exploring its active ingredients and mechanism using a network medicine approach. Clin. Complement. Med. Pharmacol. 2024, 4, 100107. [Google Scholar] [CrossRef]
- Valle, I.F.D.; Roweth, H.G.; Malloy, M.W.; Moco, S.; Barron, D.; Battinelli, E.; Loscalzo, J.; Barabási, A.-L. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2021, 2, 143–155. [Google Scholar] [CrossRef]
- Kim, Y.W.; Bak, S.-B.; Song, Y.R.; Kim, C.-E.; Lee, W.-Y. Systematic exploration of therapeutic effects and key mechanisms of Panax ginseng using network-based approaches. J. Ginseng Res. 2024, 48, 373–383. [Google Scholar] [CrossRef]
- Pola, M.; Tiwari, A.; Chandrasai, P.D. A comprehensive review on technological advances in alternate drug discovery process: Drug repurposing. Curr. Trends Biotechnol. Pharm. 2023, 17, 907–916. [Google Scholar]
- Liu, C.; Ma, Y.; Zhao, J.; Nussinov, R.; Zhang, Y.-C.; Cheng, F.; Zhang, Z.-K. Computational network biology: Data, models, and applications. Phys. Rep. 2020, 846, 1–66. [Google Scholar] [CrossRef]
- Fiscon, G.; Conte, F.; Farina, L.; Paci, P. A comparison of network-based methods for drug repurposing along with an application to human complex diseases. Int. J. Mol. Sci. 2022, 23, 3703. [Google Scholar] [CrossRef]
- Pandey, A.K.; Loscalzo, J. Network medicine: An approach to complex kidney disease phenotypes. Nat. Rev. Nephrol. 2023, 19, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Ayar, E.S.; Dadmand, S.; Tuncbag, N. Network medicine: From conceptual frameworks to applications and future trends. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2023, 9, 374–381. [Google Scholar] [CrossRef]
- Dey, V.; Ning, X. Improving Anticancer Drug Selection and Prioritization via Neural Learning to Rank. J. Chem. Inf. Model. 2024, 64, 4071–4088. [Google Scholar] [CrossRef] [PubMed]
- Krassowski, M.; Das, V.; Sahu, S.K.; Misra, B.B. State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing. Front. Genet. 2020, 11, 610798. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, L. Protein-protein interactions: Interactome under construction. Nature 2010, 468, 851–854. [Google Scholar] [CrossRef]
- Chen, B.; Fan, W.; Liu, J.; Wu, F.X. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks. Brief. Bioinform. 2014, 15, 177–194. [Google Scholar] [CrossRef]
- Infante, T.; Del Viscovo, L.; De Rimini, M.L.; Padula, S.; Caso, P.; Napoli, C. Network Medicine: A Clinical Approach for Precision Medicine and Personalized Therapy in Coronary Heart Disease. J. Atheroscler. Thromb. 2020, 27, 279–302. [Google Scholar] [CrossRef]
Database Name | Relevant Key Information | URL | Ref. |
---|---|---|---|
ClinVar | Focuses on gene–disease associations and gene expression and interactions | https://www.ncbi.nlm.nih.gov/clinvar | [18] |
CTD | Contains relationships between diseases and genes | http://ctdbase.org | [19] |
DisGeNET | Collects genes and variants associated with human diseases | https://www.disgenet.org | [20] |
GeneCards | Provides detailed gene–disease associations and gene-related information | https://www.genecards.org | [21] |
GWAS Catalog | Provides SNP–trait associations from published genome-wide association studies | https://www.ebi.ac.uk/gwas | [22] |
HGMD | Collects gene lesions responsible for human inherited diseases | https://www.hgmd.cf.ac.uk/ac/index.php | [23] |
HuGE Navigator | Covers prevalence of genetic variation, gene–disease associations, and gene interactions | https://phgkb.cdc.gov/PHGKB/hNHome.action | [24] |
OMIM | Contains information on the relationships between human genes and diseases | https://www.omim.org | [25] |
Orphanet | Focuses on rare diseases and associated genetic data | https://www.orpha.net/consor/cgi-bin/index.php | [26] |
PharmGKB | Describes the associations between diseases and genetic data in detail | https://www.pharmgkb.org | [27] |
TTD | Provides comprehensive data on therapeutic targets and their associations with diseases | https://db.idrblab.net/ttd | [28] |
UniProt | Provides comprehensive information about protein function and aids in understanding the genes associated with specific diseases | https://www.uniprot.org | [29] |
Database Name | Relevant Key Information | URL | Ref. |
---|---|---|---|
BindingDB | Database of experimentally determined protein–ligand binding affinities | https://www.bindingdb.org/bind/index.jsp | [34] |
CTD | Chemical–gene/protein interactions | https://ctdbase.org | [19] |
ChEMBL | Drug target information | https://www.ebi.ac.uk/chembl | [35] |
DrugBank | Drug target information | https://go.drugbank.com | [36] |
DrugCentral | Drugs and target mechanisms of action | https://drugcentral.org | [37] |
HIT 2.0 | Information on herbal ingredient–target interactions | http://www.badd-cao.net:2345/ | [38] |
IPA | Binding protein information | https://www.ingenuity.com | [39] |
ITCM | Manually organized component targets | http://itcm.biotcm.net/ | [40] |
IUPHAR/BPS Guide to PHARMACOLOGY | Comprehensive data on drug targets | https://www.guidetopharmacology.org | [41] |
PDBbind | Protein–ligand binding affinity 3D structural data | http://pdbbind.org.cn/ | [42] |
PharmGKB | Genetic variations that affect drug response | https://www.pharmgkb.org | [27] |
PubChem | Genes/proteins that interact with the compound | https://pubchem.ncbi.nlm.nih.gov | [43] |
STITCH | Chemical and protein interactions | http://stitch.embl.de/ | [44] |
TTD | Drugs and therapeutic targets | https://db.idrblab.net/ttd | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Huang, M.; He, Y.; Fang, J.; Li, J.; Li, X.; Liu, M.; Zhou, M.; Cui, G.; Fan, Q. Network Medicine: A Potential Approach for Virtual Drug Screening. Pharmaceuticals 2024, 17, 899. https://doi.org/10.3390/ph17070899
Ma M, Huang M, He Y, Fang J, Li J, Li X, Liu M, Zhou M, Cui G, Fan Q. Network Medicine: A Potential Approach for Virtual Drug Screening. Pharmaceuticals. 2024; 17(7):899. https://doi.org/10.3390/ph17070899
Chicago/Turabian StyleMa, Mingxuan, Mei Huang, Yinting He, Jiansong Fang, Jiachao Li, Xiaohan Li, Mengchen Liu, Mei Zhou, Guozhen Cui, and Qing Fan. 2024. "Network Medicine: A Potential Approach for Virtual Drug Screening" Pharmaceuticals 17, no. 7: 899. https://doi.org/10.3390/ph17070899
APA StyleMa, M., Huang, M., He, Y., Fang, J., Li, J., Li, X., Liu, M., Zhou, M., Cui, G., & Fan, Q. (2024). Network Medicine: A Potential Approach for Virtual Drug Screening. Pharmaceuticals, 17(7), 899. https://doi.org/10.3390/ph17070899