Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,264)

Search Parameters:
Keywords = drug screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9912 KiB  
Article
Effects of Confined Microenvironments with Protein Coating, Nanotopography, and TGF-β Inhibitor on Nasopharyngeal Carcinoma Cell Migration through Channels
by Xiao Hong, Yuanhao Xu and Stella W. Pang
J. Funct. Biomater. 2024, 15(9), 263; https://doi.org/10.3390/jfb15090263 - 11 Sep 2024
Viewed by 349
Abstract
Distant metastasis is the primary cause of unsuccessful treatment in nasopharyngeal carcinoma (NPC), suggesting the crucial need to comprehend this process. A tumor related to NPC does not have flat surfaces, but consists of confined microenvironments, proteins, and surface topography. To mimic the [...] Read more.
Distant metastasis is the primary cause of unsuccessful treatment in nasopharyngeal carcinoma (NPC), suggesting the crucial need to comprehend this process. A tumor related to NPC does not have flat surfaces, but consists of confined microenvironments, proteins, and surface topography. To mimic the complex microenvironment, three-dimensional platforms with microwells and connecting channels were designed and developed with a fibronectin (FN) coating or nanohole topography. The potential of the transforming growth factor-β (TGF-β) inhibitor (galunisertib) for treating NPC was also investigated using the proposed platform. Our results demonstrated an increased traversing probability of NPC43 cells through channels with an FN coating, which correlated with enhanced cell motility and dispersion. Conversely, the presence of nanohole topography patterned on the platform bottom and the TGF-β inhibitor led to a reduced cell traversing probability and decreased cell motility, likely due to the decrease in the F-actin concentration in NPC43 cells. This study highlights the significant impact of confinement levels, surface proteins, nanotopography, and the TGF-β inhibitor on the metastatic probability of cancer cells, providing valuable insights for the development of novel treatment therapies for NPC. The developed platforms proved to be useful tools for evaluating the metastatic potential of cells and are applicable for drug screening. Full article
(This article belongs to the Special Issue Spotlight on Biomedical Coating Materials)
Show Figures

Figure 1

14 pages, 338 KiB  
Article
Grade-Level Differences in the Profiles of Substance Use and Behavioral Health Problems: A Multi-Group Latent Class Analysis
by Kechna Cadet, Ashley V. Hill, Tamika D. Gilreath and Renee M. Johnson
Int. J. Environ. Res. Public Health 2024, 21(9), 1196; https://doi.org/10.3390/ijerph21091196 - 10 Sep 2024
Viewed by 206
Abstract
We investigated associations between polysubstance use and behavioral problems among adolescents. Because substance use becomes more developmentally normative with age, we examined whether polysubstance use was less likely to co-occur with behavioral problems among older (vs. younger) adolescents. Using data from a nationally [...] Read more.
We investigated associations between polysubstance use and behavioral problems among adolescents. Because substance use becomes more developmentally normative with age, we examined whether polysubstance use was less likely to co-occur with behavioral problems among older (vs. younger) adolescents. Using data from a nationally representative survey of US high school students, we compared the association between polysubstance use (i.e., use of alcohol, cannabis, tobacco/nicotine, and illicit drugs) and behavioral problems (i.e., suicide attempts, depressive symptoms, poor school performance, and sexual risk behaviors) by grade level. We conducted latent class analysis (LCA) to characterize patterns of polysubstance use, and multi-group LCA to estimate invariance by grade. Among the three latent classes that emerged, classes were distinguished by having low, moderate, and high probabilities for behavior problems and use of substances. Class I comprised 52% of the sample, whereas classes II and III comprised 35% and 12% of the sample, respectively. The multi-group LCA showed that younger adolescents had a higher relative probability of co-occurring problem behaviors and polysubstance use. Findings may be helpful in targeting screening and prevention efforts of high school students by grade. Specifically, our results provide evidence that associations between behavioral problems and alcohol/drug use are weaker in later high school grades, suggesting that substance use may not be a weaker marker of behavioral problems for students in higher grades. Full article
(This article belongs to the Special Issue Alcohol and Drugs of Addiction, Aggression and Violence)
16 pages, 5022 KiB  
Article
The Role of the Mu Opioid Receptors of the Medial Prefrontal Cortex in the Modulation of Analgesia Induced by Acute Restraint Stress in Male Mice
by Yinan Du, Yukui Zhao, Aozhuo Zhang, Zhiwei Li, Chunling Wei, Qiaohua Zheng, Yanning Qiao, Yihui Liu, Wei Ren, Jing Han, Zongpeng Sun, Weiping Hu and Zhiqiang Liu
Int. J. Mol. Sci. 2024, 25(18), 9774; https://doi.org/10.3390/ijms25189774 - 10 Sep 2024
Viewed by 192
Abstract
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic “disinhibition” mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the [...] Read more.
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic “disinhibition” mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown. In this study, we investigated the contributions of MORs expressed on glutamatergic (MORGlut) and GABAergic (MORGABA) neurons of the medial prefrontal cortex (mPFC), as well as the functional role and activity of neurons projecting from the mPFC to the periaqueductal gray (PAG) region, in male mice. We achieved this through a combination of hot-plate tests, c-fos staining, and 1 h acute restraint stress exposure tests. The results showed that our acute restraint stress protocol produced mPFC MOR-dependent SIA effects. In particular, MORGABA was found to play a major role in modulating the effects of SIA, whereas MORGlut seemed to be unconnected to the process. We also found that mPFC–PAG projections were efficiently activated and played key roles in the effects of SIA, and their activation was mediated by MORGABA to a large extent. These results indicated that the activation of mPFC MORGABA due to restraint stress was able to activate mPFC–PAG projections in a potential “disinhibition” pathway that produced analgesic effects. These findings provide a potential theoretical basis for pain treatment or drug screening targeting the mPFC. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (III))
Show Figures

Figure 1

16 pages, 6777 KiB  
Article
IGF-1 and Glucocorticoid Receptors Are Potential Target Proteins for the NGF-Mimic Effect of β-Cyclocitral from Lavandula angustifolia Mill. in PC12 Cells
by Chenyue An, Lijuan Gao, Lan Xiang and Jianhua Qi
Int. J. Mol. Sci. 2024, 25(18), 9763; https://doi.org/10.3390/ijms25189763 - 10 Sep 2024
Viewed by 216
Abstract
In the present study, the PC12 cells as a bioassay system were used to screen the small molecules with nerve growth factor (NGF)- mimic effect from Lavandula angustifolia Mill. The β-Cyclocitral (β-cyc) as an active compound was discovered, and its [...] Read more.
In the present study, the PC12 cells as a bioassay system were used to screen the small molecules with nerve growth factor (NGF)- mimic effect from Lavandula angustifolia Mill. The β-Cyclocitral (β-cyc) as an active compound was discovered, and its chemical structure was also determined. Furthermore, we focused on the bioactive and action mechanism of this compound to do an intensive study with specific protein inhibitors and Western blotting analysis. The β-cyc had novel NGF-mimic and NGF-enhancer effects on PC12 cells, while the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol 3 kinase, (PI3K)/serine/threonine-protein kinase (AKT), and glucocorticoid receptor (GR)/phospholipase C (PLC)/protein kinase C (PKC) signaling pathways were involved in the bioactivity of β-cyc. In addition, the important role of the rat sarcoma (Ras)/protooncogene serine-threonine protein kinase (Raf) signaling pathway was observed, although it was independent of tyrosine kinase (Trk) receptors. Moreover, the non-label target protein discovery techniques, such as the cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS), were utilized to make predictions of its target protein. The stability of IGF-R and GR, proteins for temperature and protease, was dose-dependently increased after treatment of β-cyc compared with control groups, respectively. These findings indicated that β-cyc promoted the neuron differentiation of PC12 cells via targeting IGF-1R and GR and modification of downstream signaling pathways. Full article
Show Figures

Figure 1

26 pages, 10272 KiB  
Article
Pharmacophore-Based Study: An In Silico Perspective for the Identification of Potential New Delhi Metallo-β-lactamase-1 (NDM-1) Inhibitors
by Heba Ahmed Alkhatabi and Hisham N. Alatyb
Pharmaceuticals 2024, 17(9), 1183; https://doi.org/10.3390/ph17091183 - 9 Sep 2024
Viewed by 309
Abstract
In the ongoing battle against antibiotic-resistant bacteria, New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a significant therapeutic challenge due to its ability to confer resistance to a broad range of β-lactam antibiotics. This study presents a pharmacophore-based virtual screening, docking, and molecular dynamics [...] Read more.
In the ongoing battle against antibiotic-resistant bacteria, New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a significant therapeutic challenge due to its ability to confer resistance to a broad range of β-lactam antibiotics. This study presents a pharmacophore-based virtual screening, docking, and molecular dynamics simulation approach for the identification of potential inhibitors targeting NDM-1, a critical enzyme associated with antibiotic resistance. Through the generation of a pharmacophore model and subsequent virtual screening of compound libraries, candidate molecules (ZINC29142850 (Z1), ZINC78607001 (Z2), and ZINC94303138 (Z3)) were prioritized based on their similarity to known NDM-1 binder (hydrolyzed oxacillin (0WO)). Molecular docking studies further elucidated the binding modes and affinities of the selected compounds towards the active site of NDM-1. These compounds demonstrated superior binding affinities to the enzyme compared to a control compound (−7.30 kcal/mol), with binding scores of −7.13, −7.92, and −8.10 kcal/mol, respectively. Binding interactions within NDM-1’s active site showed significant interactions with critical residues such as His250, Asn220, and Trp93 for these compounds. Subsequent molecular dynamics simulations were conducted to assess the stability of the ligand–enzyme complexes, showing low root mean square deviation (RMSD) values between 0.5 and 0.7 nm for Z1, Z2, which indicate high stability. Z2’s compactness in principal component analysis (PCA) suggests that it can stabilize particular protein conformations more efficiently. Z2 displays a very cohesive landscape with a notable deep basin, suggesting a very persistent conformational state induced by the ligand, indicating robust binding and perhaps efficient inhibition. Z2 demonstrates the highest binding affinity among the examined compounds with a binding free energy of −25.68 kcal/mol, suggesting that it could offer effective inhibition of NDM-1. This study highlights the efficacy of computational tools in identifying novel antimicrobial agents against resistant bacteria, accelerating drug discovery processes. Full article
Show Figures

Graphical abstract

15 pages, 6260 KiB  
Article
Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways
by Lei Li, Jing Huang, Lixin Feng, Liyan Xu, Houwen Lin, Kechun Liu, Xiaobin Li and Rongchun Wang
Mar. Drugs 2024, 22(9), 410; https://doi.org/10.3390/md22090410 - 9 Sep 2024
Viewed by 304
Abstract
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, [...] Read more.
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response. Full article
(This article belongs to the Special Issue Zebrafish Models in Marine Drug Discovery)
Show Figures

Graphical abstract

14 pages, 8008 KiB  
Article
Screening of Neutralizing Antibodies against FaeG Protein of Enterotoxigenic Escherichia coli
by Yang Tian, Sijia Lu, Saisai Zhou, Zhen Li, Shuaiyin Guan, Huanchun Chen and Yunfeng Song
Vet. Sci. 2024, 11(9), 419; https://doi.org/10.3390/vetsci11090419 - 9 Sep 2024
Viewed by 321
Abstract
The misuse of antibiotics in veterinary medicine presents significant challenges, highlighting the need for alternative therapeutic approaches such as antibody drugs. Therefore, it is necessary to explore the application of antibody drugs in veterinary settings to reduce economic losses and health risks. This [...] Read more.
The misuse of antibiotics in veterinary medicine presents significant challenges, highlighting the need for alternative therapeutic approaches such as antibody drugs. Therefore, it is necessary to explore the application of antibody drugs in veterinary settings to reduce economic losses and health risks. This study focused on targeting the F4ac subtype of the FaeG protein, a key adhesion factor in enterotoxigenic Escherichia coli (ETEC) infections in piglets. By utilizing formaldehyde-inactivated ETEC and a soluble recombinant FaeG (rFaeG) protein, an antibody library against the FaeG protein was established. The integration of fluorescence-activated cell sorting (FACS) and a eukaryotic expression vector containing murine IgG Fc fragments facilitated the screening of anti-rFaeG IgG monoclonal antibodies (mAbs). The results demonstrate that the variable regions of the screened antibodies could inhibit K88-type ETEC adhesion to IPEC-J2 cells. Furthermore, in vivo neutralization assays in mice showed a significant increase in survival rates and a reduction in intestinal inflammation. This research underscores the potential of antibody-based interventions in veterinary medicine, emphasizing the importance of further exploration in this field to address antibiotic resistance and improve animal health outcomes. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

23 pages, 7409 KiB  
Article
Computational Screening of T-Muurolol for an Alternative Antibacterial Solution against Staphylococcus aureus Infections: An In Silico Approach for Phytochemical-Based Drug Discovery
by Soham Bhattacharya, Pijush Kanti Khanra, Adrish Dutta, Neha Gupta, Zahra Aliakbar Tehrani, Lucie Severová, Karel Šrédl, Marek Dvořák and Eloy Fernández-Cusimamani
Int. J. Mol. Sci. 2024, 25(17), 9650; https://doi.org/10.3390/ijms25179650 - 6 Sep 2024
Viewed by 443
Abstract
Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in [...] Read more.
Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in this study, we have screened T-muurolol for possible interactions with several S. aureus-specific bacterial proteins to establish its potential as an alternative antibacterial agent. Based on its binding affinity and interactions with amino acids, T-muurolol was identified as a potential inhibitor of S. aureus lipase, dihydrofolate reductase, penicillin-binding protein 2a, D-Ala:D-Ala ligase, and ribosome protection proteins tetracycline resistance determinant (RPP TetM), which indicates its potentiality against S. aureus and its multi-drug-resistant strains. Also, T-muurolol exhibited good antioxidant and anti-inflammatory activity by showing strong binding interactions with flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, and cyclooxygenase-2. Consequently, molecular dynamics (MD) simulation and recalculating binding free energies elucidated its binding interaction stability with targeted proteins. Furthermore, quantum chemical structure analysis based on density functional theory (DFT) depicted a higher energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (EHOMO-LUMO) with a lower chemical potential index, and moderate electrophilicity suggests its chemical hardness and stability and less polarizability and reactivity. Additionally, pharmacological parameters based on ADMET, Lipinski’s rules, and bioactivity score validated it as a promising drug candidate with high activity toward ion channel modulators, nuclear receptor ligands, and enzyme inhibitors. In conclusion, the current findings suggest T-muurolol as a promising alternative antibacterial agent that might be a potential phytochemical-based drug against S. aureus. This study also suggests further clinical research before human application. Full article
(This article belongs to the Special Issue Recent Advances in Medicinal Plants and Natural Products)
Show Figures

Figure 1

26 pages, 2338 KiB  
Review
Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review
by Ana Júlia Felipe Camelo Aguiar, Wendjilla Fortunato de Medeiros, Juliana Kelly da Silva-Maia, Ingrid Wilza Leal Bezerra, Grasiela Piuvezam and Ana Heloneida de Araújo Morais
Int. J. Mol. Sci. 2024, 25(17), 9646; https://doi.org/10.3390/ijms25179646 - 6 Sep 2024
Viewed by 407
Abstract
Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent [...] Read more.
Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent with those predicted in the computational analysis. The review was framed by the question: “What peptides or proteins have been used to treat obesity in in silico studies?” and structured according to the acronym PECo. The systematic review protocol was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P, and all stages of the review adhered to these guidelines. Studies were sourced from the following databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria, 7 were included in this systematic review. The anti-obesity peptides identified originated from various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo reassessment and used molecular docking methodology in their in silico studies. Among the studies included in the review, 46.15% were classified as having an “uncertain risk of bias” in six of the thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably, all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The findings of this systematic review underscore the effectiveness of computational simulation as a screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the discovery of novel anti-obesity peptides. Full article
Show Figures

Figure 1

9 pages, 6416 KiB  
Communication
Tumor Microenvironment Based on Extracellular Matrix Hydrogels for On-Chip Drug Screening
by Xiaoyan Liu, Jinxiong Cheng and Yingcan Zhao
Biosensors 2024, 14(9), 429; https://doi.org/10.3390/bios14090429 - 5 Sep 2024
Viewed by 340
Abstract
Recent advances in three-dimensional (3D) culturing and nanotechnology offer promising pathways to overcome the limitations of drug screening, particularly for tumors like neuroblastoma. In this study, we develop a high-throughput microfluidic chip that integrates a concentration gradient generator (CGG) with a 3D co-culture [...] Read more.
Recent advances in three-dimensional (3D) culturing and nanotechnology offer promising pathways to overcome the limitations of drug screening, particularly for tumors like neuroblastoma. In this study, we develop a high-throughput microfluidic chip that integrates a concentration gradient generator (CGG) with a 3D co-culture system, constructing the vascularized microenvironment in tumors by co-culturing neuroblastoma (SY5Y cell line) and human brain microvascular endothelial cells (HBMVECs) within a decellularized extracellular matrix (dECM) hydrogels. The automated platform enhances the simulation of the tumor microenvironment and allows for the precise control of the concentrations of nanomedicines, which is crucial for evaluating therapeutic efficacy. The findings demonstrate that the high-throughput platform can significantly accelerate drug discovery. It efficiently screens and analyzes drug interactions in a biologically relevant setting, potentially revolutionizing the drug screening process. Full article
(This article belongs to the Special Issue Biochips and Biosensors for Health-Care and Diagnostics)
Show Figures

Figure 1

13 pages, 806 KiB  
Article
Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients
by Alessio Ardizzone, Maria Bulzomì, Fabiola De Luca, Nicola Silvestris, Emanuela Esposito and Anna Paola Capra
Curr. Issues Mol. Biol. 2024, 46(9), 9831-9843; https://doi.org/10.3390/cimb46090584 - 4 Sep 2024
Viewed by 368
Abstract
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the [...] Read more.
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the safety of fluoropyrimidine therapy could be improved by identifying new DPYD polymorphisms associated with ADRs. This study was carried out to assess whether testing for the underestimated c.2194G>A (DPYD*6 polymorphism, rs1801160) is useful, in addition to other well-known variants, in reducing the risk of ADRs in patients undergoing chemotherapy treatment. This retrospective study included 132 patients treated with fluoropyrimidine-containing regimens who experienced ADRs such as gastrointestinal, dermatological, hematological, and neurological. All subjects were screened for DPYD variants DPYD2A (IVS14+1G>A, c.1905+1G>A, rs3918290), DPYD13 (c.1679T>G, rs55886062), c.2846A>T (rs67376798), c.1236G>A (rs56038477), and c.2194G>A by real-time polymerase chain reaction (RT-PCR). In this cohort, the heterozygous c.2194G>A variant was present in 26 patients, while 106 individuals were WT; both subgroups were compared for the incidence of ADRs. This assessment revealed a high incidence of gastrointestinal and hematological ADRs in DPYD6 carriers compared to WT. Moreover, we have shown a higher prevalence of ADRs in females compared to males when stratifying c.2194G>A carrier individuals. Considering that c.2194G>A was linked to clinically relevant ADRs, we suggest that this variant should also be assessed preventively to reduce the risk of fluoropyrimidine-related ADRs. Full article
Show Figures

Figure 1

14 pages, 1705 KiB  
Article
Application of Microbiological Screening Tests in Assessment of Environmental Exposure to Antibiotics: Preliminary Studies
by Daria Madej-Knysak, Ewa Adamek, Leon Kośmider and Wojciech Baran
J. Xenobiot. 2024, 14(3), 1187-1200; https://doi.org/10.3390/jox14030067 - 4 Sep 2024
Viewed by 319
Abstract
Contact of aquatic microbiocenoses with antibiotics present in the environment can cause the former to develop resistance to antimicrobial drugs. Therefore, the search for methods to detect antibiotics and drug-resistant microorganisms in the environment is important. The presented paper proposes a simple procedure [...] Read more.
Contact of aquatic microbiocenoses with antibiotics present in the environment can cause the former to develop resistance to antimicrobial drugs. Therefore, the search for methods to detect antibiotics and drug-resistant microorganisms in the environment is important. The presented paper proposes a simple procedure to assess environmental exposure to antibiotics and the presence of non-susceptible microorganisms. Medium solutions with selected antibiotics and a microbial growth indicator were applied to test plates, and were inoculated with water samples from various ecosystems. After incubation, the susceptibility of the microorganisms to antibiotics was determined and presented in chronic microbial toxic concentration (MTC) values. It was confirmed that the presented procedure enables the assessment of the antibiotic susceptibility and adaptation potential of unselected microorganisms from different aquatic ecosystems. However, the MTC values depend on the inoculum volume, the density and seasonal activity of the microorganisms, the method of inoculum preparation, and the incubation time of the test plate. The described procedure may be practically applied as a screening test to identify the presence of drug-resistant microorganisms. Additionally, it may also be suitable as a method to assess environmental exposure to antibiotics. However, prior standardisation is required before implementing this procedure in quantitative studies. Full article
Show Figures

Figure 1

10 pages, 2331 KiB  
Article
Screening of Anti-Prion Compounds Using the Protein Misfolding Cyclic Amplification Technology
by Sandra Pritzkow, Isaac Schauer, Ananya Tupaki-Sreepurna, Rodrigo Morales and Claudio Soto
Biomolecules 2024, 14(9), 1113; https://doi.org/10.3390/biom14091113 - 4 Sep 2024
Viewed by 419
Abstract
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein [...] Read more.
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein misfolding cyclic amplification (PMCA) technology for in vitro prion replication, which allow us to replicate the infectious agent and it is commonly used for ultra-sensitive prion detection in biological fluids, tissues and environmental samples. In this article, we studied whether PMCA can be used to screen for chemical compounds that block prion replication. A small set of compounds previously shown to have anti-prion activity in various systems, mostly using cells infected with murine prions, was evaluated for their ability to prevent the replication of prions. Studies were conducted simultaneously with prions derived from 4 species, including human, cattle, cervid and mouse. Our results show that only one of these compounds (methylene blue) was able to completely inhibit prion replication in all species. Estimation of the IC50 for methylene blue inhibition of human prions causing variant Creutzfeldt-Jakob disease (vCJD) was 7.7 μM. Finally, we showed that PMCA can be used for structure-activity relationship studies of anti-prion compounds. Interestingly, some of the less efficient prion inhibitors altered the replication of prions in some species and not others, suggesting that PMCA is useful for studying the differential selectivity of potential drugs. Full article
(This article belongs to the Special Issue Biomolecular Approaches and Drugs for Neurodegeneration)
Show Figures

Figure 1

17 pages, 2710 KiB  
Review
Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development
by Temitope A. Ajani, Zandisiwe E. Magwebu, Chesa G. Chauke and Kenechukwu Obikeze
Pathophysiology 2024, 31(3), 471-487; https://doi.org/10.3390/pathophysiology31030035 - 3 Sep 2024
Viewed by 471
Abstract
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult [...] Read more.
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult to develop inhibitors with specificity for either CatS, CatK, or CatL. The involvement of CatS in various disease pathophysiologies (autoimmune disorders, cardiovascular diseases, cancer, etc.) has made it a very important target in drug development. Efforts have been made since the early 1990s to develop a specific CatS inhibitor without any major success. Following many failed efforts to develop an inhibitor for CatS, it was discovered that interactions with the amino acid residues at the S2 and S3 pockets of CatS are critical for the identification of CatS-specific inhibitors. Amino acid residues at these pockets have been the target of recent research focused on developing a non-covalent, reversible, and specific CatS inhibitor. Methods applied in the identification of CatS inhibitors include molecular modeling, in-vitro screening, and in-vivo studies. The molecular modeling process has proven to be very successful in the identification of CatS-specific inhibitors, with R05459072 (Hoffmann-La Roche) and LY3000328 (Eli Lilly Company) which has completed phase 1 clinical trials. CatS inhibitors identified from 2011 to 2023 with promising prospects are discussed in this article. Full article
Show Figures

Figure 1

11 pages, 2819 KiB  
Article
New Sesquiterpenoids from the Mangrove-Derived Fungus Talaromyces sp. as Modulators of Nuclear Receptors
by Tanwei Gu, Jian Cai, Danni Xie, Jianglian She, Yonghong Liu, Xuefeng Zhou and Lan Tang
Mar. Drugs 2024, 22(9), 403; https://doi.org/10.3390/md22090403 - 3 Sep 2024
Viewed by 453
Abstract
Four new sesquiterpenoids, talaroterpenes A–D (14), were isolated from the mangrove-derived fungus Talaromyces sp. SCSIO 41412. The structures of compounds 14 were elucidated through comprehensive NMR and MS spectroscopic analyses. The absolute configurations of 14 [...] Read more.
Four new sesquiterpenoids, talaroterpenes A–D (14), were isolated from the mangrove-derived fungus Talaromyces sp. SCSIO 41412. The structures of compounds 14 were elucidated through comprehensive NMR and MS spectroscopic analyses. The absolute configurations of 14 were assigned based on single-crystal X-ray diffraction and calculated electronic circular dichroism analysis. Talaroterpenes A–D (14) were evaluated with their regulatory activities on nuclear receptors in HepG2 cells. Under the concentrations of 200 μM, 1, 3 and 4 exhibited varying degrees of activation on ABCA1 and PPARα, while 4 showed the strongest activities. Furthermore, 4 induced significant alterations in the expression of downstream target genes CLOCK and BMAL1 of RORα, and the in silico molecular docking analysis supported the direct binding interactions of 4 with RORα protein. This study revealed that talaroterpene D (4) was a new potential non-toxic modulator of nuclear receptors. Full article
Show Figures

Figure 1

Back to TopTop