A LIDAR-Compatible, Multichannel Raman Spectrometer for Remote Sensing of Water Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectrometer Design
2.2. Temperature Markers
2.3. Predicting Temperatures
2.4. Marker Sensitivity to Temperature
2.5. Linear Combination Method (LC)
3. Results and Discussion
3.1. Milli-Q (ultrapure) Water Analysis
3.2. Natural Water Analysis
3.3. Enhancing the Accuracy of Temperature Predictions Using Linear Combination Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dickey, T.D. A vision of oceanographic instrumentation and technologies in the early twenty-first century. In Oceans 2020; Field, J.G., Hempl, G., Summerhayes, C.P., Eds.; Island Press: Washington, DC, USA, 2002; pp. 209–254. [Google Scholar]
- Rees, W.G. Physical Principles of Remote Sensing, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001; ISBN 0-521-66034-3. [Google Scholar]
- Solan, M.; Germano, J.D.; Rhoads, D.C.; Smith, C.; Michaud, E.; Parry, D.; Wenzhöfer, F.; Kennedy, B.; Henriques, C.; Battle, E.; et al. Towards a greater understanding of pattern, scale and process in marine benthic systems: A picture is worth a thousand worms. J. Exp. Mar. Biol. Ecol. 2003, 285–286, 313–338. [Google Scholar] [CrossRef]
- Rajeesh, R.; Dwarakish, G.S. Satellite Oceanography—A review. Aquat. Procedia 2015, 4, 165–172. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; de Mora, L.; Billson, O.; Jackson, T.; Russell, P.; Brewin, T.G.; Shutler, J.D.; Miller, P.I.; Taylor, B.H.; Smyth, T.J.; et al. Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar. Coast. Shelf Sci. 2017, 196, 276–289. [Google Scholar] [CrossRef]
- Shi, J.; Li, G.; Gong, W.; Bai, J.; Huang, Y.; Liu, Y.; Li, S.; Liu, D. A lidar system based on stimulated Brillouin scattering. Lasers Opt. 2007, 86, 177–179. [Google Scholar] [CrossRef]
- Rupp, D.; Zipf, A.; Kress, M.; Lux, K.; Walther, T.; Trees, C. A Brillouin lidar for remote sensing of the temperature profile in the ocean — Towards a simultaneous measurement of temperature and salinity. In Proceedings of the OCEANS 2017, Anchorage, AK, USA, 18–21 September 2017; pp. 1–7. [Google Scholar]
- Leonard, D.A.; Caputo, B.; Johnson, R.L. Experimental remote sensing of subsurface temperature in natural ocean water. Geophys. Res. Lett. 1977, 4, 279–281. [Google Scholar] [CrossRef]
- Leonard, D.A.; Caputo, B.; Hoge, F.E. Remote sensing of subsurface water temperature by Raman scattering. Appl. Opt. 1979, 18, 1732–1745. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Chen, W. Remote sensing of subsurface water temperature using Raman Lidar. SPIE 1992, 1633, 321–329. [Google Scholar]
- Artlett, C.P.; Pask, H.M. Optical remote sensing of water temperature using Raman spectroscopy. Opt. Express 2015, 23, 31844. [Google Scholar] [CrossRef]
- Ferraro, J.; Nakamoto, K. Introductory Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780122541056. [Google Scholar]
- Walrafen, G.E.; Fisher, M.R.; Hokmabadi, M.S.; Yang, W.-H. Temperature dependence of the low- and high-frequency Raman scattering from liquid water. J. Chem. Phys. 1986, 85, 6970–6982. [Google Scholar] [CrossRef]
- Carey, D.M.; Korenowski, G.M. Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 1998, 108, 2669. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Hokmabadi, M.S.; Yang, W.-H. Raman isosbestic points from liquid water. J. Chem. Phys. 1986, 85, 6964. [Google Scholar] [CrossRef]
- Risović, D.; Furić, K. Comparison of Raman spectroscopic methods for the determination of supercooled and liquid water temperature. J. Raman Spectrosc. 2005, 36, 771–776. [Google Scholar] [CrossRef]
- Lednev, V.N.; Grishin, M.Y.; Pershin, S.M.; Bunkin, A.F. Quantifying Raman OH-band spectra for remote water temperature measurements. Opt. Lett. 2016, 41, 4625–4628. [Google Scholar] [CrossRef] [PubMed]
- Dolenko, T.A.; Churina, I.V.; Fadeev, V.V.; Glushkov, S.M. Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media. J. Raman Spectrosc. 2000, 31, 863–870. [Google Scholar] [CrossRef]
- Chang, C.H.; Young, L.A. Remote measurement of ocean temperature from depolarization in Raman scattering. In the Use of Lasers for Hydrographic Studies; National Aeronautics and Space Administration: Washington, DC, USA, 1975; pp. 105–112. [Google Scholar]
- Tominaga, Y.; Fujiwara, A.; Amo, Y. Dynamical structure of water by Raman spectroscopy. Fluid Phase Equilib. 1998, 144, 323–330. [Google Scholar] [CrossRef]
- Breschi, B.; Cecchi, G.; Pantani, L.; Raimondi, V.; Tirelli, D.; Valmori, G. Measurement of Water Column Temperature by Raman Scattering. EARsel Adv. Remote Sens. 1992, 1, 131–134. [Google Scholar]
- Oh, M.; Kang, H.; Yu, N.E.; Kim, B.H.; Kim, J.; Lee, J.; Hyung, G.W. Ultimate sensing resolution of water temperature by remote Raman spectroscopy. Appl. Opt. 2015, 54, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- de lima Ribeiro, A.; Artlett, C.; Ajani, P.; Derkenne, C.; Pask, H. The impact of fluorescence on Raman remote sensing of temperature in natural water samples. Opt. Express 2019. (submitted). [Google Scholar]
- Leonard, D.A.; Caputo, B. Raman Remote Sensing Of The Ocean Mixed-Layer Depth. Opt. Eng. 1983, 22, 223288. [Google Scholar] [CrossRef]
- Artlett, C.P.; Pask, H. Remote sensing of water temperature and salinity using Raman spectroscopy. Opt. Soc. Am. 2015, 114, 62269. [Google Scholar]
- Artlett, C.P.; Pask, H.M. New approach to remote sensing of temperature and salinity in natural water samples. Opt. Express 2017, 25, 2840. [Google Scholar] [CrossRef] [PubMed]
- James, J.E.; Lin, C.S.; Hooper, W.P. Simulation of laser-induced light emissions from water and extraction of Raman signal. J. Atmos. Ocean. Technol. 1999, 16, 394–401. [Google Scholar] [CrossRef]
- Cunningham, K.; Lyons, P.A. Depolarization ratio studies on liquid water. J. Chem. Phys. 1973, 59, 2132–2139. [Google Scholar] [CrossRef]
Channel Number | Polarization State | Band Pass Filter | Nomenclature | Typical SNR Values |
---|---|---|---|---|
1 | Parallel | |||
2 | Perpendicular | |||
3 | Perpendicular | |||
4 | Parallel |
Temperature Marker | RMSTE (±°C) | Sensitivity (%/°C) | Absolute Percentage Error in Marker (%) |
---|---|---|---|
Two-colour (∥) | 0.4 [0.4–0.7] | 0.59 | 0.00093 |
Two-colour (⟂) | 1.5 [1.5–1.7] | 0.61 | 0.0035 |
Depolarization (A) | 0.8 [0.8–1.0] | 0.68 | 0.0021 |
Depolarization (B) | 1.8 [1.4–2.1] | 0.52 | 0.0023 |
Temperature Markers | |||||
---|---|---|---|---|---|
Two-Colour(∥) | Two-Colour(⟂) | Depolarization(A) | Depolarization(B) | ||
Natural 1 | RMSTE (±°C) (Range) | 0.4 (0.4–0.6) | 2.6 (2.3–2.6) | 1.6 (1.6–1.7) | 2.1 (2.1–2.5) |
Sensitivity (%/°C) | 0.50 | 0.30 | 0.48 | 0.30 | |
Marker percentage error (%) | 0.00098 | 0.0026 | 0.0019 | 0.0017 | |
Natural 2 | RMSTE (±°C) (Range) | 0.7 (0.5–0.7) | 1.3 (1.0–1.3) | 1.4 (0.8–3.4) | 1.1 (1.1–2.2) |
Sensitivity (%/°C) | 0.57 | 0.57 | 0.59 | 0.56 | |
Marker percentage error (%) | 0.00089 | 0.00276 | 0.00179 | 0.00187 | |
Natural 3 | RMSTE (±°C) (Range) | 0.8 (0.8–0.9) | 0.9 (0.9–1.7) | 6.5 (5.6–8.1) | 2.6 (2.5–2.7) |
Sensitivity (%/°C) | 0.53 | 0.49 | 0.25 | 0.78 | |
Marker percentage error (%) | 0.00084 | 0.0024 | 0.0017 | 0.0016 |
Sample | Best RMSTE for single marker [Range for all markers] (±°C) | Best RMSTE after LC [Range] (±°C) | Improvement due to LC (%) |
---|---|---|---|
Milli-Q water sample | 0.4 [0.4–2.1] | 0.3 [0.3–0.5] | 25 |
Natural sample 1 | 0.4 [0.4–2.6] | 0.3 [0.3–0.5] | 25 |
Natural sample 2 | 0.5 [0.5–3.4] | 0.4 [0.3–0.5] | 20 |
Natural sample 3 | 0.8 [0.8–8.1] | 0.5 [0.5–0.7] | 38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima Ribeiro, A.; Artlett, C.; Pask, H. A LIDAR-Compatible, Multichannel Raman Spectrometer for Remote Sensing of Water Temperature. Sensors 2019, 19, 2933. https://doi.org/10.3390/s19132933
de Lima Ribeiro A, Artlett C, Pask H. A LIDAR-Compatible, Multichannel Raman Spectrometer for Remote Sensing of Water Temperature. Sensors. 2019; 19(13):2933. https://doi.org/10.3390/s19132933
Chicago/Turabian Stylede Lima Ribeiro, Andréa, Christopher Artlett, and Helen Pask. 2019. "A LIDAR-Compatible, Multichannel Raman Spectrometer for Remote Sensing of Water Temperature" Sensors 19, no. 13: 2933. https://doi.org/10.3390/s19132933
APA Stylede Lima Ribeiro, A., Artlett, C., & Pask, H. (2019). A LIDAR-Compatible, Multichannel Raman Spectrometer for Remote Sensing of Water Temperature. Sensors, 19(13), 2933. https://doi.org/10.3390/s19132933